
1

Sel-INT: A Runtime-Programmable Selective
In-Band Network Telemetry System

Shaofei Tang, Deyun Li, Bin Niu, Jianquan Peng, and Zuqing Zhu, Senior Member, IEEE

Abstract—It is known that by leveraging programmable data
plane, in-band network telemetry (INT) can be realized to provide
a powerful and promising method to collect realtime network
statistics for monitoring and troubleshooting. However, existing
INT implementations still exhibit a few drawbacks such as lack
of runtime-programmability and relatively high overheads due
to per-packet operation. In this work, we propose and design
a runtime-programmable selective INT system, namely, Sel-INT,
to resolve these issues. Specifically, we first design a runtime-
programmable selective INT scheme based on protocol oblivious
forwarding (POF), and then prototype our design by extending
the famous OpenvSwitch (OVS) platform to obtain a software
switch that supports Sel-INT and implementing a Data Analyzer
to parse, extract and analyze the INT data. Our implementation
of Sel-INT is verified and evaluated in a real network testbedthat
consists of a few stand-alone software switches. The experimental
results demonstrate that Sel-INT can not only adjust the sampling
rate of INT in runtime but also program the corresponding data
types dynamically, and they also confirm that our proposal can
ensure proper accuracy and timeliness for network monitoring
while greatly reducing the overheads of INT.

Index Terms—In-band Network Telemetry (INT), Software-
defined networking (SDN), Protocol-oblivious forwarding (POF),
OpenvSwitch (OVS), Runtime programmability.

I. I NTRODUCTION

OVER the past decade, there have been revolutionary
changes on and dramatic expansions of the Internet glob-

ally. Specifically, the fast developments of datacenters [1, 2]
and 5G networks [3, 4] have stimulated various new network
infrastructures, such as elastic optical networks (EONs) [5–8],
and numerous innovations on networking technologies,e.g.,
software-defined networking (SDN) [9–11], network virtual-
ization [12–14], and network function virtualization (NFV)
[15–17]. Consequently, the Internet is becoming more and
more flexible and programmable at the cost of increased
complexity. This means that it would be more challenging
to troubleshoot the networks and restore them from unclear
failures (e.g., congestion, link failure, and black-hole) [18–20].
Therefore, researchers are motivated to develop new network
monitoring technologies that can localize the root causes of
soft/hard failures quickly without much operational cost or
disturbing the ongoing network services.

The traditional network monitoring approaches are usually
based on the server-client model. For instance, SNMP [21]
lets a network control and management (NC&M) system pull

S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu are with the School of
Information Science and Technology, University of Scienceand Technology
of China, Hefei, Anhui 230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on December 28, 2018.

statistics from its network elements for non-realtime datacol-
lection, sFlow [22] provides a network-wide view by sampling
interface statistics regularly and packet information randomly,
and NetFlow [23] collects information regarding IP flows with
certain sampling rate and sends the aggregated results to a
flow collector for analysis. Although these approaches have
been proven to be effective in earlier days of the Internet,
their limitations on achieving more sophisticated monitoring
are also obvious. Firstly, they need to run an agent on each
router/switch for collecting data and responding to polling
requests, which costs processing cycles of its local processor
and thus might impact the throughput of packet forwarding.
Secondly, the bandwidth used for transmitting collected data
to the NC&M system would become massive in a large
scale network with many routers/switches. Thirdly, they can
hardly catch the real-time status of a highly dynamic network.
Lastly but most importantly, they cannot reveal the end-to-end
information of an arbitrary flow with high accuracy.

The rising of OpenFlow-based SDN [24] has made network
monitoring much easier, since the switches in the data plane
has to report their feature information to the SDN controller(s)
periodically for realizing centralized NC&M. However, some
of the old issues, such as relatively long latency in data fetch-
ing, incomplete end-to-end per-flow information, and non-
scalable processing burdens on switches, still exist and can
only be resolved with a more programmable data plane. Mean-
while, people have demonstrated that a programmable and
protocol-independent data plane can be achieved by leveraging
either the programming protocol-independent packet processor
(P4) [25] or the protocol oblivious forwarding (POF) [26, 27].
Therefore, in-band network telemetry (INT) [28] has been
developed to provide a network operator the capability of cus-
tomizing their own network monitoring scheme. Specifically,
according to the instructions precoded in the INT headers ofa
user packet, an INT-capable switch encodes network statistics
as specific INT header fields and inserts them in the user
packet, for collecting end-to-end per-packet informationin
real-time. Hence, INT greatly improves the real-time visibility
of a network and makes the diagnosis on it much easier.

Previously, there have been a few interesting and powerful
P4-based INT implementations on hardware or software plat-
forms [29–31]. For example, developed on a commercial field
programmable gate array (FPGA) board, the INT implemen-
tation in [29] can collect per-packet information in realtime at
100 Gbps line-rate. However, the hardware implementations
are still expensive and inflexible, which makes it difficult for
them to be adopted in network environments with virtualiza-
tion. Although software platforms such as PISCES [32] and

2

BMv2 [33] can also be leveraged to realize P4-based INT, their
packet processing pipelines cannot be adjusted at runtime.This
means that a switch has to be taken offline and re-complied
every time when we need to change the INT pipeline in it.

The necessity of realizing a runtime-programmable INT
system is twofold. Firstly, in order to achieve closed-loop
NC&M, we may need to adjust the INT schemes on switches
dynamically,e.g., adding new INT pipelines for diagnosing
certain flows with a closer look. Secondly but more important-
ly, sampling network status in a per-packet manner might not
be necessary when the line-rate is relatively high and would
lead to excessive over-sampling. For instance, at10 Gbps,
the time difference between two adjacent1024-Byte packet
is only 0.8192 µs, and the network usually would not change
dramatically in such a short time. Therefore, instead of always
relying on per-packet INT, we consider a selective INT scheme
as more reasonable. Specifically, the selective INT should be
able to adjust the sampling rate of INT in runtime according
to the actual needs of network monitoring. Moreover, the
locations to collect INT data and the corresponding data types
should also be programmable to not only save the packet
overhead due to INT but also relieve the processing burdens
on switches. Nevertheless, to the best of our knowledge, such
a runtime-programmable selective INT scheme has not been
designed or demonstrated before.

In this work, we first propose and design a runtime-
programmable selective INT scheme based on protocol obliv-
ious forwarding (POF) [34, 35], namely, Sel-INT, and then
prototype our design by extending the famous OpenvSwitch
(OVS) platform [36]. Our implementation of Sel-INT is ver-
ified and evaluated in a real network testbed that consists of
a few stand-alone software switches. The experimental results
validate that Sel-INT can not only adjust the sampling rate of
INT in runtime but also program the corresponding data types
dynamically, and they also show that restricting the sampling
rate below20% can greatly improve the packet processing
throughput of our software switch while the system’s monitor-
ing accuracy on fast-changing INT data is still relatively high
even with a sampling rate of7.1%. Therefore, Sel-INT can
ensure proper accuracy and timeliness for network monitoring
while greatly reducing the overheads of INT.

Our contributions in this work are summarized as follows:
• We extend OVS to make it POF-enabled, and obtain

a brand-new software-based POF switch, namely, OVS-
POF, which can process packets in a protocol-agnostic
way without severe performance degradation.

• We design and implement Sel-INT over OVS-POF, which
is a runtime-programmable network monitoring system
that not only achieves much better tradeoff between
monitoring accuracy and INT overhead, but also supports
changing monitoring schemes (i.e., locations to collect
INT data, INT data types, and sampling rate for selective
INT insertion) in runtime.

• We design and implement a high-performance data an-
alyzer, which can capture, parse and store the INT data
carried by packets, with a packet processing throughput
of ∼ 2 million packets per second (Mpps).

The rest of the paper is organized as follows. Section II

provides a brief survey on the related work. We describe the
design of Sel-INT in Section III, while its implementation
details are presented in Section IV. The experimental demon-
strations and evaluations are discussed in Section V. Finally,
Section VI summarizes the paper.

II. RELATED WORK

Before P4-based INT was proposed and demonstrated,
people have tried to collect network statistics with other
in-band methods. For instance, NetSight was developed in
[37] to capture packet processing history and make every
processing procedure be visible for helping network diagnosis.
Jeyakumaret al. [38] proposed the idea of introducing new
network monitoring functionality into the data plane with
the tiny packet program (TPP), and demonstrated a hardware
prototype based on NetFPGA. However, since the TPPs are
actually embedded into packets by end-hosts, the scheme
might make the network insecure when there are malicious
end-hosts. The authors of [39] designed Everflow as a packet-
level telemetry system that implements a packet filter together
with the “match-and-mirror” functionality in the commodity
switches in a datacenter network. Nevertheless, such a match-
and-mirror scheme might have difficulty to reveal the end-to-
end information of a packet in real-time.

The technical specification of INT has been released in
[28], where the authors laid out the overall INT system and
provided a few examples on INT use-cases. In [40], in-
situ operations, adminstration, and maintenance (IOAM) was
specified to record operational and telemetry information in
a packet when it transverses an IOAM-domain, and the data
fields and associated data types for IOAM were also defined.

P4-based INT has been demonstrated in a Mininet environ-
ment for different purposes in [30, 31, 41, 42]. The authors of
[30] showed how to debug network by observing HTTP laten-
cy instantaneously via INT implemented on P4-based software
switches. NetVision was developed in [31], which leverages
dynamically-generated double-stack probes instead of normal
packets to collect network statistics. However, as the probes
might not experience exactly the same network environment
as packets, the accuracy and timeliness of monitoring could
be affected. Hyunet al. [41] studied how to utilize INT to
realize knowledge-defined networking, and they prototyped
their proposal based on ONOS [43] and BMv2 [33]. More
recently, a P4-based selective INT scheme has been proposed
in [42]. With a similar idea of TPP [38], the authors realized
both the selective INT header insertion and sampling ratio
adjustment at the source hosts. Nevertheless, similar as TPP,
this scheme might bring in security breach when the end-
hosts could not be completely trusted, and it is also not fully
runtime-programmable since the the locations to collect INT
data and the corresponding data types can hardly be changed in
runtime. Moreover, the scheme was only prototyped in Mininet
without sophisticated performance optimization.

A few hardware P4-based INT implementations have been
discussed in [29, 44–46]. Netcope [29] implemented P4-based
INT with an FPGA board that can process packets at a line-rate
of 100 Gbps. The project of Deep Insight has been presented

3

in [44], where P4-based INT is implemented on a high-
performance application-specific integrated circuit (ASIC) to
make a network be visible for every packet processing in real-
time. The authors of [45] considered how to apply INT in a
packet-over-optical network and realize multilayer telemetry
with an intent-driven framework.

However, as we have explained, P4-based INT schemes
have difficulty to adjust the packet processing pipelines at
runtime. Moreover, none of these aforementioned studies has
demonstrated the selective INT that can program the locations
to collect INT data and the corresponding data types and
sampling rate, in runtime. This motivates us to study how to
design our Sel-INT based on POF [10, 26], which is known
to have runtime programmability.

As the major functionality of Sel-INT will be implemented
in our home-made software-based POF switch, we summarize
the development path of our software-based POF switch as
follows. We started the project on software-based POF switch
based on the protocol and software architecture discussed
in [26]. Then, by leveraging the data plane development kit
(DPDK) [47], we accelerated the packet processing, and ob-
tained a software-based POF switch whose packet forwarding
throughput is1 Gbps [10]. Next, we continued to optimize
the processing logic in the software switch, and got a better
version to report in [35], which achieved a data-rate of10
Gbps for packet sizes at512 bytes or longer. However, in
the aforementioned studies, we did not consider the well-
known open source OpenFlow-based software switch,i.e.,
OpenvSwitch (OVS) [36]. OVS attracted our interest because
of its performance and ecosystem for development. Therefore,
in this work, we will first discuss our efforts to add the support
of POF in OVS, and then explain how to use the obtained
software-based POF switch (i.e., OVS-POF) to implement Sel-
INT. To the best of our knowledge, the idea and implemen-
tation of supporting POF in OVS have not been discussed in
the literature before. Moreover, the performance of OVS-POF
is better than the former versions of our software-based POF
switches in [10, 35],i.e., it reaches10 Gbps when the packet
size is set as256 bytes as Section IV-A will show.

III. SYSTEM DESIGN OFSEL-INT

In this section, we lay out the system design of the proposed
Sel-INT and define its packet format.

A. System Architecture

Fig. 1 shows the system architecture of our Sel-INT system.
Here, to realize runtime-programmability, we design the Sel-
INT system based on POF [10, 26], which can also realize a
protocol-independent data plane as P4 does. Specifically, POF
uses a tuple <offset, length> to define a packet field, where
offsetrefers to the field’s start location in a packet andlength
represents its length in bits. Hence, POF switches can locate
any field in a packet without referring to a specific protocol,
and process packets with pipelines built by the flow tables that
are based on the protocol-oblivious forwarding instruction set
(POF-FIS) [26]. As the flow tables are actually installed by a

POF controller in runtime, the POF switches become runtime-
programmable, and image-recompiling is avoided. Previously,
we have developed a few network elements [48–51], with
which a fully functional POF-enabled network testbed can be
built to deliver reasonably good packet processing capacity.

POF Switch

POF-based Network

POF Controller

Data Analyzer

Source Destination
SW1 SW2

SW3

SW4

SW5 SW6

Interaction3

Mirror INT Packets2

1111

Fig. 1. System architecture of our Sel-INT system based on POF.

Therefore, in Fig. 1, Sel-INT is realized by the POF con-
troller installing INT-related flow tables in the POF switches
that are on the forwarding path of a flow. Specifically, when
there is a need to apply selective INT on a flow, the controller
will first determine the locations to collect INT data, as well
as the corresponding data types and sampling rate, then build
the flow tables to specify the corresponding INT pipelines,
and finally encode the flow tables inGroupModor FlowMod
messages to install them in the related switches (Step 1). The
POF controller considered in this work is based on ONOS
[43], and we extend its southbound protocol stack to support
POF, especially for conveying POF-based group tables.

Type Length MapInfo Metadata 1

Bandwidth Hop Latency

2B 8B 1B

INT Data Types Ingress Time Out Port In Port Device ID

1B

IPEth

2B 1B 1B range in [1B, 8B]

INT Header

Payload… Metadata n

4B4B

Fig. 2. Format of the INT header used in Sel-INT.

After receiving the flow tables, the switches will build the
specified INT pipelines and start to process packets with them.
More specifically, the INT pipeline in the ingress switch to the
POF-based network is different from those in the subsequent
switches on the forwarding path. In the ingress switch (e.g.,
SW1 in Fig. 1), the INT pipeline inserts an INT header
into packets (as shown in Fig. 2) selectively, according to
the sampling rate predetermined by the controller. Here, the
selective insertion is achieved by leveraging the POF-based
group tables, and the implementation details will be discussed
in Section IV. The INT header in Fig. 2 is inserted after the
IP header, where the field lengths are also labeled,e.g., “1B”
means a field length of one byte. TheMapInfo field tells the
ingress and subsequent switches about the INT data types to
collect and insert into each packet that has the INT header.

Definition 1: In the rest of this paper, we refer to a packet
that carries the INT header as anINT packet.

Note that, if the controller determines that INT data col-
lection would not be necessary on certain switches on the
forwarding path, it would not install the flow table to match

4

to the INT header on them and thus the switches would process
the INT packets and other normal ones in the same way.
The next subsection will discuss the details regarding the INT
header. Finally, the INT pipeline in the egress switch (e.g.,
SW6 in Fig. 1) duplicates the INT packets and sends them to
the data analyzer (Step 2). The data analyzer captures the INT
packets, parses and extracts the INT data in them, and analyzes
the data for realtime network monitoring. Here, to save storage
space and avoid unnecessary I/O operations, the data analyzer
will filter and hash the extracted data before recording it ina
local storage. Meanwhile, the data analyzer interacts withthe
controller to accomplish closed-loop NC&M (Step 3).

B. INT Header

The INT header in Fig. 2 consists of four fields. The first
field is Type, which has a length of two bytes and is filled
with 0x0908 to indicate an INT header to the POF switches.
The one-byteLengthfield follows Type, and tells how many
Metadatafields have already been inserted in the packet for
INT. Specifically, each time after a switch finishing an INT
operation on the packet, the data in theLengthfield will be
incremented by one. We use theMapInfofield to indicate the
data types to collect on the switches selected for INT. Here,
MapInfo is essentially a one-byte bitmap, where the lowest
six bits correspond to the six types of INT data shown in
Fig. 2, respectively, while the highest two bits are reserved
for future use. If a switch on the forwarding path is selected
for INT, its packet processing pipeline will contain a flow
table to match to the INT header and check theMapInfofield
in it. For all the bits that are turned on, the switch inserts
the corresponding types of INT data into each INT packet as
new Metadatafields. Specifically, eachMetadatafield only
contains one type of INT data collected from one switch.

Each INT header can include severalMetadatafields whose
lengths range in[1, 8] bytes. Note that, our Sel-INT supports
to insert multipleMetadatafields in a packet at one hop (i.e.,
more than one bits inMapInfogets turned on). TheMetadata
fields defined for the six types of INT data shown in Fig. 2
are explained as follows.

• Bandwidth: This INT data uses four bytes to record the
average bandwidth usage on the switch port that forwards
the packet out. In each POF switch, we assign a counter
to calculate the average bandwidth usage of each output
port in every50 msec.

• Hop Latency: We use two bytes to record the interval
(in µs) between when the packet comes in and when the
Metadatafield gets inserted in it, which is the penultimate
action before forwarding it out.

• Ingress Time: It has eight bytes to record the local system
time (in µs) when the packet comes in.

• In Port/Out Port: These two types of INT data use one
byte to record the IDs of the input and output ports of
the packet, respectively.

• Device ID: We use four bytes to record the unique ID of
the current switch in the POF-based network. Note that,
the ID can be defined in many ways (e.g., using the MAC
address of a port on the switch), while in this work, we
allocate it manually in sequence.

IV. SYSTEM IMPLEMENTATION

In this section, we present how to implement our proposed
Sel-INT system and show some benchmarking results.

A. OVS Extensions for Supporting POF (OVS-POF)

In order to realize a high-performance POF-enabled soft-
ware switch that can be utilized to demonstrate the effec-
tiveness of Sel-INT, we decide to extend the famous OVS
platform [36] and make it support protocol-oblivious packet
forwarding. Our implementation, namely, OVS-POF, is based
on OVS v2.6.90 that supports OpenFlow 1.3.

Note that, according to the principle of POF, an arbitrary
packet field can be represented by a tuple <offset, length,
value>. Hence, we first modify OVS to let it parse each packet
field in the form of <offset, length, value> but not according
to a specific protocol. This modification ensures that in OVS-
POF, both the match fields and the actions’ parameter fields are
represented and parsed in the form of <offset, length, value>.
We also change the protocol stack of the northbound interface
in OVS, and make it POF-enabled. Next, we extend OVS to
support POF-FIS. Specifically, we redefine the action space in
OVS according to POF-FIS and program it to support POF-
based actions, such asadd_field, modify_fieldanddelete_field,
which operate on fields defined as <offset, length, value>.

0

2

4

6

8

10

12

P
a
c
k
e
t

P
ro

c
e
s
s
in

g
 S

p
e
e
d
 (

M
p
p
s
)

OVS

OVS-POF

OVS

OVS-POF

 64 128 256 512 1024

Packet Size (Bytes)

0

2

4

6

8

10

12

D
a
ta

 R
a
te

 (
G

b
p
s
)

Fig. 3. Fast-path packet forwarding performance of OVS and OVS-POF.

To verify the performance of OVS-POF, we run it on a
Linux server that has a2.10 GHz Intel Xeon CPU and32 GB
DDR3 memory, and benchmark it with OVS. The line-rate
of the server’s linecard is10 Gbps, and we compare the fast-
path packet forwarding performance of OVS-POF and OVS by
changing the packet size from64 to 1024 bytes. We first run
each measurement for a minute to obtain the average results on
packet processing speed and data rate, and then for each packet
size, the measurement is repeated for three times to averagefor
the final data points. Fig. 3 shows the experimental results.We
observe that the packet forwarding performance of OVS-POF
is worse than that of OVS for small packets, especially when
the packet size is64 bytes. The reason of this performance
degradation is twofold. Firstly, the protocol-oblivious packet
forwarding in POF is more flexible and thus more complex

5

than the protocol-dependent packet forwarding in OpenFlow.
Secondly but more importantly, OVS has been optimized for
protocol-dependent packet forwarding for a while. Hence, the
performance degradation is understandable. Fortunately,the
packet forwarding performance of OVS-POF is already good
enough for demonstrating the effectiveness of Sel-INT, as we
will discuss later in Section V. Meanwhile, we will continue
to optimize OVS-POF in our future work.

POF Controller

POF Protocol Stack

POF Protocol

OVS-POF

Packets Packets

INT Operation

Pipeline with POF-FIS

Match Action

<off1, len1> act1

… …

Fast-path

Revalidation

Customized Metadata Memory

StorageINT Parser

Data Analyzer

Network Operator

INT Packets

Fig. 4. System implementation of Sel-INT.

B. Implementation of Sel-INT in OVS-POF

Fig. 4 illustrates the detailed implementation of the Sel-
INT system. Here, the major part of the implementation is in
OVS-POF. More specifically, our work in OVS-POF to support
Sel-INT can be summarized as: 1) we extend POF-FIS and
design a novel way to realize selective INT header insertion
in OVS-POF by leveraging the select group tables (SGTs),
2) we implement an INT operation module in OVS-POF,
which can get network statistics from the switch, store them
in the switch’s customized metadata memory, and provide the
required network statistics to be inserted in packets during
INT, and 3) we design a fast-path revalidation module to
minimize the negative impact of selective INT operations on
the fast-path packet processing in OVS-POF, for optimizing
the packet processing throughput of the Sel-INT system. In
other words, the fast-path revalidation module ensures that the
fast-path can be leveraged as much as possible, even though
the packets in a flow (i.e., the INT packets and normal ones)
can take different actions in a switch.

1) Selective INT Header Insertion based on SGTs:We
utilize POF-based SGTs, each of which consists of multiple
buckets of actions, to realize selective INT header insertion
in ingress switches. Note that, the SGTs in this work operate
differently from those defined in OpenFlow. Specifically, OVS
selects a bucket from an SGT based on the bucket’s weight,
and then uses the bucket’s actions to process all the packets
in a flow (i.e., over the whole service time of a flow, there
is no bucket switching). On the other hand, when the flow
has a packet coming in, our OVS-POF selects a bucket in the
SGT with the probability in proportion to its weight, and then
uses the selected bucket’s actions to process the packet. Hence,

Group id Type Statistics

Weight Actionsbucket 0

Weight Actionsbucket 1

Weight Actionsbucket n

…

Fig. 5. Design and operation of SGT for Sel-INT.

in our design, bucket switching can happen during the flow’s
service time, to realize selective INT header insertion. Fig. 5
illustrates the SGT designed for Sel-INT.

Algorithm 1: Token-based Bucket Switching

1 for each bucketi in SGT do
2 get the bucket’s weight and store it intk[i];
3 end
4 while the related flow is activedo
5 receive a packet;
6 flag = 0;
7 for i = 0 to len(tk)− 1 do
8 if tk[i] > 0 then
9 process packet with actions in bucketi;

10 flag = 1, tk[i] = tk[i]− 1;
11 break;
12 end
13 end
14 if flag = 0 then
15 for each bucketi in SGT do
16 get the bucket’s weight and store it in

tk[i];
17 end
18 process packet with actions in bucket0;
19 tk[0] = tk[0]− 1;
20 end
21 end

TABLE I
EXAMPLE ON TOKEN-BASED BUCKET SWITCHING

Packet ID tk[0] tk[1] Selected Bucket

1 2 3 bucket 0
2 1 3 bucket 0
3 0 3 bucket 1
4 0 2 bucket 1
5 0 1 bucket 1

A straightforward way to achieve correct bucket switching
based on their weights is to use tokens. If we assume that
in each SGT, the buckets’ weights are all positive integers,
a simple token-based bucket switching algorithm can be de-
signed as inAlgorithm 1. Specifically, the algorithm traverses
the buckets in an SGT in sequence, and use the actions in

6

a bucket to process packets as long as the bucket’s token
has not been used up. When the tokens of all the buckets
have been used up, their values are restored to the buckets’
weights. Table I shows an example onAlgorithm 1, when
there are two buckets in an SGT, and their weights are set
as 2 and 3, respectively. Although the token-based bucket
switching algorithm is straightforward, the selection of the
buckets is unevenly distributed over time, which can degrade
the accuracy and timeliness of Sel-INT.

Hence, we consider a polling-based bucket switching al-
gorithm as inAlgorithm 2 to distribute the selection of the
buckets more evenly over time. Here, we first sort the buckets
in an SGT in ascending order of their weights (Line 1), to
avoid unnecessary weight-check operations inLine 9. When
we try to find the bucket whose weight is the largest inLine
9, we always select the one with the highest index if there is
a tie among multiple buckets. For the example discussed in
Table I, Algorithm 2 operates as in Table II and the selection
of the buckets distributes more evenly over time. Therefore,
we implementAlgorithm2 in OVS-POF for bucket switching.

Algorithm 2: Polling-based Bucket Switching

1 sort buckets in SGT in ascending order of weights;
2 while the related flow is activedo
3 receive a packet;
4 if there is notk[i] > 0 then
5 for each bucketi in SGT do
6 get the bucket’s weight and store it in

tk[i];
7 end
8 end
9 j = argmax

i

(tk[i]);

10 process packet with actions in bucketj;
11 tk[j] = tk[j]− 1;
12 end

TABLE II
EXAMPLE ON POLLING-BASEDBUCKET SWITCHING

Packet ID tk[0] tk[1] Selected Bucket

1 2 3 bucket 1
2 2 2 bucket 1
3 2 1 bucket 0
4 1 1 bucket 1
5 1 0 bucket 0

2) Extensions on POF-FIS and INT Pipelines:To ensure
that the INT-related actions can be executed efficiently in
OVS-POF, we improve the POF protocol to support Sel-INT.
Specifically, we extend theadd_fieldanddelete_fieldactions
defined in POF-FIS to obtain two new actions as follows.

• add_int_field<offset, MapInfo>: Here, theoffsetindicates
the start location to insert INT-related field(s), while
depending on the value ofMapInfo, the action can insert
either a new INT header (as shown in Fig. 2) or just a new
Metadatafield. In an ingress switch, the controller will set
theMapInfoas a valid bitmap according to its definition,

e.g., MapInfo= 0x01 if it wants to monitor “Device ID”.
Then, when OVS-POF sees such a valid bitmap in the
MapInfo, it inserts a new INT header, which includes the
Type, Lengthand MapInfo fields and the firstMetadata
field, into an INT packet. Otherwise, if the switch is not
an ingress one, the controller will set theMapInfo as
0xff , and when OVS-POF sees such an invalid bitmap,
it checks theMapInfo field in the packet’s INT header
to know the required type of INT data, and then inserts
only a newMetadatafield accordingly.

• delete_int_field<offset>: Here, theoffset indicates the s-
tart location of the INT header to be deleted. As an egress
switch, OVS-POF can check theLength and MapInfo
fields in an INT packet to calculate the actual length of
its INT header. Hence, no other parameters are required
in the delete_int_fieldaction.

Fig. 6 illustrates the examples on INT-related group/flow
tables on the switches along a forwarding path. The SGT for
selective INT header insertion in the ingress switch is in Fig.
6(a), and there are two buckets in it for inserting an INT header
and forwarding packet normally, respectively. InBucket0, the
add_int_fieldaction inserts a new INT header in the packets
of a flow with a sampling rate of m

m+n
(i.e., we normally have

m ≪ n). Then, before forwarding the INT packet out, OVS-
POF invokes themodify_fieldaction to increase theLength
field in the INT header by one, since a newMetadatafield
has already been inserted. For an intermediate switch that gets
involved in Sel-INT, Fig. 6(b) indicates that OVS-POF uses
a flow table to match to theType field (i.e., an INT packet
has itsType field as <offset= 272 bits, length = 16 bits>
and the value is= 0x0908), for detecting INT packets. Next,
for each INT packet, it uses theadd_int_fieldaction to insert
a new Metadatafield, updates theLength field in the INT
header accordingly, and forwards the packet out. Finally, the
egress switch leverages the all group table in Fig. 6(c) to
simultaneously perform 1) INT data insertion and INT packet
duplication to the Data Analyzer, and 2) INT header deletion
and packet delivery to the destination host.

3) Fast-Path Revalidation:To maintain high packet pro-
cessing throughput, we develop the fast-path of OVS-POF
based on that of OVS. However, the logic of OVS’ fast-path
would prevent bucket switching due to the caching of flow
rules,i.e., all the packets in a flow will be processed with the
flow rules cached in the fast-path and none of them will be sent
to the slow-path to invoke bucket switching there. Specifically,
when a packet arrives, OVS first sequentially searches the flow
rules for it in theMicroflow andMegaflowcaches in its fast-
path, and only when the flow rules cannot be found there, it
will look up the slow-path and update the fast-path caches.
To overcome this issue, we implement a fast-path revalidation
scheme in OVS-POF with the operation principle in Fig. 7.

Here, we use theRevalidatorthreads in OVS-POF to delete
the flow rules cached inMicroflow andMegaflowperiodically
and force the packet processing to go through the slow-path
and invoke bucket switching there. Specifically, for each flow
rule that is related to Sel-INT and gets cached in the fast-path,
Revalidatorsets a threshold on the number of processed pack-
ets, and when the threshold is reached, it will delete the flow

7

Bucket 0: Inserting an INT Header

Weight Instructions

m

add_int_field<272b, MapInfo>

modify_field<288b, 8b, 1>

output: next_hop

Bucket 1: Forwarding Packet Normally

Weight Instructions

n output: next_hop

Select Group Table

(a) Ingress switch

Flow Table

Match Instructions

<272b, 16b>

add_int_field<offset, MapInfo = 0xff>

modify_field<288b, 8b, 1>

output: next_hop

(b) Intermediate switch

Bucket 0: Mirroring to Data Analyzer

Instructions

add_int_field<offset, MapInfo = 0xff>

modify_field<288b, 8b, 1>

output: data_analyzer

All Group Table

del_int_field<272b>

output: end_host

Bucket 1: Forwarding to End Host

Instructions

(c) Egress switch

Fig. 6. Examples on INT-related group/flow tables on switches along the forwarding path of a flow.

Microflow

Megaflow

Flow Table 2

<off1, len1> act1
… …

… …

Flow Table 1

<off1, len1> act1
… …

… …

Flow Table 0

<off1, len1> act1
… …

… …

Group Table 2

bucket 0 …

… …

… …

Group Table 1

bucket 0 …

… …

… …

Group Table 0

bucket 0 …

… …

… …

RevalidatorRevalidatorRevalidator
Translation

F
lo

w
 D

u
m

pF
lo

w
 D

e
l

L
e
a
rn

L
e
a
rn

F
lo

w
 D

e
l

Slow-Path

Revalidate Flow Rules

Group Rule

Fast-Path

Slow-Path

Fig. 7. Operation principle of fast-path revalidation in OVS-POF.

rule from the fast-path caches and force the packet processing
go back to the slow-path to check whether a bucket switching
should be invoked. Note that, the fast-path revalidation would
only affect the packet processing performance of OVS-POF on
INT-related flows, and the threshold mentioned above actually
determines the period of fast-path revalidation and thus should
be optimized. We adjust the threshold to get revalidation
periods from1 to 500 msec, and find that the period of5
msec is a reasonably good choice, which can not only ensure
non-degraded packet processing performance on INT-related
flows but also maintain high accuracy and timeliness in INT.

C. Method to Determine Sampling Rate

In our Sel-INT system, the sampling rate of selective
INT header insertion is determined and implemented by the
SDN controller. Specifically, the SDN controller can analyze
historical INT data with the Fourier transform to estimate how
fast data samples will vary in the network environment. In the
following, we will explain the procedure by using the INT
data on bandwidth usage as an example, while the sampling
rates of other types of INT data can be determined similarly.

To emulate the traffic fluctuation in a practical network
environment, we leverage the real-world traffic trace in [52],
scale its bandwidth usage to within[2, 8] Gbps, and sample the
trace with an interval of50 msec1. Fig. 8 shows the obtained
traffic trace. Then, we apply the fast Fourier transform (FFT) to
the traffic trace, and get the single-sided power spectral density

1Here, the50 msec interval is selected because OVS collects the bandwidth
usage of a port every50 msec, and so does our OVS-POF.

(PSD) in Fig. 9(a). We choose the lowest power point in Fig.
9(a), and select its frequency (i.e., FN = 7.1 Hz) as the cut-
off frequency, to make sure that the sampling would preserve
most of the information in the traffic trace. In other words,
the sampling frequency should beFS = 2 · FN = 14.2 Hz,
according to the Nyquist Sampling Theorem. This means that
Sel-INT should switch between “inserting an INT header” and
“processing packets normally without INT header insertion”
for at least14.2 times per second.

As explained in the previous sub-section, Sel-INT leverages
an SGT containing multiple buckets to apply different actions
to packets belonging to a same flow. Specifically, by switching
among the buckets, the SGT applies the action(s) in selected
bucket to packets. In our implementation, an SGT can switch
between two buckets for200 times per second at most. Hence,
the analysis above leads to a sampling rate of14.2/200 =
7.1%, which can be realized with an SGT containing two
buckets. One bucket is for “inserting an INT header” with
weight m = 1, and the other one is for “processing packets
normally without INT header insertion” with weightn = 13.

0 5 10 15 20 25 30 35 40 45

Time (s)

0

1

2

3

4

5

6

7

8

9

D
a
ta

 R
a
te

 (
G

b
p
s
)

Fig. 8. Traffic trace obtained by scaling the real-world one in [52].

To verify the effectiveness of our approach, we re-sample
the modified real-world trace with an interval of70.4 msec
(i.e., 7.1% sampling rate), and get a new trace, namely,Trace
B. We refer to the original trace in Fig. 8 asTraceA. Then,
we apply up-sampling and interpolation to both traces and
unify their sampling intervals. Next, we compare the two up-
sampled traces to get the relative errors caused by the7.1%
sampling rate. The distribution of the relative errors is shown
in Fig. 9(b), which indicates that87.9% of the relative errors

8

are within10%, while 97.61% of them are within20%. This
confirms that the selected sampling rate ensures relativelyhigh
accuracy. In a highly dynamic network environment, analyzing
historical INT data helps us get the initial sampling rate to
start with. Then, the SDN controller can apply100% sampling
rate over a very short period from time to time to update the
historical INT data, and leverage the approach discussed above
to adapt the sampling rate to the latest network status.

0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

40

50

60

70

P
o
w

e
r

(d
B

)

(a) Single-sided PSD obtained by applying FFT to traffic trace in Fig. 8

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative Error

0

5%

10%

15%

20%

D
is

tr
ib

u
ti
o
n

(b) Distribution of the relative errors betweenTracesA andB

Fig. 9. Results on obtaining sampling rate of selective INT header insertion.

D. Implementation of Data Analyzer

In our Sel-INT system, an egress switch will duplicate each
INT packet to the Data Analyzer, which extracts the INT data
in the packet and records the data for network monitoring
and further processing. As the processing capacity and storage
usage of the Data Analyzer also affect the performance of the
Sel-INT system greatly, we design its operation procedure as in
Algorithm3. Here,Lines1-6 are for the initialization, and then
if the Data Analyzer does receive an INT packet, it will use
the for-loop that coversLines7-33 to process all theMetadata
fields in the packet’s INT header.Lines8 and 9 extract the data
in a Metadataand hash it to geth, respectively. Next, if the
Metadatais a new entry, which means that such type of INT
data of a flow has not been collected on the location,Lines
10-14 create a new entry in the data storage for it. Note that,in
our design, each INT data entry in the data storage associates
with a counter, which can be updated independently from the
records in the entry. Then, if theMetadatadoes not lead to
a new entry,Line 15 gets the data and hash value in its last
record, and the entry’s counter is also obtained (Line 16).

If the Metadata contains fast-changing INT data (e.g.,
Bandwidth, Hop Latency,or Ingress Time), we calculate the
“neighbor difference” between the current and last values as
in Line 18, and apply a filtering mechanism as inLine 19
to avoid recording too many similar records. Here,th1 and
th2 are preset thresholds, andt and tr are the current time-
stamp and the one of the last record, respectively. We will
explain how to determine the values ofth1 and th2 in the
next paragraph. On the other hand, if theMetadata’s value

only changes slowly over time or actually should not change
(e.g., In/Out Port,or Device ID), the filtering mechanism is
designed as inLine 26. Specifically, we insert a new record to
the Metadata’s entry when the filtering condition is satisfied,
and otherwise, we only update the counter of its entry.

Algorithm 3: Operation Procedure of Data Analyzer

1 while a packet is receiveddo
2 if the packet is not an INT onethen
3 continue;
4 end
5 get the current system time ast;
6 parse the packet;
7 for eachMetadatafield in the INT headerdo
8 store theMetadata’s value indata;
9 h = Hash(data);

10 if the Metadatais a new entrythen
11 create a new entry with a countercnt = 0;
12 store <data, h, cnt, t> as the first record

in the entry;
13 continue;
14 end
15 get the last record <datap, hp, *, *> from the

Metadata’s entry;
16 get the entry’s counter to store incnt;
17 if the Metadatais a fast-changing onethen
18 flag =

∆(datap, data)
min(datap, data) ;

19 if flag > th1 or (t− tr) > th2 then
20 store <data, h, cnt, t> as a new

record in the entry;
21 update the entry’s counter ascnt = 0;
22 else
23 update the entry’s counter as

cnt = cnt+ 1;
24 end
25 else
26 if h 6= hp or (t− tr) > th2 then
27 store <data, h, cnt, t> as a new

record in the entry;
28 update the entry’s counter ascnt = 0;
29 else
30 update the entry’s counter as

cnt = cnt+ 1;
31 end
32 end
33 end
34 end

The SDN controller determines the value ofth1 by analyz-
ing the distribution of neighbor differences (i.e., the flag in
Line 18 of Algorithm3). We still use the traffic trace in Fig. 8
as an example to explain the procedure, and theth1 for other
types of INT data can be get similarly. Fig. 10 shows the
distribution of the neighbor differences for the trace in Fig.
8, which indicates that92.07% of the neighbor differences
are larger than1%. Hence, we can empirically setth1 as

9

1%. Similar to the sampling rate, the value ofth1 should be
updated regularly in a highly dynamic network environment,
to adapt to the latest network status. Theth2 is the threshold
on the time difference between adjacent records, which avoids
not updating the entry of INT data for a relatively long
period. Therefore, its value actually depends on the system
implementation. In the safest case, we can setth2 as the
shortest interval between which the switches based on OVS-
POF update the value of the concerned INT data. For instance,
as OVS-POF collects the bandwidth usage of a port every
50 msec, we can just set theth2 for the INT data regarding
bandwidth usage as50 msec.

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Neighbor Difference

0

2%

4%

6%

8%

10%

12%

D
is

tr
ib

u
ti
o
n

Fig. 10. Distribution of the neighbor differences for traffic trace in Fig. 8.

The operation procedure inAlgorithm 3 helps us improve
the processing capacity and save the storage usage of the Data
Analyzer. To verify this, we conduct an INT experiment that
only contains an OVS-POF, where the controller asks it to
collect all the six types of INT data with100% sampling.
The source host pumps64-byte packets at2 million packets
per second (Mpps) (i.e., 1.344 Gbps) through the switch for
15 seconds, and we repeat the experiment for three times and
average the results to ensure sufficient statistical accuracy. The
results in Table III compare the Data Analyzer’s performance
with and without the filtering mechanism, which suggests that
the filtering mechanism improves the processing capacity of
the Data Analyzer for more than37 times, and reduces its
memory usage for more than23, 000 times.

TABLE III
PERFORMANCEBENCHMARKING OF DATA ANALYZER

Memory usage Packets processed Packets recorded
(MB/s) per second per second

w/o filtering 369 53,717 53,717
w/ filtering 0.016 1,993,683 20

V. EXPERIMENTAL DEMONSTRATIONS ANDEVALUATIONS

In this section, we discuss the experiments to demonstrate
and evaluate our proposed Sel-INT system. The experimental
setup uses the topology in Fig. 11, which consists of six stand-
alone software switches running OVS-POF, an ONOS-based
POF controller, a Data Analyzer, and two end hosts. Each
OVS-POF runs on a Linux server that has linecards with10
GbE ports. The traffic generator in the testbed is software-
based and realized with the open source software pktgen-dpdk
[53], and we run it on a dedicated Linux server. We have
calibrated the traffic generator with the procedure in [54],and

made sure that it always generates traffic as expected. The
traffic analyzer is a hardware-based commercial product. Our
experiments include three categories,i.e., feature validation,
performance evaluation, and usecase demonstration.

SW1

SW4

SW2

SW3

SW5 SW6

OVS-POF

ONOS

Data Analyzer

Host Host

Fig. 11. Experimental setup.

A. Feature Validation

We first perform experiments to verify that the proposed
features have been correctly implemented in the Sel-INT
system. Specifically, the experiments confirm that our Sel-INT
system can achieve selective INT, is runtime-programmable,
and can change the locations to collect INT data and the
corresponding data types and sampling rate dynamically. Here,
we send64-byte packets at1 Mpps (i.e., 672 Mbps) to go
through the path as indicated by red arrowed line in Fig.
11. During runtime of the network and when the flow is
active, we let the POF controller adjust the INT data types
to be collected and the corresponding sampling rate, and
use the Data Analyzer to receive and parse the INT packets
for extracting theirMetadatafields. More specifically, after
Sel-INT has been initialized on all the switches along the
path, the runtime adjustments can be easily achieved by the
controller updating the Sel-INT policy through sending POF-
basedGroupModmessages to the ingress switch (i.e., SW1).

Fig. 12 shows the Wireshark capture of aGroupMod re-
ceived onSW1, which includes the instructions regarding the
INT data types to be collected and the corresponding sampling
rate. Here, we have extended Wireshark to make it POF-
compatible. It can be seen that theGroupMod contains two
buckets, between which the first one (Bucket0) is for normal
packet forwarding and has aweight of 19, while Bucket 1
enables selective INT operations on packets and itsweightis 1.
Hence, the Sel-INT has a sampling rate of5%. By looking into
Bucket1, we can see that the first action in it isadd_int_field,
which tellsSW1 to insert an INT header into5% of the packets
in the flow, withoffset= 272 bits andMapInfo= 0x31. Here,
the MapInfo’s value means that Sel-INT will collect the INT
data types ofDevice ID, BandwidthandHop Latency.

Then, we conduct an experiment to demonstrate that the
Sel-INT policy can be programmed in runtime. Specifically,
the experiment includes four stages: 1)t ∈ [0, 26) seconds,
the controller sets the sampling rate as10% and MapInfo
= 0x01 (i.e., to collect Device ID only), 2) t ∈ [26, 53)
seconds, the controller adjusts the sampling rate to20% and
updateMapInfo as 0x20 (i.e., to collectBandwidthonly), 3)

10

Forwarding packet normally

Inserting an INT header

Types of INT data to collect

Weight of bucket 0

Start location of INT header

Weight of bucket 1

Fig. 12. Wireshark capture of aGroupMod received onSW1.

t ∈ [53, 116) seconds, the sampling rate andMapInfo get
changed to30% and 0x31 (i.e., to collectDevice ID, Band-
width andHop Latency), respectively, and 4)t ≥ 116 seconds,
the controller modifies the sampling rate to5% and keeps
MapInfo unchanged. Fig. 13(a) shows how the throughput of
the INT packets to the Data Analyzer changes over time. The
INT packets’ throughput actually reveals the sampling rate
since the original throughput of the flow is1 Mpps. The results
in Fig. 13(a) confirm that the sampling rate gets implemented
in the Sel-INT system exactly as we designed. Figs. 13(b)-
13(d) plot the throughput of the INT packets that contain the
INT data related toDevice ID, Bandwidthand Hop Latency,
respectively, which verify that the types of INT data to collect
are programmed correctly too.

B. Performance Evaluation

1) Packet Processing Throughput during Sel-INT:As Sel-
INT needs to invoke bucket switching and involve ad-
ditional packet processing actions (e.g., add_int_field and
delete_int_field), the packet processing speed of OVS-POF
would be affected. Hence, we conduct experiments to measure
the packet processing speed of OVS-POF during Sel-INT.
Specifically, we install different Sel-INT pipelines in an OVS-
POF (i.e., collecting different types of INT data with different
sampling rates) and measure its packet processing speed. To
consider the worst-case scenario, we pump64-byte packets
through the OVS-POF at the maximum rate that it can handle
when no INT is invoked,i.e., 4.538 Mpps.

We consider three cases as 1)MapInfo = 0x3f to collect
all types of INT data, 2)MapInfo= 0x07 to collect all types
of slow-changing INT data (i.e., In/Out Port andDevice ID),
and 3)MapInfo = 0x38 to collect all types of fast-changing
INT data (i.e., Bandwidth, Hop LatencyandIngress Time). The

0 30 60 90 120 150

Time (s)

0

0.1

0.2

0.3

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

MapInfo = 0x01

MapInfo = 0x20
MapInfo = 0x31

MapInfo = 0x31

(a) Throughput of INT packets to Data Analyzer in runtime

0 30 60 90 120 150

Time (s)

0

0.1

0.2

0.3

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

(b) Throughput of INT packets containingDevice ID

0 30 60 90 120 150

Time (s)

0

0.1

0.2

0.3

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

(c) Throughput of INT packets containingBandwidth

0 30 60 90 120 150

Time (s)

0

0.1

0.2

0.3

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

(d) Throughput of INT packets containingHop Latency

Fig. 13. Results on INT packets to Data Analyzer when changing Sel-INT
policy in runtime.

experimental results are shown in Fig. 14, and we still obtain
them by running each measurement for a minute and repeating
each measurement for three times to average for the final data
points. It can be seen that for all of the three cases, per-packet
based INT (i.e., 100% sampling) would decrease the packet
processing speed of OVS-POF significantly. However, if we
limit the sampling rate below20%, the packet processing
speed of OVS-POF is4.029 Mpps in the worst case (i.e.,
collecting all types of INT data) and the relative degradation
is only 11.2%. This verifies the benefit of Sel-INT in saving
the processing burdens on switches. Among the three cases,
the one that collects all types of INT data provides the
lowest packet processing throughput as expected. Meanwhile,
it is interesting to notice that the packet processing speedof
OVS-POF with MapInfo = 0x07 is higher than that with
MapInfo = 0x38. This suggests that in Sel-INT, collecting
fast-changing INT data is more costly.

2) Benchmarking with Existing Approach:We then use
the P4-based selective INT scheme in [42] (i.e., sINT) as
the benchmark, which, to the best of our knowledge, is the
only existing approach in the literature for selective INT,and
conduct experiments to compare our Sel-INT with it. Our Sel-
INT is different from sINT from three major perspectives.

11

0% 0.1%10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Sampling Rate

2

3

4

P
a
c
k
e
t

P
ro

c
e
s
s
in

g
 S

p
e
e
d
 (

M
p
p
s
)

MapInfo = 0x3f

MapInfo = 0x38

MapInfo = 0x07

Fig. 14. Packet processing speed during Sel-INT.

Firstly, since sINT is based on P4-based switches, its packet
processing pipelines can hardly be modified in runtime, while
our POF-based Sel-INT can change its packet processing
pipelines in runtime according to the instructions from an
SDN controller. Secondly, sINT adjusts the sampling rate of
selective INT header insertion by modifying packet contents
at source hosts, while our Sel-INT relies on the SDN con-
troller to instruct switches about sampling rate adjustments.
Finally, sINT has to utilize a feedback-based algorithm to
adjust the sampling rate. Specifically, it monitors the INT data
continuously, if the difference between adjacent data samples
goes above a preset threshold, it will double the sampling rate
until reaching100%, and if the data samples do not change
significantly over a preset duration (e.g., 10 seconds), it will
reduce the sampling rate directly to the minimum value (i.e.,
2%). This scheme, however, would make the sampling rate
change sharply and unreasonably, which is less effective than
the one used by our Sel-INT,i.e., leveraging the global view
obtained by the SDN controller to determine the sampling rate.

In order to illustrate the aforementioned differences, we
compare sINT and Sel-INT in two experimental scenarios. In
each scenario, we conduct the experiment for six runs, and
plot the average results in Fig. 15. InScenario1, we make the
packet rate of a flow change according to[0.5, 1, 0.5, 1, · · ·]
Mpps, and the flow stays at each rate for8 seconds, which
is slightly shorter than the preset duration in sINT (i.e., 10
seconds). Without a global view on the network, sINT cannot
make the duration adaptive. Hence, even if we set its initial
sampling rate to the minimum value (i.e., 2%), sINT will
double its sampling rate each time when it sees a packet rate
change. In consequence, as shown in Fig. 15(a), its sampling
rate will quickly increase to100%, which makes it not
“selective” anymore. On the other hand, Sel-INT can recognize
the fluctuation of the flow’s packet rate precisely and adjustthe
sampling rate correctly, with the help of the SDN controller.
Hence, its sampling rate changes as[2%, 4%, 2%, 4%, · · ·] in
Fig. 15(a), which achieves significant savings on both the INT
overhead in the network and the data processing burden in the
Data Analyzer. The average standard deviations of the results

for Sel-INT and sINT are0.00116 and0.00621, respectively.
In Scenario2, we fix the packet rate of a flow at1 Mpps, but

invoke equal-cost multi-path routing (ECMP) in the network.
Specifically, the initial sampling rates of sINT and Sel-INT
are still set as2%, but EMCP is invoked att = 38 seconds.
With ECMP, the INT data of the flow will indicate two sets of
Device IDsfor the intermediate switches on the flow’s routing
paths. This, however, will mislead the sampling rate selection
algorithm in sINT and make it quickly increase its sampling
rate to 100% again, as shown in Fig. 15(b). The average
standard deviations of the results for Sel-INT and sINT are
0.00089 and0.00192, respectively. Since the SDN controller
helps Sel-INT detect the situation correctly, its samplingrate
does not change throughout the experiment (as illustrated in
Fig. 15(b)). The results in Fig. 15 suggest that Sel-INT can
determine the sampling rate of selective INT header insertion
more accurately than sINT. Meanwhile, we hope to point out
that Sel-INT also has other advantages over sINT,e.g., it is
totally transparent to end-hosts and thus is securer and more
reliable, and with the runtime-programmability enabled by
POF, it can change the locations to collect INT data and the
corresponding data types in runtime.

0 10 20 30 40 50 60 70 80

Time (s)

0

0.2

0.4

0.6

0.8

1

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

Sel-INT

sINT

(a) Results on throughput of INT packets collected inScenario1

0 10 20 30 40 50 60 70 80

Time (s)

0

0.2

0.4

0.6

0.8

1

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

Sel-INT

sINT

(b) Results on throughput of INT packets collected inScenario2

Fig. 15. Performance comparisons of Sel-INT and sINT.

3) Monitoring Accuracy of Sel-INT:In this experiment,
we study how the sampling rate and flow pattern affect the
monitoring accuracy of Sel-INT. We still make the flow use
the forwarding path as indicated by the red arrowed line in
Fig. 11. Here, to mimic the traffic fluctuations in a practical
network environment, we adopt two real-world traffic traces
in [52, 55], refer to them asTraces1 and 2, respectively, and
scale their bandwidth usages to within[2, 8] Gbps. The packet
size of the flows that use the two traces is set as1024 bytes,
and Sel-INT usesMapInfo= 0x20 to collect the INT data on
Bandwidth. We leverage the schemes developed in Section IV
to determine the sampling rates ofTraces1 and 2 as7.1%
and 8.2%, respectively, and setth1 and th2 as 1% and 50
msec, respectively, for both traces. The monitoring results in
Figs. 16(a) and 16(b) indicate that Sel-INT can successfully

12

monitor the bandwidth of highly dynamic flows.
Here, the results are also the average values from six runs

for each monitoring experiment, and the average standard
deviations of the results to obtain the curves in Figs. 16(a)and
16(b) are0.15783 and 0.16163, respectively. Note that, with
the sampling rates of7.1% and8.2%, our Sel-INT system can
achieve shorter monitoring intervals than the smallest interval
(i.e., 1 second) that our commercial BigTao traffic analyzer
can achieve. In order to verify the monitoring accuracy of
our Sel-INT system, we average its monitored bandwidth over
every second and compare the results with the “ground truth”
(i.e., the average bandwidth usage per second in the original
traces). Fig. 16(c) shows the distributions of the measurement
errors, which indicate that all the measurement errors are
below3%, and forTraces1 and 2,95.35% and98.18% of their
measurement errors are below2%, respectively. The results
suggest that our proposal can achieve relatively high monitor-
ing accuracy on fast-changing INT data such asBandwidth.

0 10 20 30 40

Time (s)

0

2

4

6

8

10

B
a
n
d
w

id
th

 (
G

b
p
s
)

(a) Monitored bandwidth from Sel-INT with7.1% sampling rate forTrace1

0 10 20 30 40 50

Time (s)

0

2

4

6

8

10

B
a
n
d
w

id
th

 (
G

b
p
s
)

(b) Monitored bandwidth from Sel-INT with8.2% sampling rate forTrace2

0%-1% 1%-2% 2%-3%

Measurement Error

0

20%

40%

60%

80%

100%

D
is

tr
ib

u
ti
o
n

Trace 1

Trace 2

(c) Distribution of measurement errors related to the ground truth

Fig. 16. Results on bandwidth monitoring with Sel-INT.

C. Usecase Demonstration: Path Validation

In a network, the forwarding path of a flow can experience
some unexpected changes due to either misconfigurations
(e.g., incorrect load-balancing and errors in group tables) or
intentional attacks (e.g., eavesdropping and man-in-the-middle
attack). Path validation with INT can provide a powerful
and illustrative way to detect the changes, and our Sel-INT
can make this task much easier with more flexibility and
significantly less overheads. In the following, we perform
experiments to demonstrate the effectiveness of our Sel-INT

system using path validation as a usecase. We still send64-
byte packets at1 Mpps through the path as indicated by red
arrowed line in Fig. 11,i.e., SW1→SW2→SW3→SW5→SW6.

We first consider the scenario in which a misconfigura-
tion on SW2 invokes unwanted load-balancing to switch the
flow between two paths:SW1→SW2→ SW3→SW5→SW6
and SW1→SW2→SW4→SW5→SW6. Meanwhile, the Sel-
INT system collectsDevice IDon each hop with a sampling
rate of 10% for path validation. The results from the Data
Analyzer, which are the average throughputs of the INT
packets that contain theDevice IDsof different switches, are
plotted in Fig. 17. It can be seen that the throughputs of the
INT packets containingSW1, SW2, SW5 andSW6 are normal
as expected. However, the INT packets that containSW3 only
have a throughput as half of the expect value, while there
are unexpected INT packets containingSW4. Hence, with the
monitoring results in Fig. 17, the network operator can easily
figure out that there is a misconfiguration onSW2.

Unexpected

Low

Should not

Exist

SW1 SW2 SW3 SW4 SW5 SW6
0

0.05

0.1

0.15

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

Fig. 17. INT packet throughputs for path validation (misconfiguration).

Next, we emulate the scenario in which an attacker hacks
into SW2 andSW4 to intentionally diverge the flow’s forward-
ing path toSW1→SW2→SW4→SW5→SW6, for realizing a
harmful purpose (e.g., eavesdropping or man-in-the-middle
attack). Note that, as the attacker can modify theDevice IDof
SW4 and make it impersonateSW3, the path validation scheme
discussed above would not be able to detect the path change.
This can be verified with the results in Fig. 18(a), which shows
that the throughput of the INT packets containingSW3 stays
at the expected value throughout the whole experiment, even
though the path has already been changed att = 70 seconds.

Hence, to detect such intentional path changes, the operator
needs to collect not onlyDevice IDbut alsoIn Port on each
hop along the path. Then, as long as not all the switches have
been hacked, the path change can still be detected by looking
into theIn Portsprovided by the intact switch(es) (e.g., SW5 in
this experiment). However, such a monitoring scheme would
cause too much overhead. Hence, we let the Sel-INT system
invoke 10% selective collection onIn Port for 5 seconds in
every 30 seconds, to reduce the monitoring overhead. Fig.
18(b) shows the monitoring results forSW5, which indicate
that the flow’s input port toSW5 has been changed before the
third monitoring period onIn Port. Then, by combining the
results in Fig. 18, the operator can infer that certain switches
might have been hacked. This further verifies the advantages
brought by the runtime-programmability. The results in Figs.
18(a) and 18(b) are also obtained by averaging the results from
six runs. The average standard deviation of the results in Fig.
18(a) is0.00253, while those of the four curves in Fig. 18(b)
are0.00231, 0.00249, 0.00298 and0.00218, respectively.

13

0 20 40 60 80 100 120

Time (s)

0

0.05

0.1

0.15

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

(a) Throughput of INT packets containing theDevice IDof SW3

0 20 40 60 80 100 120

Time (s)

0

0.05

0.1

0.15

IN
T

 P
a
c
k
e
ts

 (
M

p
p
s
)

Normal AbnormalIn Port = 1

In Port = 2

(b) Throughput of INT packets containing theIn Port at SW5

Fig. 18. INT packet throughputs for path validation (intentional attack).

VI. CONCLUSION

We proposed and implemented Sel-INT as a runtime-
programmable selective INT system. Our implementation was
verified and evaluated in a real network testbed that consists of
a few stand-alone software switches. The experimental results
verified that Sel-INT can not only adjust the sampling rate of
INT in runtime but also program the corresponding data types
dynamically, and they also demonstrated that Sel-INT can
ensure proper accuracy and timeliness for network monitoring
while greatly reducing the overheads of INT. More specifically,
restricting the sampling rate below20% could greatly improve
the packet processing throughput of our software switch, while
the system’s monitoring accuracy on fast-changing INT data
was still relatively high even with a sampling rate of7.1%.
Moreover, we utilized path validation as a simple usecase to
show the effectiveness of our Sel-INT system on revealing
both unintentional misconfigurations and intentional attacks.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC projects
61871357, 61771445 and 61701472, CAS Key Project
(QYZDY-SSW-JSC003), and SPR Program of CAS (XD-
C02010703).

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] W. Fang et al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[3] P. Marschet al., “5G radio access network architecture: Design guide-
lines and key considerations,”IEEE Commun. Mag., vol. 54, pp. 24–32,
Nov. 2016.

[4] L. Liang, W. Lu, M. Tornatore, and Z. Zhu, “Game-assisteddistributed
decision-making to build virtual TDM-PONs in C-RANs adaptively,” J.
Opt. Commun. Netw., vol. 9, pp. 546–554, Jul. 2017.

[5] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[6] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[7] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[8] M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic,” J. Lightw. Technol., vol. 32, pp. 1014–1023,
Mar. 2014.

[9] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intel-
lectual history of programmable networks,”ACM SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 87–98, Apr. 2014.

[10] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[11] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[12] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[13] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[14] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[15] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[16] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[17] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[18] R. Govindanet al., “Evolve or die: High-availability design principles
drawn from Google’s network infrastructure,” inProc. of ACM SIG-
COMM 2016, pp. 58–72, Aug. 2016.

[19] S. Liu, W. Lu, and Z. Zhu, “On the cross-layer orchestration to address
IP router outages with cost-efficient multilayer restoration in IP-over-
EONs,” J. Opt. Commun. Netw., vol. 10, pp. A122–A132, Jan. 2018.

[20] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[21] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),”RFC 1098, May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157

[22] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A
method for monitoring traffic in switched and routed networks,” RFC
3176, Sept. 2001. [Online]. Available: https://tools.ietf.org/html/rfc3176

[23] B. Claise, “Cisco systems NetFlow services export version 9,” RFC
3954, Oct. 2004. [Online]. Available: https://tools.ietf.org/html/rfc3954

[24] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.

[25] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[26] H. Song, “Protocol-oblivious forwarding: Unleash thepower of SDN
through a future-proof forwarding plane,” inProc. of ACM HotSDN
2013, pp. 127–132, Aug. 2013.

[27] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,”IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275–288, Mar. 2018.

[28] C. Kim et al., “In-band network telemetry (INT),”Tech. Spec., Jun.
2016. [Online]. Available: https://p4.org/assets/INT-current-spec.pdf

[29] 100G in-band network telemetry with Netcope P4. [On-
line]. Available: https://www.netcope.com/Netcope/media/content/
100G-In-band-Network-Telemetry-With-Netcope-P4.pdf

[30] C. Kim et al., “In-band network telemetry via programmable data-
planes,” inProc. of ACM SIGCOMM 2015, pp. 1–2, Aug. 2015.

[31] Z. Liu et al., “NetVision: Towards network telemetry as a service,” in
Proc. of ICNP 2018, pp. 1–2, Sept. 2018.

14

[32] M. Shahbazet al., “PISCES: A programmable, protocol-independent
software switch,” inProc. of ACM SIGCOMM 2016, pp. 525–538, Aug.
2016.

[33] P4 software switch - Behavioral Model version 2 (Bmv2).[Online].
Available: https://github.com/p4lang/behavioral-model

[34] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

[35] Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstration of high-
throughput protocol oblivious packet forwarding to support software-
defined vehicular networks,”IEEE Access, vol. 5, pp. 24 004–24 011,
2017.

[36] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc of USENIX NSDI 2015, pp. 117–130, May 2015.

[37] N. Handigolet al., “I know what your packet did last hop: Using packet
histories to troubleshoot networks,” inProc. of NSDI 2014, pp. 71–85,
Apr. 2014.

[38] V. Jeyakumaret al., “Millions of little minions: Using packets for
low latency network programming and visibility,” inProc. of ACM
SIGCOMM 2014, pp. 3–14, Aug. 2014.

[39] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. of ACM SIGCOMM 2015, pp. 479–491, Aug. 2015.

[40] F. Brockners et al., “Data fields for in-situ OAM,” IETF Draft,
Oct. 2018. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-ippm-ioam-data-04

[41] J. Hyun, N. Tu, and J. Hong, “Towards knowledge-defined networking
using in-band network telemetry,” inProc. of NOMS 2018, pp. 1–7, Apr.
2018.

[42] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” inProc. of CloudNet 2018, pp. 1–3, Oct. 2018.

[43] ONOS. [Online]. Available: https://onosproject.org/
[44] Barefoot deep insight. [Online]. Available: https://www.

barefootnetworks.com/products/brief-deep-insight/
[45] M. Anand, R. Subrahmaniam, and R. Valiveti, “POINT: An intent-driven

framework for integrated packet-optical in-band network telemetry,” in
Proc. of ICC 2018, pp. 1–6, May 2018.

[46] B. Niu et al., “Visualize your IP-over-optical network in realtime: A P4-
based flexible multilayer in-band network telemetry (ML-INT) system,”
IEEE Access, vol. 7, pp. 82 413–82 423, 2019.

[47] DPDK: Data Plane Development Kit. [Online]. Available: https:
//www.dpdk.org/

[48] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[49] H. Huang et al., “Realizing highly-available, scalable and protocol-
independent vSDN slicing with a distributed network hypervisor sys-
tem,” IEEE Access, vol. 6, pp. 13 513–13 522, 2018.

[50] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[51] S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlessvSDN
reconfiguration to balance substrate TCAM utilization: From algorithm
design to system prototype,”IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 647–660, Jun. 2019.

[52] Caida datasets. [Online]. Available: https://data.caida.org/datasets/
passive-2016/equinix-chicago/20160406-130000.UTC/equinix-chicago.
dirA.20160406-125912.UTC.anon.pcap.gz

[53] pktgen-dpdk. [Online]. Available: https://git.dpdk.org/apps/pktgen-dpdk/
[54] A. Botta, A. Dainotti, and A. Pescape, “Do you trust yoursoftware-

based traffic generator?”IEEE Commun. Mag., vol. 48, pp. 158–165,
Sept. 2010.

[55] Caida datasets. [Online]. Available: https://data.caida.org/datasets/
passive-2016/equinix-chicago/20160406-130000.UTC/equinix-chicago.
dirB.20160406-131500.UTC.anon.pcap.gz

