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Abstract—This paper proposes a self-taught anomaly detection  Current network operators mainly rely on preset threshold
framework for optical networks. The proposed framework makes  systems for anomaly detection while the subsequent identifi
use of a hybrid unsupervised and supervised machine leam  ation and reasoning procedures are conducted by expedenc

scheme. First, it employs an unsupervised data clustering adule . . .
(DCM) to analyze the patterns of monitoring data. The DCM technicians. However, owing to the heterogeneity (hetero-

enables a self-leaming capability that eliminates the regire- 9€neity in vendor devices, optical transmission techrielg
ment of prior knowledge of abnormal network behaviors and applications [8]—[10], etc.), uncertainty (uncertaintydevice
therefore can potentially detect unforeseen anomalies. 8end, conditions, alien wavelength configurations [11], etc.dan
we introduce a self-taught mechanism that transfers the paéerns dynamicity of optical networks [12], [13], developing netik-
learned by the DCM to a supervised data regression and - L . C
classification module (DRCM). The DRCM, whose complexity wide threshold systems that are effecnve_ over time is dilffic

is mainly related to the scale of the applied supervised leaing L0Ose thresholds may lead to low detection rates or proldnge
model, can potentially facilitate more scalable and time-fiicient detection delays, whereas tight thresholds can triggerfate
online anomaly detection by avoiding excessively travensg the alarms, overburdening the control and management systems.
original dataset. We designed the DCM and DRCM based on ance  excessive resource redundancies are usually edserv
the density-based clustering algorithm, and the deep neuta . . . .
network structure, respectively. Evaluations with experimental to prow.de guaranteed performance margins agalns_t pat_e_ntl
data from two use cases (i.e., single-point detection and eéo- anomalies [14]. In the meantime, manual anomaly identifica-

end detection) demonstrate that up t099% anomaly detection tion and reasoning operations are laborious and they &testr
accuracy can be achieved with a false positive rate below%. rapid evolutions of optical networks.

Index Terms—Self-taught anomaly detection, Hybrid unsuper- Recently, machine learning (ML) has shown appealing
vised and supervised machine learning, Data clustering made prospect of facilitating enhanced resource efficiency, QoS
(DCM), Data regression and classification module (DRCM). assurances and scalability in optical networks [15]. Speci

ically, ML enables network operators to realize knowledge-
based autonomous service provisioning [16] by modeling
|. INTRODUCTION complicated network behaviors (e.g., end-to-end quality-
FFECTIVE fault management is vital for assuring th(t?re;?ﬁirz'Sséz?relcltl](;nhlnz' trrs\f;filscioﬂirgﬂle O[ﬁg]e_slzf? l;metg.)n:r:i
correct operations and required quality-of-service 0? g P gp Y

(Q0S) optical networks [1], [2]. Typically, network faultzn netV\{ork operatiqns [21], which are intraqtab_le with con-
be categorized into hard fa,ilures e.g. fii)er cuts), andrano ventional theoretical approaches. The application of ML fo

lies (or soft failures), which can be caused by various ﬁanctofaun management in optical networks has attracted extensi

such as component aging and malfunctioning [3], control ar(asearch attention lately [22]-{26]. In [22], Vesaal. analyzed

: . our types of soft failures affecting the bit-error-rate5B) of
hmaarza?aeilrg reenst Tzzeczlzcs),:es,iEnhr%SelgE:tEyseerr?/}E:aecﬁs[ﬂ’ fitggvali tpaths and proposed two finite state machine based algo-
; . P rithms for detecting significant BER changes and identiyin
can be easily detected, isolated, and restored [S}-{7]n s corresponding failures patterns. Taking into accoinmtar
anomalies may gradually degrade the performance of opti?g,ﬁ" )

. S ure scenarios, the same authors also investigated isliéda
networks and are covert before they induce significant dewa\ 9

tions of network parameters. Accurate and efficient anom aygorithms for soft failure localization [23]. The authan
: X parameters. . a[ 4] compared the performance of different ML algorithms
detection and identification in optical networks are theref

highlv desired but also challenain in terms of complexity and accuracy for anomaly detection

anly ging. and identification in optical networks. In [25], Rafiqeé al.

- ) ) proposed a cognitive assurance architecture on the basis of
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der diverse failure modes. In [26], an ML-aided frameworknstance, to surveil the behavior of an end-to-end liglitpat
together with two classification algorithms, were proposddPM would generate a new proprietary dataset by extract-
for detecting and identifying optical network jamming sidin ing and concatenating the lightpath's parameters at éiffier
attacks of varying intensities. monitoring sites over time.

The above ML-based anomaly detection and identification
schemes suffer from a fundamental issue: they employ s'-
pervised learning models relying on specific knowledge oﬂ“’ma'y Detec“"”l Lo

Module
Data Patterns

abnormal network behaviors and large amount of anomaly da o e
. . . . ata AR SR d
which are difficult to obtain in a real network scenario where preprocessingﬁ-e;m;es Clustering Classification |

anomalies occur infrequently. On the other hand, it is know Classiied
that anomalies typically exhibit unique patterns devigtin

from normal network behaviors [22], [27]. Unsupervised ML : Alarms

techniques that can learn patterns of data by directly airajy Database mcj,?,zler

the similarities among data instances thereby would beconK A

promising tools for identifying anomalies from huge volusne --> Self-Leaming/-Taught

of monitoring data. A BN N Optical
In this context, our previous work [28] proposed a self- "’;ﬁ‘;{[‘;::;e

taught anomaly detection framework with a hybrid unsupet i %

vised and supervised ML approach. The proposed framewo =

employs an unsupervised data clustering module (DCM) t (é;/ \

analyze the patterns of optical performance monitoring.dat 5?3\ =

Then, a supervised data regression and classification mc ~% %/, e

ule (DRCM) is trained with the learned patterns for online
anomaly detection. Such a self-learning/-taught meCmmi%ig. 1. Proposed self-taught anomaly detection framework.
potentially enables detecting unforeseen anomaly witheut
quiring prior knowledge of abnormal network behaviors.sThi  The learning phase applies a hybrid unsupervised and super-
paper extends the conference paper [28] by providing a mdfiged learning approach. Firstly, the processed data gt in
comprehensive description of the self-taught anomalycdetd0 @n unsupervised DCM for pattern analysiss@f-learning
tion framework and the designs of the DCM and DRCM, andechanism). The DCM exploits the similarities among data
presenting a new set of results considering two use casesingfances and hereby divides the performance data into a
particular, we detailed the DCM design with the densityelnbs”umber of clusters and outliers. Following a consensual as-
clustering algorithm and elaborated on the principle of tpimption that the occurrence of network anomalies are much
DRCM enabled by a deep neural network (DNN) architecturtess frequent than that of normal behaviors, the DCM labels
We evaluated the performance of the proposed framewdiitliers as anomalies. Since the DCM learns the patterns of
with experimental data of both single-point and end-to-erifi€ input data directly without relying on any prior knowted
detections. Results show that beld false positive and false @bout abnormal behaviors, it can potentially detect unkmow
negative rates can be achieved. anomalies in optical networks. Then, the learned patteras a
The organization of the paper is as follows. Section [fansferred to train a supervised DRCM for online anomaly
presents the proposed self-taught anomaly detection frarAgtection (aself-taughtmechanism). Specifically, the DRCM
work. Sections Il and IV detail the designs of the DCM an§*@mines each new data instance by integrating the fursction
DRCM, respectively. Section V provides the evaluation lssu ©f Poth a regressor that predicts key features of the insfanc
and related discussions. Finally, Section VI summarizes tRnd a classifier that attempts to classify the instance ineood

paper and discusses potential future research topics. the classes identified by the DCM. The rationale of employing
a DRCM for online detection is that once trained, its time

complexity is fixed, mainly determined by the scale of the

Il. SELF-TAUGHT ANOMALY DETECTIONFRAMEWORK  aqopted supervised learning model (i.e., the number of inode

Fig. 1 shows the schematic of the proposed self-taugb@rameters). On the contrary, the complexity of the DCM
framework for anomaly detection in optical networks. Th&cales up with the size of the database, and can become an
framework requires that network operators deploy opticiisue as it has to traverse the whole database every time a new
performance monitoring (OPM) modules at certain netwof@ta instance is received.
locations to perform real-time surveillance of data plapere During online operations, the DRCM raises an alarm upon
ations, e.g., monitoring the spectrum utilization, sigpalver, detecting an anomaly and inform the SDN controller, which in
noise level and so forth, on different links. SDN-based ekw turn can take certain reactions (e.g., service reconfigursit
telemetry services [29] can be utilized to assist remote atmmitigate the risk of potential severe service disrupgiorhe
on-demand monitoring data collection. The data prepracgssDRCM also sends out the abnormal data instance for further
module (DPM) retrieves the obtained performance monitprimnomaly localization and reasoning. In the meantime, the
data from the database and tailors the original data (eatufe hybrid learning process is periodically invoked for attag
engineering) for different anomaly detection purposes. Fthe state-of-art network behaviors.



[1l. DESIGN OF THEDCM 9-20 accomplishes the recursive expansion. We initiateva ne

The distribution of optical performance monitoring dataymaCluster if thee-neighborhoods of all the core nodes in the
present irregular shapes. Fig. 2 shows such an example ifUaent cluster have been included (line 9). Finally, at th
two-dimensional space. In this context, we designed the DCRftances that cannot be clustered into any of the identified
with the density-based clustering algorithm in [30], whish ClUSters are categorized as outliers/anomalies.
known to be able to identify any shape of clusters.

Algorithm 1: Procedures of density-based clustering.

« Input: DatasetS, ¢, MinPts
Output: Set of clusters”, set of outliersU
Core Node 1C=0;
§=12 2 calculated; ;,Vsi, s; € S,
. 3 for eachs; € S do
* 4 if s; belongs to any cluster OB < MinPts then
5 continue;
::’. 6 end
::::. 7 C’:{sl},A:El,
x * %o oo 8 remove fromA the instances belonging 6 or C;
Cluster e %° .
° 9 while A # 0 do
* Outlier o Normal Instance 10 storeA in C;
. . . . . 1 =0
Fig. 2. An example showing the principle of density-baseadstelring. » for eachs; € A do
Let S denote the input dataset aig; represent the distanceis if 6; > MinPts then
between data instances and s; (s;,s; € S). In this work, 14 I'= Ej;
we measurel; ; with the Euclidean distance as it has been remove fromD the instances belonging @,
widely applied in the anomaly detection domain thanks to its C,orT;
capability of showing clear differences between normal and storel’ in T;
abnormal instances [31]. In particular, we calculdtge as, 17 end
18 end
dig = > (sik = 556)2 1) 19 A=T;
k 20 end

where s; i, is the k-th dimension ofs;. The following def- 21 storeC in C;

initions are prerequisites for discussing the densityetdas2 end

clustering algorithm. Firstly, the-neighborhood of an instancezs store instances that do not belong to any clusteljn
s; IS defined as the set of instances whose distances doe
within ¢, i.e.,

We developed a simple method to facilitate determining
proper values fore and MinPts. First, based on the as-

The dashed circles in Fig. 2 show theeighborhoods of the sumption that the number of anomalies is much smaller than
corresponding centric nodeswe refer to the size ofz; as that of normal instances, we can séfinPts as a small

the density ofs;, denoted ag;. Then, the core node conditionnumber, i.e., assuming that there will not béinPts simul-
for eachs; is defined as, taneous anomalies of the same types. Typically, we can set

MinPts = 4 according to [30]. For larger-scale datasets with
sufficient amounts of normal data, a larger valueldfn Pts

whereMinPts is a preset parameter for the algorithm. Lastlynay be applied for improved anomaly detection rate. Then, we
s, is called directly density-reachable fromif s; € E;, and can determine the value efby gradually increasing from a

§; > MinPts. The basic idea of density-based cIusterinaery small value and observing the variation in the number of
stems from the intuition that clusters normally center ofietected anomalies, i.gl/|. In the beginning|U| decreases
instances with high densities. Algorithm 1 summarizes ti®arply because a largerencourages forming of clusters. As
principle of density-based clustering [30]. In each itienatthe the true anomalies are located farther away from neighgorin
algorithm starts from a core node and iteratively add dgnsit’odes compared with normal instances, the decreasing frate o
reachable instances from it to form a cluster. Specificatly, |U| Will become very low at a certain point (say) when

line 2, the distance between each pair of instances is filee majority of normal instances have been clustered. laroth
calculated. The for-loop covering lines 3-22 goes througﬁords,amuch larger increasesis required for the algorithm
every instance in the dataset and expands from the instafRéurther include anomalies in normal clusters. Therefare

to form a new cluster if the instance has not be clustered af@f? Set ase™.

satisfies the core node condition. The inner loop from lines The complexity of Algorithm 1 isO(|S|?). Note that,
when applying the density-based clustering algorithm tmen

Iwe use “node” and “data instance” interchangeably in theakthe paper. anomaly detection, we need to revisit every instance in the

Ei = {8j|di,j S E,VSJ'} . (2)

8; > MinPts, )



dataset (in the worst case) for each newly collected instanc
to check whether it can be included in one of the identified
clusters. Such operations introduce a complexityOgfS]).
Moreover, there should also be a procedure to readjust, (e'gbnitoring ;
merge or further expand) the identified clusters upon the pata
joining of a new instance. As the complexity of the DCM
scales up with|S]|, it may become a bottleneck to online
operations. RestrictingS| by discarding some non-critical

2 or outdated data instances can be beneficial but does not
resolve the problem essentially. Therefore, a time-efiicie
scheme irrelevant df5| is desired for realizing online anomaly

detection. Fig. 3. Architecture of the DNN-based DRCM design.
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Input Shared Hidden Layers Output

IV. DESIGN OF THEDRCM as 9; = 5 may completely change the judgement of the

Recall the example in Fig. 2, one intuitive observation i#RCM (failed to detect an anomaly), whereas an error of
that the patterns of data, i.e., the sizes, shapes anddasati%i = 1000 to 6; = 1100 would not affect the performance of
of clusters, critically determine the identifications ofwne the DRCM. Hence, we make the DRCM predict the logarithms
data instances. Further, if we can teach a module to acqultgtead of the absolute values of densities, concentrating
such knowledge learned by the DCM, we can thereby on@igPecially optimizing the prediction accuracy regardiog-I
the traversal of the dataset during each online detectioh ##fnsity instances.
significantly reduce the complexity. To this end, we first We designed the DRCM with the DNN architecture
encode the output of the DCM by constructing a new labeléiie to its well-recognized capability of representing high
datasets’ = {(si,1;),s; € S}, where each original instanced'mens'on?| data and molding complex fqncthns. Instead of
s; is labeled with its cluster I1D; (I; € {1,...,|C| +1}). Here, |mplement|_ng the regressor_and the cla_s_smer with two separ
all the abnormal instances are assigned clusteddD+ 1. DNNs, we integrated them into one unified DNN structure for

Then, we can train a classifier with’ and make it predict lower system complexity and better scalability. Fig. 3 show
the cluster ID of a new instance. However, the amount §t€ detailed structure of the DRCM. The DRCM takes as
abnormal data is usually small and cannot represent thesp#Put €ach monitoring data instaneg The input is processed
of anomalies very well. Applying the classifier alone woul®y & few shared fully-connected hidden layers for feature
result in low detection accuracy. For instance, an anomaly mextraction. Each neuron, ,,, in hidden layer calculates its
be incorrectly classified into one of the surrounding clisste  Output as,
it is close to the clu_ster boundaries or no similar a_noma}ls_/ ha [S— <(wZﬁ)T N bn,m) 7 @
been detected previously. On the other hand, the discission
Section I1l have suggested that node densities actuallyigeeo Where g(-) represents the activation functions,””] is the
more comprehensive information about the distributionhef t vector containing the weights of connections from neurons i
data than the final clustering results. Typically, bordedew layern —110 v, ,,, andb, ., is the bias. Two separate blocks
of clusters have lower densities than core nodes while taee deployed after the shared hidden layers for the regressi
densities of anomalies are the lowest, yielding a potefigll and classification tasks, respectively. Each of the bloska i
of densities. This gives us a hint that we can leverage suchrgural network of two layers. The regressor outputs the real
additional dimension of knowledge and train a density regrevalued predicted density; with no activation function for
sor to work cooperatively with the classifier, i.e., emphayi the output layer. The classifier applies tBeftmaxfunction
the DRCM, for more accurate anomaly detection. Specificallp generate the class probabilitipg (c € {1,...,|C| + 1})
the DRCM predicts the density (regressiof and cluster ID to assist classificatidn In particular, theSoftmaxfunction is
I; (classification of each new instanc& simultaneouslys; is  given by, .
detected as an anomaly when either |IC|+1 orl; # |C|+1 g(z,c) = _e° (5)
but ¢, is smaller than a preset threshalgl/;) which should 2
be determined by the minimum density value of instances Yde define the regression and classification losses as the mean
clusterl;. Here, we call the latter case as weakly positive @juared error and the cross-entropy loss, respectively, i.
by definition, the density of a border node can be as low as Loo(0) = 1 Z (6- B 8-)2 ©)
those of anomalies. For such case, we invoke an additional TS YA
validation process by comparing with instances in cluster 1
l; according to the principle of density-based clusteringteNo L., () = 5] > (xElogpi + (1= x§)log (1 - p5)), (7)
that, node densities can range frano tens of thousands, but s;€S ¢
the DRCM is only sensitive to prediction errors on densities, _ . . e .

. . . Note that, during online operations whifi| can potentially increase with
of small values. For instance, mistakenly predictig= 1  he growth ofS, we may need to extend the scale of the classifier approjriate

upon periodical system retraining. Alternatively, we cduviate changing the

2Non-critical instances refer to instances whose removaliat change classifier architecture by combining normal classes to fixthmber of classes
the structures of the identified clusters. as2 (i.e., normal and abnormal).

s;€S
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Fig. 4. Testbed setup for dataset generation.

where@ is the set of parameters of the DN equates to
1if I; = ¢ and 0 otherwise. Finally, the DNN can be trained
(i.e., tuningd) by minimizing the overall loss as,
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where y and ¢ are weighting coefficients anf¢||* is the & 20l B \M |
regularization loss introduced to prevent overfitting. % | i
After detecting an anomaly with the DRCM, we can per- £ 40y ]
o

form anomaly localization and reasoning by first examining -60
whether similar anomalies have been identified. If not, we

proceed to compare the detected anomaly with normal in-

stances surrounding it. In particular, we can calculate tlf@. 5. Examples of normal and abnormal data instances.
distance between two instances in each dimension and possib

discern from the distance vector (1) distinct variations iB. Use Case I: Single-Point Anomaly Detection

certalr_1 dlmens_lons, €.g., an a_brupt increase of the noise I_Q We focused on detecting abnormal patterns of data collected
at an intermediate node of a lightpath caused by the amphfgtr each monitoring point. Each data instance contais

malfunction, or (2) a unique pattern, e.g., a gradual ds&red. fo4yres including the power afl wavelength channels (i.e.,

Fhe chqnnel power gain due to t_he amplifier aging. MeanWh_'lﬁ‘re 17 and four wavelength channels launched at Nodes A and
if_multiple concurrent anpmahes are _detected, correfath) and the noise floor. In total, we obtainéd, 680 normal
schemes [32] can be applied for lacalizing the faults. instances and0 anomalies. All the data instances were scaled
[33] before being processed by the DCM and DRCM. We
V. PERFORMANCE EVALUATION measured distances among data instances as their Euclidean
distances (see Eg. 1).

To determine the correct configuration offor the DCM,

We evaluated the performance of the proposed self-taugie first setMinPts = 4 and plot the variation in the number
anomaly detection framework by using experimental datd detected anomalies as function=in Fig. 6. Based on the
collected from a7-node optical network testbed (see Fig. 4parameter selection method presented in Section Ill, we can
with six different routing paths. In particular, we laundner  see that should be assigned a value of around. Table |
and four wavelength channels at Nodes A and B, respectivedfrows the results of false negative rate (denoted’,asand
By reconfiguring the wavelength selective switches (WSSH)Ise positive rate (denoted gs) from the DCM with different
parameters (i.e., ports’ bandwidth and attenuation) ah eagetup of MinPts andes. The results indicate that a larger
node, we created diverse network link load scenarios. Fdr edeads to higherf,, but lower f,, whereas a largeMinPts
scenario, we processed the readings from the optical spectresults in an opposite trend. This is because with largeregal
analyzers (OSAs) located at six fixed locations to obtain tleé e (whenMinPts is fixed), anomalies are more likely to be
values of optical power at each wavelength and out-of-bairtluded in thes-neighborhoods of normal instances, making
noise floor, which constitute the original dataset. For alsm#&hem more difficult to be detected. On the contrary, incraasi
portion of these network instances, we purposely increaséfinPts discourages the forming of clusters and generates
the attenuations introduced by the WSSs for certain specifiore outliers, which facilitates anomaly detection buseai
wavelength channels, emulating abnormal power distdimsti more false alarms as well. With/inPts and ¢ being set
in certain links. Fig. 5 shows an example of normal anas4 and0.4, respectively, the DCM can achieve up 100%
abnormal data instances from the experiment. In this wanomaly detection an@l01% false positive rate for the dataset
we emulated soft-failures such as the malfunctioning of under evaluation, which clearly demonstrates the effentgs
tunable filter [22], a power equalizer or an erbium-dopedrfibef the proposed method.
amplifier (EDFA), or a jamming attack [4], which can also We compared the performance of the DCM with that of the
cause abnormal power distributions. K-means clustering algorithm [34]. Table Il presents theltses

0 5 10 15 20
Wavelength

A. Dataset Generation
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10 TABLE I
" p— FALSE NEGATIVE AND FALSE POSITIVE RATES OFK-MEANS ((fn, fp) %).
T i S S A S S
g RN o ;
§ 10° \\ . N 0.03 0.05 0.08
§ \‘\\ o 10 70.0, 2.90| 70.0, 4.91| 64.0, 7.90
3 AN - 20 44.0, 2.80| 38.0, 4.81| 28.0, 7.77
5 107 N 30 | 44.0,278| 34.0,4.78| 32.0, 7.76
B A — 40 50.0, 2.78| 46.0, 4.79| 28.0, 7.72
E -
10 classification accuracy df.8%. Table Il presents the results
02 025 03 0':5 04 045 05 of the DRCM for ano):naly detection. Rgcall that we defined
a preset threshold to assist triggering validation praee$sr
Fig. 6. Variation in the number of detected anomalies astionof e. cases where instances are classified into normal classes but
TABLE | their predicted densities are lower than the threshold.tker

FALSE NEGATIVE AND FALSE POSITIVE RATES OF THEDCM ((fx, fp) %). sake of simplicity, a unified thresholi was applied for all
the classes. By settingy as0, we made the DRCM only rely

MinPts 2 4 6 on the classification results. Here, we denote the frequeficy

€ validation asf,.;, which is a performance metric defined as
0.20 0.0, 30.3| 0.0, 35.6| 0.0, 48.0 the ratio of the number of instances triggering the valmtati
0.30 0.0, 4.12| 0.0, 7.17| 0.0, 22.9 process to the total number of instances under examination.
0.35 0.0, 0.30] 0.0, 0.57| 0.0, 12.0 We can observe that the DRCM fails to detect more théh
0.40 4.0,00 | 00, 0.01| 0.0, 7.19 of the anomalies without taking into account the predicted
045 8.0, 0.0 | 00 00 | 00 4.80 denS|t|_e§. This is because the numt_)er of a_n(_)maly samplz_as in
050 100001 200 00! 200 200 the training S(_—:tt_ is too small to _p_rowde sufficient supeornisi

i i i signals for training a DNN classifier that can accuratelyedet

anomalies. By introducing,, we remarkably improved the

of f, and f, from K-means. Sinc&-means does not define@nomaly detection rate of the DRCM but at the cost of

outliers and groups all the instances into clusters, wehtig 'Tgﬁ?;cedg ;(Lésvg:acrz c?:rcr)lwlsex?t tr?ﬂ:gsgent\e'veaetﬂ/edgteéggz
modified K-means to make it detect instances that belong & y Y P Y- 9

a certain ratio +f) of the farthest nodes to the core node ok?e reduced to below? with fua; being29.82%.

each cluster as anomalies. MeanwhKemeans requires that

the number of clusteréV is provided as an input parameter. 14 ‘ _
We can see that the lowest false negative means can 1.2 —_ Training |
. . . . . — Validation

achieve is28.0%, which is inadequate for anomaly detection.
The reason is that the applicationkbfmeans is only limited to ! ]
problems with spherical clusters other than those withtehss 0.8 i
of irregular shapes (see the example in Fig. 2). 2

According to the clustering result of the DCM (with — 06 ]
MinPts = 4 ande = 0.4), we obtaineds21 normal classes 04 ]
and 1 abnormal class, as well as the density of each data
instance. We implemented the DRCM with a DNN consisting 0.2 Tt
of four shared hidden layer$3g, 32, 32, 32]), a classification
block of two layers 32, 622]) and a regression block of two % 50 100 150 200 250 300
layers (16, 1]). Except for the output layers, we us&d U Epoch
as the activation function. For the loss function in Eq~8, _ , .
ands were set a$.1 and 10~4, respectivel§. We conducted Fig. 7. Losses of the DRCM during training.
10 independent experiments by randomly dividing the dataset
into the training, validation and testing sets with a ratfo o E TABLE Il

) L. ) . ALSE NEGATIVE AND FALSE POSITIVE RATES AND FREQUENCY OF

7:1: 2. Flg 7 shows the training and validation losses VALIDATIONS OF THE DRCM (%).
of the DRCM averaged from0 experiments, indicating that
the training converges without notable overfitting. Evéilugs do 0 3 5 7 9
with the testing set show that the DRCM can achieve a mean fn | 36.36| 24.54| 1091| 1.82 | 0.91
square error ofl4.4 for density prediction and an average £ 007 | 007 | 007 | 007 | 0.07

4We have tested different DNN architectures and parameterttié DRCM Fval 0.0 060 | 10.24] 22,81 | 29.82

and this paper presents the most appropriate setup.
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