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Abstract—Recently, a number of WiFi APs have been densely
deployed to provide widely-available, high-performance Internet
services. As such, an energy efficiency issue becomes crucial
toward the design of green wireless local area networks (WLANs).
In this paper, we propose a resource and re-association scheduling
algorithm (referred to RAS) based on Benders’ Decomposition
to reduce the energy consumption. In particular, we endeavor to
aggregate WLAN users on the small number of APs and turn
off many APs without compromising users’ quality of experience
(QoE) and system coverage. We conduct the analysis by using
real trace data and formulate the energy minimization as the
mixed integer nonlinear programming (MINLP) problem. We
then transform and solve the original problem through the RAS
algorithm. For practical implementation, we further propose
the fast RAS (Fast-RAS) algorithm to relax the binary integer
constraints and transform the MINLP problem into the nonlinear
programming (NLP) problem. The relaxed problem then can
be solved by using Feasible Pump algorithm with the reduced
computational complexity. We evaluate the performance of RAS
and Fast-RAS algorithms via extensive simulations. The results
demonstrate that the Fast-RAS algorithm can achieve up to 20%
improvement of energy saving comparing with existed methods.

Index Terms—Energy efficient WLAN, resource scheduling,
user re-association, MINLP optimization.

I. INTRODUCTION

W IFI has been widely deployed in numerous places.
Hence, it becomes one of the most popular solutions to

provide reliable, low-latency and high-speed Internet connec-
tivity for end users [1]. According to the recent report from
Cisco [2], more than 51% mobile traffic is offloaded from
cellular networks to both public and residential WiFi access
points (APs), and the number will increase to 55% by 2020.
Furthermore, to carry over 50% Internet traffic, the number
of WiFi APs will grow sevenfold from 64 million in 2015
to 432 million in 2020. Actually, to offer enough capacity
that meets the users’ demand at peak hours, the density of
APs is much higher than that normally needed for coverage
only. Additionally, during the off-peak period, as the capacity
demand declined sharply in which the utilization of most of
APs reduces to a very low level or even zero [3], [4]. However,
the power consumption of an idle AP is about 80% of that at
full load [5], which leads to serious energy wastage problem.
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To achieve green WLANs, the main devices, the APs,
which consume 70%-80% energy of WLAN [6], is the fo-
cus of improving energy efficiency. This objective can be
achieved through AP’s transmission power control [7] or
switching off/sleeping redundant APs dynamically to avoid
low-utilization or idle APs from consuming energy [8]. The
switching-off strategy has been widely adopted. For exam-
ple, the resource-on-demand strategy was proposed for dense
WLANs. Likewise, the green clustering algorithm was in-
troduced to initiate a cycle of estimating user demand and
performance to power on or off APs [4]. Furthermore, through
real traffic analysis, the authors in [9] proposed a simple model
to study the AP switching frequency and energy saving. They
also presented a detailed investigation of AP turn-off threshold
and hysteresis window settings. However, due to user’s high
mobility, the methods that rely on historical user behavior may
fail to accommodate the dynamic network conditions.

Moreover, the real-time monitoring scheme has been in-
troduced to collect information for energy management. The
authors in [10] conducted frequent data traffic monitoring
on APs. The authors then implemented an automatic sleep
control strategy to control the state changes of APs. Simi-
larly, through the centralized control framework, the actual
network conditions, i.e., user density and traffic patterns, are
monitored and used to tune the energy consumption through a
flexible energy-saving decision algorithm [11]. A cooperative
energy management method is proposed to schedule wireless
resources among gateways based on real-time monitoring [12],
and implemented in federated WiFi networks. Nevertheless,
the additional energy consumption increase and user’s QoE
are not considered in the optimization of user re-association
in those methods.

Undeniably, switching off low-utilization APs is effective to
reduce the energy consumption of green WLANs. However, it
may lead to distinct performance degradation for mobile users.
Therefore, switching off more APs to save energy, user’s QoE
must be considered firstly and the effectiveness of an energy
saving scheme strongly depends on two factors: 1) which APs
are selected to turn off while not sacrificing the user’ QoE
and system coverage; and 2) the users that associate to the
powered off APs need to re-associate to other running APs, as
a user can connect to multiple APs, the user re-associates to a
suitable AP can minimize the additional energy consumption,
which is often ignored in existing methods.

In this paper, aiming to reduce the energy consumption, we
seek to aggregate users on fewer APs and to turn off APs. We
also optimize the user re-association to minimize total energy
consumption while not sacrificing the demands of users’ QoE
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and system coverage. Unlike existing methods, we take into
account the energy increase in the user re-association. With
the realistic model of the energy efficiency of APs obtained
through real trace data analysis, we formulate the energy
efficiency problem as a mixed integer non-linear program-
ming (MINLP) problem, then introduce a resource and re-
association scheduling algorithm (RAS) derived from classical
Benders’ Decomposition to solve the MINLP problem. To
reduce the computational complexity of the MINLP problem,
we relax the binary integer constraints and transform the
master problem into a nonlinear programming (NLP) problem.
And then, we propose a fast RAS (Fast-RAS) algorithm based
on Feasible Pump to solve the NLP problem within the
acceptable computational time.

We validate the performance of the RAS and Fast-RAS al-
gorithms via extensive simulations, and the results demonstrate
that the Fast-RAS algorithm can obtain the suboptimal solution
close to that of the RAS algorithm. Besides, the Fast-RAS
algorithm can reduce the computational time significantly.
Moreover, compared with existing methods, the Fast-RAS
algorithm achieves up to 20% improvement of energy saving
while obtaining much better system coverage and throughput.
Especially, when overfull users with high throughput demand
generate traffic close to the system’s maximum capacity, the
Fast-RAS algorithm can still reduce nearly 10% energy con-
sumption, which is much better than the other methods. Note
here that the Fast-RAS algorithm can be easily implemented in
a software defined networking (SDN) based WLAN systems
with a centralized controller to support real-time network
monitoring, user re-association management, and AP control.
We summarize the contributions of the paper as follows.

• To the best of our knowledge, this paper is the first to
model and solve the energy efficiency problem of WLAN
systems integrated with the optimization of user re-
association to reduce the increase of energy consumption
on running APs while meeting the diverse requirements
of user’s QoE and system coverage.

• Based on real trace data analysis, we model the energy
efficiency of an AP device and formulate the energy
efficiency problem as a mixed integer non-linear program-
ming (MINLP) problem. Then, derived from Benders’
Decomposition, we propose a resource and re-association
scheduling algorithm to solve the MINLP problem to
obtain the optimal solutions.

• To reduce the computational complexity of the MINLP
problem, we relax the binary integer constraints and
transform the master problem into an NLP problem. We
prove that the solution of the NLP problem is a subset
of the optimal solution of the MINLP problem. Then, we
propose the Fast-RAS algorithm based on Feasible Pump
to solve the NLP problem with reasonable computational
complexity.

The rest of the paper is organized as follow. Section II
reviews related works. The system model and problem formu-
lation are described in Section III. In Section IV, we present the
RAS algorithm developed based on Benders’ Decomposition.
In Section V, we present the relaxation of the binary integer

constraints to simplify the MINLP problem and introduce the
Fast-RAS algorithm. The performance of the RAS and Fast-
RAS algorithms is evaluated through simulations in Section
VI, followed by conclusions in Section VII.

II. RELATED WORKS

The idea of resource-on-demand (RoD) strategy for dense
WLANs was first proposed by Amit et al. [4], and a prac-
tical and elegant RoD strategy with green clustering was
implemented to form clusters of APs that are close to each
other. Specifically, signal attenuation and packet loss rate were
selected as the clustering standard to maintain the effective
coverage of the network when reducing the redundant idle
APs. In [13], the work was extended to account for the case
when the APs do not completely overlap their coverage areas,
based on single-queue and two-queue analysis, some APs can
be switched off to save energy when the maximum capacity is
not needed. Furthermore, through investigating users’ behavior
in real dense WLANs, Debele et al. [9] formulated a stochastic
characterization and proposed a simple model to design the
RoD strategy, which is used to evaluate the AP activity
and inactivity periods, AP switching frequency, and energy
saving. However, these clustering methods and mechanisms
which mainly depend on historical user behavior may fail to
accommodate with highly-dynamic network conditions.

Moreover, some researchers try to change the state of
APs among finer modes, e.g. busy, idle and closed/sleep
states, according to real-time data monitoring on each AP,
and design cooperative sleep control algorithms to achieve
energy saving [10]–[12], [14]. The authors in [10] performed
frequent data traffic monitoring on APs, and an automatic
sleep control strategy was implemented to control the state
changes of APs. Similarly, through the centralized control
framework, the actual network conditions in terms of both user
density and traffic patterns are monitored and used to tune the
energy consumption through a flexible energy-saving decision
algorithm [11]. However, user re-association is not taken into
account when switching off idle APs in these methods. Thus,
the users’ QoE can not be guaranteed. Then, the authors in [12]
proposed a centralized control framework, which allows the
cooperation through the monitoring of local wireless resource
and the triggering of offloading requests toward other APs
in federated WiFi networks to realize the policy of AP
switching and user offloading. In [14], an energy balancing
AP coordination mechanism called Crowd-AP was proposed.
The mechanism controls each AP to gather information of
wireless network and share the information with its neighbor
APs. This mechanism can also perform user’s re-association,
but without the consideration of AP’s capacity. Moreover, the
bandwidth and storage of APs will be exhausted by a large
amount of additional data exchange.

Recently, the idea of centralized control has been introduced
to achieve high energy efficiency. With the development of
the SDN technology [15], [16], real-time network monitor-
ing and centralized control can be achieved to solve the
energy efficiency problem in WLANs. Amokrane et al. [17]
proposed a flow-based management framework to improve
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energy efficiency in campus networks. To support users’
demands and mobility, an online flow-based routing approach
was introduced to reconfigure the existing flows dynamically
with link rate adaptation. Chen et al. [18] proposed a QoS-
aware AP energy saving mechanism using SDN to reduce
energy consumption without affecting user’s QoS require-
ments. Meanwhile, the optimization of resource allocation and
user association have become the new approaches to improve
network performance. For example, Nessrine et al. [19] pro-
posed a solution of user association and inter-cell interference
coordination to maximize the network utility of LTE cellular
networks. Similarly, Fan et al. [20] optimized the user associa-
tion in WLAN/cellular integrated network to achieve a tradeoff
between the throughput and power of users’ equipments.

Therefore, to improve the energy efficiency of WLANs,
in this paper, we attempt to optimize the resource and user
re-association with the consideration of energy consumption
incurred when the user is re-associated to a new AP. We also
employ SDN-based architecture to implement our algorithm.
We formulate the energy efficiency problem as an MINLP
problem, and introduce Benders’ Decomposition to solve it.
Benders’ Decomposition is proposed by Benders [21] and
extended by Geoffrion [22]. The Benders’ Decomposition has
a great advantage in solving complex mathematical problems
such as mixed integer programming and stochastic program-
ming. Kheirkhah et al. [23] proposed an improved Benders’
Decomposition algorithm for a capacitated vehicle routing
problem, which is divided into the network interdiction master
problem and the vehicle routing selection subproblem. Qian
et al. [24] studied a joint optimization of BS association
and power control in heterogeneous cellular networks based
on Benders’ Decomposition. The objective is to achieve that
good communication quality is retained on each link at the
minimum cost. Nasri et al. [25] proposed an efficient solu-
tion approach based on Benders’ Decomposition to solve a
network-constrained unit commitment problem under uncer-
tainty. However, none of them tries to optimize the energy
consumption for the deployment of APs while guaranteeing
the communication quality for the users. Our paper focuses
on utilizing Benders’ Decomposition to obtain the globally
optimal solution of the energy efficiency problem.

III. RESOURCE AND RE-ASSOCIATION SCHEDULING FOR
ENERGY-EFFICIENT WLANS

A. Energy efficiency management in SDN based WLANs
The problem of maximizing energy efficiency in a typical

WLAN scenario with dense APs is illustrated in Fig. 1. During
the off-peak period, there is only small number of users
connected to AP3 and AP4, and the utilization of these two
APs is low. Therefore, the users on AP3 and AP4 can be re-
associated to other APs without affecting user’s QoS given
that the other APs have sufficient bandwidth to support these
switching users, and thus AP3 and AP4 can be turned off to
save the energy. Moreover, through further optimizing the re-
association of users to suitable APs, the increment of energy
consumption on the APs can be minimized.

By using the SDN and NFV technologies in heterogeneous
wireless networks, the resource scheduling optimization of

Fig. 1: The energy efficiency in dense SDN based WLANs.

energy management in WLANs becomes feasible [26], [27].
Therefore, we propose a novel Software-defined Wireless
Network (SDWN) architecture [16]. Firstly, the centralized
architecture of SDN provides a global view of the network,
and the control plane and data plane decoupling supports real-
time monitoring as well as flexible control of the APs, which
enables a centralized network-side AP association mechanism.
Moreover, the abstraction of network functionality achieved
from the underlying physical infrastructure can support seam-
less handover among APs using different channels for mobile
users and avoid the re-association overhead [28], [29]. As
shown in Fig. 1, the network entities are described as follows.

1) SDWN Controller: The SDN controller enables network
applications to orchestrate the underlying physical wireless
network entities and services. The SDN controller provides a
set of interfaces (the northbound interface) to the applications
and translates their requests into a set of commands (the
southbound interface) to the network devices. It maintains a
view of the network components including users, APs, appli-
cations, and OpenFlow switches, and performs the centralized
functions including user authentication, creating, migrating
and releasing of a virtual access point (VAP) for per-user,
network performance monitoring and resources scheduling.
Here, the VAP can be formed over different physical APs.

2) AP Daemon: An AP Daemon runs on the physical
APs and executes the command from the SDN controller to
orchestrate the wireless networks, measure, and report the VAP
performance of users on APs. Firstly, it works on the WiFi
devices to virtualize high-level wireless functions of the IEEE
802.11 MAC protocol for different network slices. Secondly,
it maintains VAP and wireless flow transmission rules for each
user, dispatches and forwards the traffic flow according to
flow-tables. Thirdly, as the status of users changes frequently,
it sniffs the wireless data frames for monitoring the perfor-
mance of VAPs to support a publish-subscribe information
system when a particular frame event is triggered.

3) Admin Proxy: The admin proxy provides a set of open
programmable interfaces for system administrators. The ad-
ministrators can create multiple independent network slices,
and deploy their routing or scheduling algorithms into network
slices. The admin proxy allows the administrator to exert
the network control, e.g., load balancing, energy efficiency,
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Fig. 2: The fitting curve of AP’s energy efficiency.

troubleshooting, and to supports test run evaluation from
implementing the customized flow assignment or migration
algorithm into the SDWN core module.

B. System Model

1) Network model: As shown in Fig. 1, we consider a
centralized WLAN system that every AP is under the central
controller. The controller acquires and schedules the network
resources to serve mobile users.
• AP control: The SDN controller controls the on-off

switching and resources of APs. When some APs are
unnecessary to be turned on, the controller will turn off
them to reduce the energy consumption and improve
energy efficiency. When the bandwidth required by the
users that are associated with an AP exceeds the total
bandwidth available at the AP, the controller will turn on
a new AP. The new AP will also support some of the
users in its corresponding coverage. We denote an active
mode indicator of APi by αi ∈ {0, 1}, where αi = 1 if
APi is on, and αi = 0 otherwise.

• User association control: Based on the NFV technology,
users in the WLAN system can migrate among APs
seamlessly and flexibly. When a set of active APs is
selected to be turned off, the users associated with those
APs will be re-associated to other APs. Therefore, the
controller needs to decide the re-association between all
the mobile users and the APs. We denote an association
between user j and APi by βi j , where βi j = 1 if user j
is associated with APi , and βi j = 0 otherwise. Moreover,
since the re-association of the user is constrained by
whether the user is in the coverage of the new AP or not,
we denote a relation between user j and the coverage of
APi by Ci j ∈ {0, 1}, where Ci j = 1 if user j is within the
coverage of APi , and Ci j = 0 otherwise.

• Transmission: Since our goal is to reduce the energy
consumption of the APs, which are incurred mostly
from the wireless signal transmission, we focus on the
downlink communication, i.e., from APs to users. We
denote the minimum requirement of the active data rate
for user j by d j and assume that d j is a constant during
the resource scheduling optimization period.

2) Energy Consumption of AP: We conduct an experiment
in real networks to test the energy efficiency of WiFi devices.
We deploy 10 Netgear WNDR 3800 and 4300 devices in a
typical application scenario: working at 2.4 GHz with 802.11n
mode, 20 MHz HT mode, random channel, and 30 dBm
transmission power. We use power meter (TECMAN-TM6)
to measure AP’s energy consumption.

From the real trace data, we find that when the throughput
is higher than 70Mbps, the loss rate suddenly increases from
0.94% shapely, which leads to the decrease of user’s QoE.
Consequently, we let lmax denote the threshold and set it to
70Mbps throughput. If AP’s load exceeds the threshold, a new
AP will be turned on to support the increasing users’ demands.

As shown in Fig. 2, to analyze the energy efficiency of WiFi
devices, we randomly sample the experimental data and adopt
the Minimum Mean Square Error (MMSE) method to compute
and obtain the energy efficiency fitting function. The function
can present the trend of energy consumption with the change
of throughput on the APs. To improve the fitting accuracy,
we increase the sampling rate to 160 samples per second and
model the energy consumption function as follows:

P(l) = al2 + bl + c, (1)

where l and P (l) denote the AP’s throughput and energy
consumption with the throughput l, respectively. The values of
variables a, b and c are 6.2185e − 5, 0.029173 and 6.667, re-
spectively. The AP’s energy consumed is composed of a fixed
component and a variable component. The fixed component,
denoted by σ0 = P (0), is for the AC/DC conversion, basic
circuitry powering, dispersion, etc. The variable component
associated with the throughput is given by f (l) as follows:

f (l) = al2 + bl . (2)

C. Problem Formulation

Formally, the energy efficiency problem of the WLAN
formulated based on a bipartite structure is to allocate a set
of mobile users to the minimum number of active APs in
which each user must be associated with only one AP. The
objective is to minimize the energy consumption of the active
APs, while guaranteeing the users’ demands without exceeding
the maximum capacity of the connections between the users
and the APs.

We assume that the WLAN system includes n APs and
m users, and denote their sets by N = {1, . . . , n} and
M = {1, . . . ,m}, where AP i ∈ N and user j ∈ M ,
respectively. The users’ throughput demands matrix is denoted
by d = [d1, . . . , dm]> ∈ Rm×1, and the energy consumption of
APj denoted as pi , i.e.,

pi = P *.
,

m∑
j=1

βi jd j
+/
-
. (3)

Based on real-time monitoring, we can initialize the state of
users and APs as follows. Let α(0) denote the working status of
APs, where α(0) = [1, . . . , 1]> ∈ Rn×1, β(0) denotes the asso-
ciation matrix between users and APs, β(0) =

[
βi j

]
∈ Rn×m,

C (0) denotes the signal coverage matrix between users and
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APs, C (0) =
[
Ci j

]
∈ Rn×m, and L(0) denotes the throughput of

all APs, and L(0) = [l1, . . . , ln]> = β(0) · d ∈ Rn×1. Moreover,
the parameters are given by

Lmax=[lmax] ∈ Rn×1,

σ=[σ0] ∈ Rn×1. (4)

Given the definitions of these variables in system model, the
resource and re-association scheduling optimization problem
can be expressed as follows:

=1 : min
αi,βi j

n∑
i=1




P *.
,

m∑
j=1

βi jd j
+/
-
αi



, (5)

s.t. αi, βi j ∈ {0, 1} , ∀i ∈ N,∀ j ∈ M, (6)
n∑
i=1

βi j = 1, ∀ j ∈ M, (7)

n∑
i=1

αi βi j = 1, ∀ j ∈ M, (8)

0 ≤ βi j ≤ Ci j, ∀i ∈ N,∀ j ∈ M, (9)

0 ≤
m∑
j=1

βi jd j ≤ lmax, ∀i ∈ N . (10)

The objective in (5) indicates the energy consumption of all
active APs to be minimized, where P (l) is convex in l. Solving
the problem =1 means that the corresponding algorithm should
return the optimal active AP vector α∗ and the user-AP
association matrix β∗. The constraint in (6) represents the
feasible set of αi and βi j . The constraints in (7) and (8) ensure
that user j can be associated to one AP, and the constraint
in (9) ensures that only the user that is within the coverage
of the AP can be associated to the AP. The constraint in (10)
ensures that the total throughput of every AP is within its
transmission capacity.

Since the energy consumption of an AP can be divided into
two components, the mixed integer non-linear programming
(MINLP) problem =1 can be rewritten as =2, i.e.,

=2 : min
αi,βi j

Φ (α, β) (11)

s.t. αi, βi j ∈ {0, 1}, ∀i ∈ N,∀ j ∈ M,
n∑
i=1

βi j = 1, ∀ j ∈ M,

0 ≤ βi j ≤ Ci j, ∀i ∈ N,∀ j ∈ M,

0 ≤
m∑
j=1

βi jd j ≤ lmax, ∀i ∈ N .

where

Φ (α, β)

=

n∑
i=1

f *.
,

m∑
j=1

βi jd j
+/
-
+ σ0

n∑
i=1

αi

= f (β) +min
α

{
σ>α |αi ≥ βi j,∀ j ∈ M

}
, (12)

f (β) = a
n∑
i=1

*.
,

m∑
j=1

βi jd j
+/
-

2

+ b
n∑
i=1

m∑
j=1

βi jd j .

Lemma 1 (Convexity): The objective function =1 is convex,
and the feasible set bounded by the constraint functions (6)-
(10) is convex.

Proof: The second term σ0
∑n

i=1 αi in the objective func-
tion of =2 is linear. We only need to demonstrate the convexity
of the first part f (β) in the objective function of =2. Through
introducing the parameter λ ∈ (0, 1), we have

λ f
(
β1

)
=

n∑
i=1


λa*.

,

m∑
j=1

β1
i jd j

+/
-

2

+ λb *.
,

m∑
j=1

β1
i jd j

+/
-


,

(1 − λ) f
(
β2

)
=

n∑
i=1


(1 − λ) a*.

,

m∑
j=1

β2
i jd j

+/
-

2

+ (1 − λ) b *.
,

m∑
j=1

β2
i jd j

+/
-


. (13)

Also, we have

f
(
λ β1 + (1 − λ) β2

)
=

m∑
i=1




a


m∑
j=1

((
λ β1

i j

)2
+

(
(1 − λ) β2

i j

)2

+ 2λ (1 − λ) β1
i j β

2
i j

)
d2
j

]
+ b



m∑
j=1

(
λ β1

i j + (1 − λ) β2
i j

)
d j





.(14)

According to the inequality of arithmetic and geometric
means, we have 2β1

i j β
2
i j ≤

(
β1
i j

)2
+

(
β2
i j

)2
, and the expression

in (13) becomes

m∑
i=1




a


m∑
j=1

((
λ β1

i j

)2
+

(
(1 − λ) β2

i j

)2

+2λ (1 − λ) β1
i j β

2
i j

)
d2
j

]

+b


m∑
j=1

(
λ β1

i j + (1 − λ) β2
i j

)
d j






≤

m∑
i=1




a
m∑
j=1

[
λ
(
β1
i jd j

)2
+ (1 − λ)

(
β2
i jd j

)2]

+b


m∑
j=1

(
λ β1

i j + (1 − λ) β2
i j

)
d j






=λ f
(
β1

)
+ (1 − λ) f

(
β2

)
. (15)

From (15), we can obtain that
(
λ β1 + (1 − λ) β2

)
≤

λ f
(
β1

)
+ (1 − λ) f

(
β2

)
. Therefore, the first part of =2 is

convex and =1 is hence convex.
According to the definition of convex function, the linear

constraints in (6), (7), (9) and (10) are both convex and
concave. As such, the feasible sets bounded by the constraints
in (6), (7), (9) and (10) are the convex sets. For the constrains
in (8), when one of α and β is determined, the other term con-
stitutes a linear function, and its feasible solutions constitute a
convex set. Additionally, the feasible set is convex because of
the intersection of the feasible sets bounded by the constraints
in (6), (7), (9) as well as (10) and the feasible set bounded by
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the constraint in (8). Therefore, the problem =1 is the convex
optimization, and a globally optimal solution exists.

As we can see from (12), the problem =2 divides the two
decision variables which are α and β in the problem =1 into
two parts. Specifically, the problem =2 is a combination of
integer non-linear problem and integer linear problem that
represents the original problem. However, it is easier to solve
than =1, which is a mixed integer non-linear programming
problem. However, the problem =2 is still complex to solve
with complicated AP switching and re-association strategies.
Therefore, to solve the NP-hard problem =2, we propose an
efficient algorithm based on the Bender’s Decomposition.

IV. THE RAS ALGORITHM BASED ON BENDERS
DECOMPOSITION

A. Benders’ Decomposition for the MINLP Problem

Benders’ decomposition is an efficient technique in solving
certain classes of difficult optimization such as mixed-integer
nonlinear programming problems [30]. To avoid handling all
variables and constraints of a problem simultaneously, the
Benders’ Decomposition divides the problem into two sub-
problems, i.e., the 0/1 integer programming subproblem and
the linear programming subproblem with continuous variables.

Note that the problem =2 has the same form as the problem
in Benders’ Decomposition [31]. Therefore, we propose the
RAS algorithm based on the Benders’ Decomposition to
solve the problem =2. In particular, the problem =2 can be
decomposed into the maximization subproblem as expressed
in (17) and the master problem as expressed in (18) at the kth
iteration:

The primal subproblem is

min
α

σ>α

s.t. αi ∈ {0, 1},∀i ∈ N,

αi ≥ β(k)
i j ,∀i ∈ N,∀ j ∈ M . (16)

The dual of subproblem is:

max
w

Ψ
(
β(k),w

)
s.t. αiwz ≤ σ0,∀i ∈ N,∀ j ∈ M,

wz ≥ 0,
z = (i − 1) m + j,∀i ∈ N,∀ j ∈ M, (17)

where Ψ
(
β(k),w

)
=

n∑
i

m∑
j
β(k)
i j wz, w ∈ Rm×n ·1. According

to the duality theorem, we infer that the length of vector w

should be equal to the number of elements in the matrix β.
We define that z = (i − 1) m + j (i.e., if m is 10, the w11 wil
correspond with β2,1) in the calculation.

The master problem is:

min
β,t

f (β) + t

s.t. βi j ∈ {0, 1} ,∀i ∈ N,∀ j ∈ M,
n∑
i=1

βi j = 1, ∀ j ∈ M,

0 ≤ βi j ≤ Ci j, ∀i ∈ N,∀ j ∈ M,

0 ≤
m∑
j=1

βi jd j ≤ lmax, ∀i ∈ N .

t ≥ 0,
Ψ

(
β,w(p) ) ≤ t,∀p = 1, . . . , k1,

Ψ
(
β,w(q) ) ≤ 0,∀q = 1, . . . , k2, (18)

where β(k) is the optimal solution of (18) at the kth iteration
and f (β) = a

∑n
i=1

(∑m
j=1 βi jd j

)2
+ b

∑n
i=1

∑m
j=1 βi jd j . If the

subproblem in (17) is bounded for β(k) , we compute the
optimal solution w(k1) of (17) and add an optimality cut
Ψ

(
β,w(k1)

)
≤ t to the master problem (18). Otherwise,

obtain an point w(k2) on the extreme ray and a feasible cut
Ψ

(
β,w(k2)

)
≤ 0 is added to (18). Obviously, k will be always

equal to the sum of k1 and k2. At the kth iteration, the
master problem (18) will be solved for β(k) with all (k − 1)
constraints which are added in the previous iterations.

At each iteration k, a lower bound LB(k) = L(k) and an
upper bound UB(k) = min

{
f
(
β(k)

)
+U (k)

}
for the optimal

objective value of the problem =2 can be calculated based
on solutions of (18) and (17), where L(k) and U (k) are the
objective values of (18) and (17) respectively.

Lemma 2 (Bound): The upper and lower bounds are tight-
ened at each iteration until they converge to the optimal
solution.

Proof: The lower bound LB(k): We prove that LB(k) =

L(k) is the lower bound of the optimal objective function =2.
As shown in (17), min{σ>α} is an LP problem with strong
duality. By the strong duality of min{σ>α}, the problem =2
is equivalent to

min
β,w

f (β) +Ψ (β,w)

s.t. βi j ∈ {0, 1}, ∀i ∈ N,∀ j ∈ M,
n∑
i=1

βi j = 1, ∀ j ∈ M,

0 ≤ βi j ≤ Ci j, ∀i ∈ N,∀ j ∈ M,

0 ≤
m∑
j=1

βi jd j ≤ lmax, ∀i ∈ N . (19)

Let (α∗, β∗) be the optimal solution of =2. Since Ψ (β,w)
is the objective function for the dual formulation of the
primal problem (17), it follows that f (β∗) + σ>α∗ ≥ L(k) =

f
(
β(k)

)
+ t (k) , where

(
β(k), t (k)

)
is the solution of (18) at the

kth iteration. Therefore, the objective value of (17) as L(k) is
the lower bound of function =2.

The upper bound UB(k): We prove that UB(k) = f
(
β(k)

)
+

U (k) is the upper bound of function =2. Firstly, U (k) is
either finite or infinite depending on the boundary of (17).
If U (k) = +∞, then UB(k) = f

(
β(k)

)
+ U (k) = +∞. In

this case, it is meaningless to tighten the upper bound of =2.
Therefore, we focus on the case when (17) is bounded and
U (k) < +∞. Because of the strong duality of (17), we can
obtain the relationship as follows:

L(k) =Ψ
(
β(k),w(k)

)
≤ σ>α∗ ≤ σ>α(k) = U (k), (20)
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where, α(k) is the optimal solution to min
{
σ>α

}
with β(k) . It

can be obtained from

UB(k)= f
(
β(k)

)
+U (k)

= f
(
β(k)

)
+ σ>α(k) ≥ f

(
β∗

)
+ σ>α∗. (21)

The proof is done.

B. The RAS Algorithm
The details of the RAS algorithm designed based on the

Benders’ Decomposition is given below. Based on real-time
monitoring of the network status, we initialize the active AP
vector α(0) and the association matrix β(0) , and we set t to
0. First, we solve the subproblem in (17) with β(0) to obtain
the optimal solution w(0) . Then, with a given w(0) , we can
construct a new function t∗(β) = Ψ

(
β,w(0)

)
and compare t

to the upper and lower bounds of t∗ (β). If it is bounded, w(0)

is an extreme point in the feasible set of (17), and adds an
optimality cut Ψ

(
β,w(0)

)
≤ t to the master problem as the

new constraint. Otherwise, w(0) is a point on the extreme ray
and adds a feasible cut Ψ

(
β,w(0)

)
≤ 0 to (18). With the new

constraint, the RAS algorithm computes the optimal solution
of the problem in (18) to obtain β(1) and the value of t as t†.
Then, the algorithm uses β(1) to solve the subproblem in (17)
and construct the new constraint by the boundness of t∗ (β)
with w(1) again. The RAS algorithm repeats this procedure
until an optimal solution of =2 is found. If UB(k) − LB(k) ≤

τ at the kth iteration, the RAS algorithm will terminate. To
avoid falling into a large number of redundant iterations, the
parameter τ is generally set to a sufficiently small value, e.g.,
10−4. Finally, we obtain the optimal association matrix β∗

and the AP state matrix α∗, which yield the minimum energy
consumption of the WLANs.

Aiming to find optimal energy-saving associations between
users and APs for minimizing the number of active APs, we
consider the AP switching problem and user re-association
problem jointly to achieve optimal energy saving.

THEOREM 1 (Convergence): Within the finite number of
iterations, the RAS algorithm converges to a globally optimal
solution to the problem =2.

Proof: For the second part of =2:
min

{
σ>α |αi ≥ βi j,∀ j ∈ M

}
, we can obtain the maximum

number of no-load APs, i.e., the APs without traffic load,
through enumerating all association patterns. However, in
general, the solution is not unique, as different association
patterns may lead to the same number of no-load APs. Let
(α∗, β∗) be the optimal solution of the problem =2 and

(
α̃, β̃

)
be the solution of the problem =2’s second part, we can
reach

α∗= α̃,

Φ
(
α∗, β∗

)
≥ Φ

(
α̃, β̃

)
. (22)

For the first part of the problem =2: min f (β), we can find
an association strategy based on the solution of the second
part which refers to the minimum energy consumption of the
WLANs. Then, we can confirm the following conditions:

β∗= β̃,

Φ
(
α∗, β∗

)
≤ Φ

(
α̃, β̃

)
. (23)

Algorithm 1 The RAS algorithm

Initialization: k = 0,UB(0) = +∞, LB(0) = 0, t = 0.
1: while UB(k) − LB(k) > τ do
2: if k=0 then
3: Set β(0) and C (0) according to the network status.
4: else
5: Solve the master problem in (18) to obtain the

optimal solution β(k) , t† and the lower bound LB(k) .
6: end if
7: Solve the subproblem in (17) with β(k) to obtain the

upper bound UB(k) as min
{

f
(
β(k) +U (k)

)}
and the

optimal solution w(k) .
8: Define function t∗(β) = Ψ

(
β,w(k)

)
and obtain the

upper bound of t as t∗max and the lower bound of t
as t∗min.

9: if t∗min ≤ t† ≤ t∗max then
10: It is bounded, and we add the constraint

Ψ
(
β,w(k1)

)
≤ t to the master problem in (18).

11: else
12: It is unbounded, and we add the constraint

Ψ
(
β,w(k2)

)
≤ 0 to the master problem (18).

13: end if
14: k ← k + 1.
15: end while
16: Select the optimal selected APs and switch them to sleep

mode according to AP’s active matrix α through solving
the primal subproblem in (16) with β(k) . Return

(
α, β(k)

)
as the optimal solution of the problem =2.

Therefore, it is effective and beneficial to divide the problem
=2 into two parts based on the principle of Benders’ Decom-
position to obtain the optimal solution α∗ and β∗ satisfying

α∗= α̃,

β∗= β̃,

Φ
(
α∗, β∗

)
=Φ

(
α̃, β̃

)
, (24)

to minimize the energy consumption.

V. FAST-RAS ALGORITHM

As a mixed-integer nonlinear programming problem, the
master problem in (18) of the RAS algorithm dominates
the computational complexity at each iteration. To address
this issue, we propose an improved algorithm, namely, the
Fast-RAS algorithm, to simplify the master problem (18).
Through relaxing the binary integer constraints, the Fast-RAS
problem transforms the master problem in (18) into a nonlinear
programming problem and then employs the Feasible Pump
algorithm to solve the nonlinear problem to obtain the opti-
mal solution efficiently. First, we rewrite the master problem
in (18) as follows:

min
β,t

f (β) + t

s.t. 0 ≤ βi j ≤ 1,∀i ∈ N,∀ j ∈ M,
n∑
i=1

βi j = 1, ∀ j ∈ M,
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0 ≤ βi j ≤ Ci j, ∀i ∈ N,∀ j ∈ M,

0 ≤
m∑
j=1

βi jd j ≤ lmax, ∀i ∈ N,

t ≥ 0,
Ψ

(
β,w(p)

)
≤ t,∀p = 1, . . . , k1,

Ψ
(
β,w(q)

)
≤ 0,∀q = 1, . . . , k2, (25)

where the discrete domain {0, 1} for the variable βi j is replaced
by a continuous variable, the interval of which is [0, 1].

THEOREM 2: We assume that
(
β̂, t̂

)
is an arbitrary feasible

solution of the problem in (25). The optimality cut or feasi-
bility cut is generated through solving the subproblem in (17)
with β̂ within the optimal solution of the problem =2, (α∗, β∗),
from the remaining feasible set of (25).

Proof: According to the RAS algorithm, we can derive
that if the subproblem in (17) is bounded with β̂, an optimal
solution ŵ of (17) can be obtained and an optimality cut

Ψ (β, ŵ) ≤ t, (26)

is added to the integer-relaxed master problem (25). Otherwise,
if the subproblem in (17) is unbounded with β̂, a point ŵ′ on
the extreme ray of (17) is found and a feasible cut

Ψ
(
β, ŵ′

)
≤ 0, (27)

is added to the integer-relaxed master problem in (25).
Two different conditions lead to the different new constrains.

In the following proof, we show that the optimal solution
(α∗, β∗) of the problem =2 does not violate the constraint
neither in (26) nor in (27). Considering w∗ to be the optimal
solution of the subproblem in (17) with β∗. The corresponding
optimal objective function value, denoted by t∗, is given as
t∗ =Ψ (β∗,w∗).

On the one hand, when the subproblem in (17) is bounded
with β̂, we suppose that (β∗, t∗) violates (26), i.e.,Ψ (β∗, ŵ) >
t∗. This contradicts the fact that w∗ is the optimal solution
to (17) with β∗, and thus t∗ should be the maximum value
of (17) with β∗. Hence, the optimality cut (26) cannot be
violated by β∗.

On the other hand, when the subproblem in (17) is un-
bounded with β̂, we suppose that β∗ violates the feasibility
cut (27), i.e.,Ψ (β∗, ŵ′) > 0. Since ŵ′ is a point on the extreme
ray of the feasible set of the problem in (17), θŵ′ is also in
the feasible set for any positive scalar θ. Note that the function
Ψ (β,w) is linear in w and thus Ψ (β∗, θŵ′) = θ ·Ψ (β∗, ŵ′).
Due to the fact that this property is valid only in the case
of the extreme ray, Ψ (β∗, ŵ′) ≥ 0 implies that the objective
value of problem (17) with β∗ is unbounded. This contradicts
the fact that t∗ should be finite in (17) with β∗. Therefore, β∗

cannot violate the feasibility cut (27).
Therefore, the feasible set, cut by new constraints, still

contains the optimal solution (α∗, β∗).
According to Theorem 2, we can confirm that the problem

in (18) of the RAS Algorithm can be replaced by (25) without
compromising the optimality of the solution. Since we have
relaxed the integer constraints, the optimal solution of (25),

i.e., β̂, may not be a fully integer matrix as it contains some
decimals. According to the computational analysis in [33],
Feasible Pump [32]–[34] is effective to find the feasible
solution of the hard 0-1 MIP problem. Therefore, to obtain
an integer matrix for calculating the lower and upper bounds
of the problem =2 more correctly, we adopt the Feasible Pump
method to solve this problem by searching a nearest integer
matrix with β̂.

In the kth (excluding 0) iteration, we denote the decimal
solution obtained from solving the problem in (25) by β̂(k) ,
and the integer solution by β̄(k) . The implementation of the
Feasible Pump method to transform the decimal solution into
the integer solution is described as follows.

At each iteration, the optimal decimal solution
(
β̂(k), t̂ (k)

)
are obtained by solving the integer-relaxed master problem
in (25). Then, the rounding β̄(k) of the given β̂(k) can be
computed by setting β̄(k)

i j :=
[
β̂(k)
i j

]
when i ∈ N, j ∈ M , if

β̄(k)
i j , β̂(k)

i j , where [·] represents scalar rounding to the nearest
integer. The (L1-norm) distance between the optimal solution
of (25) β̂(k) and a given integer β̄(k) is defined as follows:

∆
(
β̂(k), β̄(k)

)
=

∑
i∈N, j∈M

��� β̂
(k)
i j − β̄

(k)
i j

��� . (28)

For a given integer β̄(k) , the distance can be rewritten as
follows:

∆
(
β̂(k), β̄(k)

)
=

∑
0≤β̄(k )

i j ≤1

Di j (29)

=
∑
β̄(k )
i j =0

(
β̂(k)
i j − 0

)
+

∑
β̄(k )
i j =1

(
1 − β̂(k)

i j

)
,

based on the variable Di j =
��� β̂

(k)
i j − β̄

(k)
i j

���, we can obtain the
double constraints, i.e.,

Di j ≥ β̂(k)
i j − β̄

(k)
i j and Di j ≥ β̄(k)

i j − β̂
(k)
i j . (30)

We then define the distance between t̂ (k) and t̄ (k) as follows:

∆
(
t̂ (k), t̄ (k)

)
=

���t̂
(k) − t̄ (k) ��� , (31)

where t̄ (k) is computed with the constraints Ψ
(
β,w(p)

)
≤

t,∀p = 1, . . . , k1 of (25) with the rounding integer β̄(k) .
Similarly, we add a variable Dt = |t̂ (k) − t̄ (k) | to construct
another pair of constraints as follows:

Dt ≥ t̂ (k) − t̄ (k) and Dt ≥ t̄ (k) − t̂ (k) . (32)

Moreover, the solution β̂(k) closest to β̄(k) can be easily
obtained by solving the following LP problem:

min
β̂(k ), t̂ (k )

∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
= min
β̂(k ), t̂ (k )

∆
(
β̂(k), β̄(k)

)
+ ∆

(
t̂ (k), t̄ (k)

)
s.t. constraints of (25),

Di j ≥ β̂(k)
i j − β̄

(k)
i j ,

Di j ≥ β̄(k)
i j − β̂

(k)
i j ,

Dt ≥ t̂ (k) − t̄ (k),

Dt ≥ t̄ (k) − t̂ (k) . (33)
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If ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
= 0, which means that

(
β̂(k)
i j , t̂

(k)
)

is equal to
(
β̄(k)
i j , t̄

(k)
)
, ∀i ∈ N,∀ j ∈ M . Therefore,

(
β̂(k)
i j , t̂

(k)
)

is a feasible MIP solution. Conversely, given a solution
β̂(k) , the integer solution β̄(k) close to β̂(k) can be deter-
mined through rounding β̂(k) . In the Fast-RAS algorithm, the
Feasible Pump method iterates with two pairs of solutions(
β̂(k), β̄(k)

)
, where β̄(k) is an integer matrix, and

(
t̂ (k), t̄ (k)

)
,

which are iteratively updated with the aim of reducing the
distance ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
.

Specifically, initializing the rounding of β̂(k) as an integer
β̄(k) (typically infeasible), the iteration can begin with any(
β̂(k), t̂ (k)

)
, which is obtained by solving the problem in (25).

At each pumping cycle, as
(
β̄(k), t̄ (k)

)
is fixed, we try to

find the solution
(
β̂(k), t̂ (k)

)
as close to

(
β̄(k), t̄ (k)

)
as possible

through the LP problem. If ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
= 0, then(

β̄(k), t̄ (k)
)

is a feasible solution of the MIP problem, and the
algorithm stops. Otherwise, β̄(k) is replaced by rounding of
β̂(k) to reduce ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
for the future iteration.

The proposed process may prematurely be terminated due
to the stalling issue, which happens that ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
does not reduce anymore when updating β̄(k) through round-
ing of β̂(k) . It means that each rounding element of β̄(k) will
not be changed compared with that in the last cycle. In this
situation, part of β̄(k)

i j will be modified heuristically by the
Feasible Pump method, even though it will increase the current
value of ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
.

THEOREM 3: The Fast-RAS algorithm can effectively
obtain an integer optimal solution compared with the RAS
algorithm at each iteration of the Benders’ Decomposition,
approximately even equally.

Proof: At each iteration of the Benders’ Decomposition
process, we solve the integer-relaxed master problem (25) to
obtain an optimal solution

(
β̂(k), t̂ (k)

)
. Although the integer

relaxation extends the solution domain of the problem in (25),
the MINLP problem can be transformed into the NLP problem,
which can reduce computational complexity significantly. Let
U and V be the feasible solutions of problem (18) and (25),
according to Theorem 2, U is a subset of V , i.e., U ⊂ V .
Therefore, there are two cases for solutions. In the first case,(
β̂(k), t̂ (k)

)
is in the feasible set of the problem in (18),(

β̂(k), t̂ (k)
)
∈ U. In the second case,

(
β̂(k), t̂ (k)

)
is out of the

the feasible set of the problem in (18),
(
β̂(k), t̂ (k)

)
∈ V, < U.

The proof for the two cases is given as follows.
In the first case,

(
β̂(k), t̂ (k)

)
∈ U, β̂(k) is a completely integer

matrix, and all of its elements are binary integers, which means
that

(
β̂(k), t̂ (k)

)
is also a feasible solution of the problem

in (18). Moreover, as the problems in (18) and (25) have the
same constraints,

(
β̂(k), t̂ (k)

)
is also the optimal solution of the

problem in (18), which satisfies the following relationship:

f
(
β̂(k)

)
+ t̂ (k) = f

(
β(k)

)
+ t†, (34)

where
(
β(k), t†

)
is the optimal solution of the original master

problem in (18). The solution β̂(k) and t̂ can be used to calcu-
late the lower bound directly without any further processing.

In the second case,
(
β̂(k), t̂ (k)

)
∈ V, < U, β̂(k) is a decimal

matrix and some of its elements are decimals. This means that
the optimal solution

(
β̂(k), t̂ (k)

)
is infeasible to the problem

in (18), and the relationship can be inferred as follows:

f
(
β̂(k)

)
+ t̂ (k) < f

(
β(k)

)
+ t†, (35)

where β(k) is the nearest integer matrix to β̂(k) . At each
cycle of Feasible Pump, we constantly slight the β̂(k) to β(k)

by solving the problem min ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
. Since the

constraints of (25) are added into min ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
,

this makes the solution
(
β̂(k), t̂ (k)

)
of each iteration al-

ways be a feasible solution of the problem in (25). When
∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
= 0, β̂(k) becomes an integer matrix

and satisfies the following relationship:

f
(
β̂(k)

)
+ t̂ (k) ≤ f (β) + t,∀ (β, t) ∈ V . (36)

Therefore,
(
β̂(k), t̂ (k)

)
converges to

(
β̂(k), t†

)
, and the Fea-

sible Pump method stops.
In order to avoid falling into a ineffective cycle, if the new

β̄(k) is the same as the old one and ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
is

not already zero, we introduce a variable Di j into the Fast-RAS
algorithm. At step 16, the number TT of β̄(k)

i j will provide a
shift with the maximum Di j , where TT is a random integer in
the range of (T/2, 3T/2) and T is a given parameter. With this
approach, we can find an approximate optimal solution within
finite number of iterations.

The whole process of the Fast-RAS algorithm is described
from step 1 to step 32, and the do-while iteration will terminate
when the gap between the lower bound and upper bound is
less than τ. Furthermore, from step 2 to step 22, we solve the
master problem to obtain the lower bound through relaxing
the integer constraints. At step 24, we calculate the optimal
solution of the subproblem to obtain the upper bound of the
objective function. Then, from step 25 to step 30, we estimate
the boundedness of the subproblem to obtain the constraint
added to the master problem. Specifically, the Feasibility Pump
method starts at step 6 to step 21. In each pumping cycle at
step 8, there is a pair of solutions

(
β̂(k)
i j , t̂

(k)
)

and
(
β̄(k)
i j , t̄

(k)
)
.

The first one is a feasible solution of (25) but may be decimal,
and the another one is an integer matrix but may be infeasible.
We try to reduce the distance ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
at each

iteration until it becomes 0. Here,
(
β̂(k)
i j , t̂

(k)
)

is a feasible
integer solution of (25). From step 16 to step 18, a heuristic
method is introduced to jump out the indefinite cycle.

Lemma 3 (Time complexity): The time complexity of the
RAS algorithm is O

(
1
τ

(
(nm)2(nm + 1)3 + n3m3

)
ln

(
1
ε

))
, and

that of the Fast-RAS algorithm is O
(

1
τ

(
2nm + n3m3 ln

(
1
ε

)))
.

Compared with the RAS algorithm, the Fast-RAS algorithm
can reduce the time complexity significantly.

Proof: Based on the detailed analysis in Appendix A, we
prove that the time complexity of the Benders’ Decomposition
process is reduced from an exponential-time to a polynomial-
time by the Fast-RAS algorithm.

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations to compare the
performance of the RAS and Fast-RAS algorithms from three
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Algorithm 2 The Fast-RAS algorithm

Initialization: k = 0,UB(0) = +∞, LB(0) = 0, t = 0.
while UB(k) − LB(k) > τ do

2: if k=0 then
Set β(0) and C (0) according to the network status.

4: else
Solve the master problem in (25) to obtain the
optimal solution β̂(k) , t̂ (k) .

6: β̄(k) :=
[
β̂(k)

]
(rounding of β̂(k)). Iter := 0.

Compute t̄ (k) with the constraints Ψ
(
β,w(p)

)
≤

t,∀p = 1, . . . , k1 and the rounding integer β̄(k) .
8: while (∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
> 0 & Iter < maxI)

do
Iter ← Iter + 1.

10:
(
β̂(k), t̂ (k)

)
← argmin ∆

(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
.

if ∆
(
β̂(k), β̄(k), t̂ (k), t̄ (k)

)
> 0 then

12: if
[
β̂(k)
i j

]
, β̄(k)

i j for at least one i ∈ N, j ∈ M
then

Update β̄(k) ←
[
β̂(k)

]
.

14: else
For each i ∈ N, j ∈ M , define Di j :=
��� β̂

(k)
i j − β̄

(k)
i j

���.
16: Flip TT = rand (T/2, 3T/2) elements β̄(k)

i j
with the largest Di j .
Restart the cycle with new

(
β̄(k)
i j , t̄

(k)
)
.

18: end if
end if

20: end while
Obtain the optimal integer solution β(k) and value t†,
and then calculate the lower bound LB(k) with β(k) .

22: end if
Solve the subproblem in (17) with β(k) to obtain the
upper bound UB(k) as min

{
f
(
β(k) +U (k)

)}
and the

optimal solution w(k) .
24: Let t∗(β) =Ψ

(
β,w(k)

)
to obtain the upper bound of t

as t∗max and the lower bound of t as t∗min.
if t∗min ≤ t† ≤ t∗max then

26: It is bounded, and we add a constraintΨ
(
β,w(k1)

)
≤

t to the master problem in (25).
else

28: It is unbounded, and we add a constraint
Ψ

(
β,w(k2)

)
≤ 0 to the master problem (25).

end if
30: k ← k + 1.

end while
32: Select the optimal selected APs to switch to sleep mode

according to AP’s active matrix α through solving the
primal subproblem in (16) with β(k) . Return

(
α, β(k)

)
as

the optimal solution of the problem =2.

aspects: computational complexity, converge condition and
energy efficiency, i.e., energy saving. The simulation results
demonstrate that the subset of the optimal solutions of the RAS
algorithm can be obtained through the Fast-RAS algorithm,
and the computational complexity can be reduced significantly.

Moreover, we conduct experiments to validate the efficiency of
the Fast-RAS algorithm compared with two classical energy-
saving schemes, i.e., green-clustering algorithm [4] and coop-
erative energy-efficient method [12]. The experiment results
show that the Fast-RAS algorithm can improve energy effi-
ciency and network coverage than the other two methods.

All of the simulations are run with MATLAB R2014b on
an Ubuntu 14.04 server with 32G memory and 2.2GHz Intel
Xeon E5-4607 CPU * 2. Note that we solve the MINLP master
problem by the SCIP [35] optimization toolbox which uses the
branch-cut-and-price method. In the experiments, we set the
error tolerance τ be 10−4 and the parameter T be 10.

A. Performance Comparison between RAS and Fast-RAS Al-
gorithms

To compare the performance of the RAS and Fast-RAS
algorithms, we choose a set of network topologies, where
12 APs are regularly deployed and a number of users are
randomly placed in a 100m-by-100m area. The effective
coverage radius of the APs is set to 40m, the throughput
demand of each user is set randomly from a range between
2Mbps to 4Mbps, the AP transmission power is set to 30dBm,
and a classic coloring algorithm is adopted to minimize the
interference between the adjacent channels.

1) Computational Complexity: To validate the effectiveness
of the proposed algorithms under different network loads, we
vary the number of users from 20 to 100 with a step of 20.
As the users are randomly placed in the area, we repeat the
simulations 50 times with different distributions of users at
each number to obtain accurate results. The computational
time against the number of users of the RAS and Fast-RAS
algorithms are depicted in Fig. 3. We observe that when the
number of users increases from 20 to 100, the computational
time of the RAS algorithm increases sharply compared with
that of the Fast-RAS algorithm. Especially, with 100 users, the
average computational time of the RAS algorithm is 2.5 times
higher than that of the Fast-RAS algorithm.

It is clear that the Fast-RAS algorithm can effectively reduce
the computational time compared with the RAS algorithm
under the same condition. Moreover, regarding the Benders’
Decomposition employed in the RAS and Fast-RAS algo-
rithms, the numbers of iterations with different numbers of
users are depicted in Fig. 4. We find that the number of
iterations used by the Fast-RAS algorithm is always higher
than that of the RAS algorithm in each experiment. However,
the difference is relatively small. The reason is that the Fast-
RAS algorithm uses a heuristic algorithm to obtain a sub-
optimal solution in each iteration, which enhances the rate of
convergence slightly.

Furthermore, we compare the complexity of our algorithms
with the other two heuristic energy-saving algorithms in the
same scenario. As shown in Fig. 3, the heuristic algorithms
have lower computational time as expected. By contrast, our
algorithms taking the user’s QoE and network status into ac-
count incur more time complexity. Moreover, to find a solution
closer to the optimal solution, the Fast-RAS algorithm still
needs more iterations to satisfy the condition UB − LB < τ.
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Fig. 5: The converge condition of RAS and Fast-RAS algorithm with the number of users are 20, 60 and 100.
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Fig. 6: The number of turn-off APs and energy consumption by RAS and Fast-RAS with different number of users.

In the simulation, we set τ to a small value of 10−4. Actually,
in practical applications, the convergence condition of the Fast-
RAS algorithm can be relaxed by increasing τ (such as 10−2 or
larger), which can drastically reduce the number of iterations
and enhance the practicability of the algorithm.

2) Convergence Condition: To evaluate the convergence of
the RAS and Fast-RAS algorithms, we vary the number of
users from 20 and 100 and observe the changes of upper bound
and lower bound. The convergence conditions are depicted in
Fig. 5. At the early iterations, as the Fast-RAS algorithm only
finds a subset of the optimal solution, there is a wider gap
between the upper bound and the lower bound than that of
the RAS algorithm. When iterations proceed, the difference
becomes smaller gradually. At the final iteration, the Fast-
RAS algorithm can obtain the same minimum value of the

objective function as that of the RAS algorithm and has only
0.13%, 0.39% and 0.46% deviations with 20, 60 and 100
users, respectively. It is clear that the Fast-RAS algorithm can
achieve the suboptimal solution close to the optimal solution
obtained by the RAS algorithm.

3) Performance Comparison: Based on the same network
setting, we conduct experiments to compare the energy ef-
ficiency of WLAN systems using the RAS and Fast-RAS
algorithms. We repeat the experiments 50 times to obtain the
average values of the results, which are shown in Fig. 6.

The average number of APs that are selected to be turned
off and the energy consumption under the different number of
users are shown in Fig. 6 (a) and Fig. 6 (b), respectively. When
the number of users increases, the number of turned-off APs
decreases and the minimum energy consumption increases.
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(b) Medium throughput demand (0-8Mbps).
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(c) High throughput demand (0-12Mbps).

Fig. 7: Energy saving with low, medium and high users’ throughput demands by three energy-saving algorithms.
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(b) Medium throughput demand (0-8Mbps).
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Fig. 8: User loss with low, medium and high users’ throughput demands by three energy-saving algorithms.
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(a) Low throughput demand (0-4Mbps).
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(b) Medium throughput demand (0-8Mbps).
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Fig. 9: Average throughput with low, medium and high users’ throughput demands by three energy-saving algorithms.

Since the Fast-RAS algorithm can obtain the suboptimal
solution close to the optimal solution, the number of turned-off
APs and the energy efficiency are nearly the same as that of the
RAS algorithm. Moreover, we quantify the deviation of energy
consumption between the RAS and Fast-RAS algorithms. As
shown in Fig. 6 (c), the deviation is small and varies from
0.084% to 0.473%, which is due to the selection of user
re-association to new APs. Nonetheless, the deviation is in
acceptable error tolerance.

B. Performance Comparison with Classical Algorithms

Next, we evaluate the energy efficiency of the Fast-RAS
algorithm compared with the green-clustering algorithm [4]

and cooperative energy-efficient method [12] in three aspects,
i.e., energy saving, effective coverage and user’s throughput.
To simulate a real and comprehensive network condition, we
expand the experiment area to 100m-by-100m, set the number
of APs with regularly deployment to 20 and use three levels
of user’s throughput demand with normal distribution from
0-4Mbps, 0-8Mbps to 0-12Mbps. Moreover, we adopt three
network topologies with different AP density and network
load, and vary the number of users from 10 to 200 to test
the performance.

1) Energy efficiency: As shown in Fig. 7, the Fast-RAS
algorithm has the better energy efficiency in all settings. When
there are only 10 users with low user throughput demand, the
Fast-RAS algorithm obtains the high energy-saving rate which
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is close to that of the cooperative method. The rate is almost 30
percent higher than that of the green-clustering algorithm. As
the number of users increases, to satisfy the user throughput
demand, the rate of energy saving reduces gradually. When
the number of users increases to 200, the energy-saving rates
of both the green-clustering algorithm and cooperative method
decrease to 45%, but that of the Fast-RAS algorithm is still
maintained at 53%.

The same phenomenon can be observed in medium user
throughput demand. When the number of users increases to
200, the energy-saving rate of the Fast-RAS algorithm is 28%,
which is more stable than that of the green-clustering algo-
rithm with 20% and cooperative method with 7%. Moreover,
when the user throughput demand increases nearly to the total
capacity, to guarantee the user QoS requirement, it is difficult
to select APs to turn off to save energy. Nonetheless, since the
Fast-RAS algorithm can optimize user re-association, when
the number of users increases to 200, the energy-saving rate
of Fast-RAS algorithm is still around 5%, which is higher than
that of the green-clustering algorithm and cooperative method.

Evidently, for low or high user throughput demands, the
Fast-RAS algorithm always achieves the highest energy-saving
rate. The reason is that the Fast-RAS algorithm provides more
effective user re-association scheduling to choose many APs
to turn off. Therefore, the Fast-RAS algorithm has 3% to
30% increase of energy-saving rate compared with other two
classical algorithms.

2) Effective coverage: As shown in Fig. 8, since the
Fast-RAS and cooperative algorithms can satisfy absolutely
effective coverage, the better user coverage can be achieved
than that of the green-clustering algorithm in all experiment
settings. The reason is that both the Fast-RAS and cooperative
algorithms make user re-association as the basic guarantee to
select APs to turn-off. However, the green-clustering algorithm
divides the APs into several clusters with one or more cluster-
head AP, and other normal APs are selected to be turned
off to save energy. This algorithm thus cannot ensure that all
users can be re-associated with its cluster-head AP in practice.
Consequently, it inevitably leads to user coverage loss.

3) Influence on user’s throughput: As shown in Fig. 9,
as user throughput guarantee is considered in our energy
efficiency model, in all user throughput demand levels the
average user throughput achieved by the Fast-RAS algorithm
is stable around the original throughput, which is 3.4% higher
than the best throughput obtained from the green-clustering
and cooperative algorithms.

VII. CONCLUSION

In this paper, we have proposed the concept to aggregate
and associate WLAN users to fewer APs so that more APs
can be turned off to reduce energy consumption. This is
achievable without sacrificing the demands of users’ QoE
and network coverage. Specifically, we have formulated the
energy efficiency problem as an MINLP problem as well as
transformed and solved it by using the RAS algorithm which is
based on classical Benders’ Decomposition method. To further
reduce the computational complexity, we have proposed the

Fast-RAS algorithm to relax the binary integer constraints to
transform the MINLP problem into an NLP problem, which
can be solved by using the Feasible Pump method, namely,
the Fast-RAS algorithm.

The performance of the RAS and Fast-RAS algorithms has
been validated via extensive simulations. The results demon-
strate that both the RAS and Fast-RAS algorithms converge to
globally optimal solution within reasonable time period. More-
over, compared with existed methods, the Fast-RAS algorithm
can achieve up to 20% improvement of energy saving while
maintaining effective network coverage and user’s QoE.

APPENDIX A
PROOF OF TIME COMPLEXITY

Let Km and Ks represent the time complexity of the master
problem and sub-problem. For the estimation of Ks , which
are identical in the RAS and Fast-RAS algorithms, we define
it as the LP problem and solve it by using the Primal-Dual
Interior Point method. According to [36], the LP problem
converges to an ε-accurate solution with the worst case bound
of O

(√
x ln (1/ε)

)
in terms of the number of iterations. Here,

each iteration requires O
(
x2.5

)
arithmetic operations, where x

is the number of variables in the LP problem. Thus, the value
of Ks is estimated as follows:

Ks = O
(
n3m3 ln

(
1
ε

))
, (37)

where n∗m is the length of vector w in the subproblem and also
represents the number of constraints, and ε is the convergence
accuracy which is set to a sufficiently small value, e.g., 10−4.

Solving the master problem is the major difference between
the RAS and Fast-RAS algorithms in terms of the incurred
computational complexity. The Branch and Bound algorithm
(BB) is a classical and popular method to solve an MINLP
problem [37]. It can be used to solve the RAS master problem.
In our problem, there are n APs and m users, and β(k) is
a 0/1 matrix, so it increases to (2nm − 1) nodes. The time
complexity is Km−R is O (2nm), and the total number of
arithmetic operations needed at each Bender iteration of the
RAS algorithm KR is defined as follows:

KR = Km−R + Ks = O
(
2nm + n3m3 ln

(
1
ε

))
. (38)

In the Fast-RAS algorithm, the feasibility pump cycle is
introduced to replace the master problem. At each iteration,
compared with other operations such as rounding and traversal,
step 11 incurs the largest complexity while it is only the LP
problem. Therefore, the number of arithmetic operations is
easily estimated as O

(
(nm + 1)3 ln (1/ε)

)
, where n ∗m + 1 is

the size of β̂(k), t̂ (k) . On the other hand, according to the com-
plexity analysis for the Feasibility Pump method [32], [33],
a polynomial-time O

(
(nm)2

)
can describe the complexity of

our binary case. As such, the time complexity Km−FR is

Km−FRAS = O
(
(nm)2(nm + 1)3 ln

(
1
ε

))
. (39)
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Similarly, the total number of arithmetic operations needed
at each Bender iteration of the Fast-RAS algorithm is defined:

KFR = Km−FR + Ks

= O
(
(nm)2(nm + 1)3 ln

(
1
ε

)
+ n3m3 ln

(
1
ε

))
. (40)

Based on the previous analysis, we can prove that the
time complexity of each Bender iteration is reduced from
exponential-time to polynomial-time in the Fast-RAS algo-
rithm. Therefore, the number of Bender iterations H , which
cannot reach exponential-level, plays a weak role for complex-
ity comparison between the RAS and Fast-RAS algorithms.
We assume that H is O (1/τ), which is highly dependent on
the accuracy threshold τ between upper and lower bounds.
Thus, the total time complexities of the RAS and Fast-RAS
algorithms are estimated as follows:

TCR = H · KR = O
(

1
τ

(
2nm + n3m3 ln

(
1
ε

)))
, (41)

TCFR = H · KFR

= O
(

1
τ

(
(nm)2(nm + 1)3 + n3m3

)
ln

(
1
ε

))
. (42)

It is worth noting that as a heuristic method, the Feasibility
Pump method may not always be able to achieve an optimal
solution as the BB algorithm at each Bender iteration. This re-
sults in more Bender iterations in the Fast-RAS algorithm than
that of the RAS algorithm. Our experiments also confirm this
result. Nonetheless, the errors are small and do not affect the
performance of the algorithm considerably. Therefore, we can
conclude that the Fast-RAS algorithm can improve the time
complexity compared with the RAS algorithm significantly.
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