Sel-INT: A Runtime-Programmable Selective
In-Band Network Telemetry System

Shaofei Tang, Deyun Li, Bin Niu, Jianquan Peng, and Zuging,&enior Member, IEEE

Abstract—It is known that by leveraging programmable data
plane, in-band network telemetry (INT) can be realized to piovide
a powerful and promising method to collect realtime network
statistics for monitoring and troubleshooting. However, &isting
INT implementations still exhibit a few drawbacks such as lak
of runtime-programmability and relatively high overheads due
to per-packet operation. In this work, we propose and design
a runtime-programmable selective INT system, namely, SdNT,
to resolve these issues. Specifically, we first design a rumte-
programmable selective INT scheme based on protocol obliwus
forwarding (POF), and then prototype our design by extendirgy
the famous OpenvSwitch (OVS) platform to obtain a software
switch that supports Sel-INT and implementing a Data Analyzr
to parse, extract and analyze the INT data. Our implementatbn
of Sel-INT is verified and evaluated in a real network testbedhat
consists of a few stand-alone software switches. The expaental
results demonstrate that Sel-INT can not only adjust the samling
rate of INT in runtime but also program the corresponding data
types dynamically, and they also confirm that our proposal ca
ensure proper accuracy and timeliness for network monitorhg
while greatly reducing the overheads of INT.

Index Terms—In-band Network Telemetry (INT), Software-
defined networking (SDN), Protocol-oblivious forwarding POF),
OpenvSwitch (OVS), Runtime programmability.

I. INTRODUCTION

statistics from its network elements for non-realtime daib
lection, sFlow [22] provides a network-wide view by samglin
interface statistics regularly and packet informationrdamly,

and NetFlow [23] collects information regarding IP flows hwit
certain sampling rate and sends the aggregated results to a
flow collector for analysis. Although these approaches have
been proven to be effective in earlier days of the Internet,
their limitations on achieving more sophisticated moriitgr

are also obvious. Firstly, they need to run an agent on each
router/switch for collecting data and responding to pagllin
requests, which costs processing cycles of its local psaces
and thus might impact the throughput of packet forwarding.
Secondly, the bandwidth used for transmitting collectethda
to the NC&M system would become massive in a large
scale network with many routers/switches. Thirdly, they ca
hardly catch the real-time status of a highly dynamic nekwor
Lastly but most importantly, they cannot reveal the enertad-
information of an arbitrary flow with high accuracy.

The rising of OpenFlow-based SDN [24] has made network
monitoring much easier, since the switches in the data plane
has to report their feature information to the SDN contréde
periodically for realizing centralized NC&M. However, sem
of the old issues, such as relatively long latency in datehfet
ing, incomplete end-to-end per-flow information, and non-

VER the past decade, there have been revolutionagyalable processing burdens on switches, still exist amd ca

changes on and dramatic expansions of the Internet glaihly be resolved with a more programmable data plane. Mean-
ally. Specifically, the fast developments of datacenter2[1 while, people have demonstrated that a programmable and
and 5G networks [3, 4] have stimulated various new netwoptotocol-independent data plane can be achieved by lewgrag

infrastructures, such as elastic optical networks (EOBsB],
and numerous innovations on networking technologéeg,

either the programming protocol-independent packet psme
(P4) [25] or the protocol oblivious forwarding (POF) [26,]127

software-defined networking (SDN) [9-11], network virtualTherefore, in-band network telemetry (INT) [28] has been
ization [12-14], and network function virtualization (NFV developed to provide a network operator the capability &f cu
[15-17]. Consequently, the Internet is becoming more amgmizing their own network monitoring scheme. Specifigally
more flexible and programmable at the cost of increasadcording to the instructions precoded in the INT headees of
complexity. This means that it would be more challengingser packet, an INT-capable switch encodes network statist
to troubleshoot the networks and restore them from unclegs specific INT header fields and inserts them in the user
failures .9, congestion, link failure, and black-hole) [18-20]packet, for collecting end-to-end per-packet information
Therefore, researchers are motivated to develop new nletwggal-time. Hence, INT greatly improves the real-time vilgip
monitoring technologies that can localize the root caudes ¢f a network and makes the diagnosis on it much easier.
soft/hard failures quickly without much operational cost o Previously, there have been a few interesting and powerful

disturbing the ongoing network services.

P4-based INT implementations on hardware or software plat-

The traditional network monitoring approaches are usualigrms [29-31]. For example, developed on a commercial field
based on the server-client model. For instance, SNMP [2djogrammable gate array (FPGA) board, the INT implemen-
lets a network control and management (NC&M) system puhtion in [29] can collect per-packet information in reaié at

100 Gbps line-rate. However, the hardware implementations

S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu are with the School ojre stjll expensive and inflexible, which makes it difficudt f

Information Science and Technology, University of Scieacel Technology
of China, Hefei, Anhui 230027, P. R. China (email: zgzhu@iem).
Manuscript received on December 28, 2018.

them to be adopted in network environments with virtualiza-
tion. Although software platforms such as PISCES [32] and

BMv2 [33] can also be leveraged to realize P4-based INTy th@irovides a brief survey on the related work. We describe the
packet processing pipelines cannot be adjusted at runifihie. design of Sel-INT in Section Ill, while its implementation
means that a switch has to be taken offline and re-complidetails are presented in Section IV. The experimental demon
every time when we need to change the INT pipeline in it. strations and evaluations are discussed in Section V. I#inal

The necessity of realizing a runtime-programmable INBection VI summarizes the paper.
system is twofold. Firstly, in order to achieve closed-loop
NC&M, we may need to adjust the INT schemes on switches
dynamically,e.g, adding new INT pipelines for diagnosing
certain flows with a closer look. Secondly but more imporant Before P4-based INT was proposed and demonstrated,
ly, sampling network status in a per-packet manner might npgople have tried to collect network statistics with other
be necessary when the line-rate is relatively high and wodftband methods. For instance, NetSight was developed in
lead to excessive over-sampling. For instancel®tGbps, [37] to capture packet processing history and make every
the time difference between two adjaceriR4-Byte packet processing procedure be visible for helping network diagmo
is only 0.8192 us, and the network usually would not changdeyakumaret al. [38] proposed the idea of introducing new
dramatically in such a short time. Therefore, instead ofglv network monitoring functionality into the data plane with
relying on per-packet INT, we consider a selective INT schenthe tiny packet program (TPP), and demonstrated a hardware
as more reasonable. Specifically, the selective INT shoald prototype based on NetFPGA. However, since the TPPs are
able to adjust the sampling rate of INT in runtime accordingctually embedded into packets by end-hosts, the scheme
to the actual needs of network monitoring. Moreover, th@ight make the network insecure when there are malicious
locations to collect INT data and the corresponding datagypend-hosts. The authors of [39] designed Everflow as a packet-
should also be programmable to not only save the packetel telemetry system that implements a packet filter togret
overhead due to INT but also relieve the processing burdemigh the “match-and-mirror” functionality in the commogit
on switches. Nevertheless, to the best of our knowledgdy suwitches in a datacenter network. Nevertheless, such ehmatc
a runtime-programmable selective INT scheme has not bewrd-mirror scheme might have difficulty to reveal the end-to
designed or demonstrated before. end information of a packet in real-time.

In this work, we first propose and design a runtime- The technical specification of INT has been released in
programmable selective INT scheme based on protocol oblf28], where the authors laid out the overall INT system and
ious forwarding (POF) [34, 35], namely, Sel-INT, and theprovided a few examples on INT use-cases. In [40], in-
prototype our design by extending the famous OpenvSwitstiu operations, adminstration, and maintenance (I0OAM3 wa
(OVS) platform [36]. Our implementation of Sel-INT is ver-specified to record operational and telemetry information i
ified and evaluated in a real network testbed that consistsaopacket when it transverses an IOAM-domain, and the data
a few stand-alone software switches. The experimentaltsestields and associated data types for IOAM were also defined.
validate that Sel-INT can not only adjust the sampling rdte o P4-based INT has been demonstrated in a Mininet environ-
INT in runtime but also program the corresponding data typesent for different purposes in [30, 31, 41, 42]. The authdrs o
dynamically, and they also show that restricting the samgpli [30] showed how to debug network by observing HTTP laten-
rate below20% can greatly improve the packet processingy instantaneously via INT implemented on P4-based soétwar
throughput of our software switch while the system’s mamitoswitches. NetVision was developed in [31], which leverages
ing accuracy on fast-changing INT data is still relativelghh dynamically-generated double-stack probes instead ahabr
even with a sampling rate df.1%. Therefore, Sel-INT can packets to collect network statistics. However, as the g@sob
ensure proper accuracy and timeliness for network monigorimight not experience exactly the same network environment
while greatly reducing the overheads of INT. as packets, the accuracy and timeliness of monitoring could

Our contributions in this work are summarized as followshe affected. Hyuret al. [41] studied how to utilize INT to

« We extend OVS to make it POF-enabled, and obtanealize knowledge-defined networking, and they prototyped

a brand-new software-based POF switch, namely, OVtheir proposal based on ONOS [43] and BMv2 [33]. More
POF, which can process packets in a protocol-agnostecently, a P4-based selective INT scheme has been proposed
way without severe performance degradation. in [42]. With a similar idea of TPP [38], the authors realized

« We design and implement Sel-INT over OVS-POF, whichoth the selective INT header insertion and sampling ratio

is a runtime-programmable network monitoring systemdjustment at the source hosts. Nevertheless, similar & TP
that not only achieves much better tradeoff betweehis scheme might bring in security breach when the end-
monitoring accuracy and INT overhead, but also suppottgsts could not be completely trusted, and it is also noy full
changing monitoring schemesgg(, locations to collect runtime-programmable since the the locations to colleck IN
INT data, INT data types, and sampling rate for selectiv@ata and the corresponding data types can hardly be chamged i
INT insertion) in runtime. runtime. Moreover, the scheme was only prototyped in Mihine
« We design and implement a high-performance data awithout sophisticated performance optimization.

alyzer, which can capture, parse and store the INT dataA few hardware P4-based INT implementations have been
carried by packets, with a packet processing throughpiiscussed in [29, 44-46]. Netcope [29] implemented P4base
of ~ 2 million packets per second (Mpps). INT with an FPGA board that can process packets at a line-rate

The rest of the paper is organized as follows. Section of 100 Gbps. The project of Deep Insight has been presented

IIl. RELATED WORK

in [44], where P4-based INT is implemented on a higPOF controller in runtime, the POF switches become runtime-
performance application-specific integrated circuit (B5to programmable, and image-recompiling is avoided. Prelpus
make a network be visible for every packet processing in reale have developed a few network elements [48-51], with
time. The authors of [45] considered how to apply INT in ahich a fully functional POF-enabled network testbed can be
packet-over-optical network and realize multilayer tedry built to deliver reasonably good packet processing capacit
with an intent-driven framework.
However, as we have explained, P4-based INT scheme: & POF swich @ Interaction
have difficulty to adjust the packet processing pipelines at ﬁ POF Controller ﬁ
runtime. Moreover, none of these aforementioned studiss ha
demonstrated the selective INT that can program the lotsitio
to collect INT data and the corresponding data types and g
sampling rate, in runtime. This motivates us to study how to =
design our Sel-INT based on POF [10, 26], which is known @}—‘G— =
to have runtime programmability. Source s
As the major functionality of Sel-INT will be implemented
in our home-made software-based POF switch, we summarize
the development path of our software-based POF switch fég 1. System architecture of our Sel-INT system based oR. PO
follows. We started the project on software-based POF bwitc
based on the protocol and software architecture discussed herefore, in Fig. 1, Sel-INT is realized by the POF con-
in [26] Then' by |everaging the data p|ane deve|0pment m‘pller insta”ing INT-related flow tables in the POF swiesh
(DPDK) [47], we accelerated the packet processing’ and db.at are on the forWarding path of a flow. Specifically, when
tained a software-based POF switch whose packet forwardfhgre is a need to apply selective INT on a flow, the controller
throughput is1 Gbps [10]. Next, we continued to optimizeWlll first determine the locations to collect INT data, as el
the processing logic in the software switch, and got a bett@$ the corresponding data types and sampling rate, theth buil
version to report in [35], which achieved a data-rate16f the flow tables to specify the corresponding INT pipelines,
Gbps for packet sizes 4t12 bytes or longer. However, in @nd finally encode the flow tables BroupModor FlowMod
the aforementioned studies, we did not consider the welessages to install them in the related switcl@terf 1. The
known open source OpenF|0w_based software SWitCé’],, POF controller considered in this work is based on ONOS
OpenvSwitch (OVS) [36]. OVS attracted our interest becau#3], and we extend its southbound protocol stack to support
of its performance and ecosystem for development. ThezefoPOF, especially for conveying POF-based group tables.
in this work, we will first discuss our efforts to add the sugpo
of POF in OVS, and then explain how to use the obtaine
software-based POF switchg,, OVS-POF) to implement Sel-
. . [¢————————— |INTHeader ———————>|
INT. To the best of our knowledge, the idea and implemel 48 2B 8B 1B 1B 48
tation of supporting POF in OVS have not been discussed INTata Types [Bandwidtn |[Hop Latency | ingress Time |[outPort |[in Port |[Device D |
the literature before. Moreover, the performance of OVS-PCO
is better than the former versions of our software-based P@f. 2. Format of the INT header used in Sel-INT.
switches in [10, 35]j.e, it reachesl0 Gbps when the packet
size is set a®56 bytes as Section IV-A will show. After receiving the flow tables, the switches will build the
specified INT pipelines and start to process packets witinthe
More specifically, the INT pipeline in the ingress switch e t
POF-based network is different from those in the subsequent
In this section, we lay out the system design of the propossditches on the forwarding path. In the ingress switehy(
Sel-INT and define its packet format. SWL in Fig. 1), the INT pipeline inserts an INT header
into packets (as shown in Fig. 2) selectively, according to
the sampling rate predetermined by the controller. Here, th
selective insertion is achieved by leveraging the POFbase
Fig. 1 shows the system architecture of our Sel-INT systemgroup tables, and the implementation details will be diseds
Here, to realize runtime-programmability, we design thé Sean Section IV. The INT header in Fig. 2 is inserted after the
INT system based on POF [10, 26], which can also realizelR header, where the field lengths are also labedegl, “1B”
protocol-independent data plane as P4 does. Specific@ly, Pmeans a field length of one byte. TMapInfo field tells the
uses a tuple e&ffset, length to define a packet field, whereingress and subsequent switches about the INT data types to
offsetrefers to the field’s start location in a packet dadgth collect and insert into each packet that has the INT header.
represents its length in bits. Hence, POF switches candocat Definition 1: In the rest of this paper, we refer to a packet
any field in a packet without referring to a specific protocothat carries the INT header as BT packet.
and process packets with pipelines built by the flow tablas th Note that, if the controller determines that INT data col-
are based on the protocol-oblivious forwarding instrutet lection would not be necessary on certain switches on the
(POF-FIS) [26]. As the flow tables are actually installed by #orwarding path, it would not install the flow table to match

=N Data Analyzer

Destination

SwW4
POF-based Network

2B 1B 1B rangein [1B, 8B]

| Eth | IP | Type | Length | Maplnfol Metadata 1 | | Metadata n | Payload |

IIl. SYSTEM DESIGN OFSEL-INT

A. System Architecture

to the INT header on them and thus the switches would process IV. SYSTEM IMPLEMENTATION

the INT packets and other normal ones in the same way. this section, we present how to implement our proposed
The next subsection will discuss the details regarding e | ga |NT system and show some benchmarking results.
header. Finally, the INT pipeline in the egress switehg(

SW6 in Fig. 1) duplicates the INT packets and sends them to . .

the data analyzeStep 2. The data analyzer captures the INT OVS Extensions for Supporting POF (OVS-POF)

packets, parses and extracts the INT data in them, and &salyz In order to realize a high-performance POF-enabled soft-
the data for realtime network monitoring. Here, to saveagier ware switch that can be utilized to demonstrate the effec-
space and avoid unnecessary I/O operations, the data analfizeness of Sel-INT, we decide to extend the famous OVS
will filter and hash the extracted data before recording i in platform [36] and make it support protocol-oblivious paicke
local storage. Meanwhile, the data analyzer interacts thigh forwarding. Our implementation, namely, OVS-POF, is based

controller to accomplish closed-loop NC&Ms{ep 3. on OVS v2.6.90 that supports OpenFlow 1.3.
Note that, according to the principle of POF, an arbitrary
B. INT Header packet field can be represented by a tuplfset, length,

The INT header in Fig. 2 consists of four fields. The firstalue>. Hence, we first modify OVS to let it parse each packet
field is Type which has a length of two bytes and is filledfield in the form of <offset, length, value but not according
with 020908 to indicate an INT header to the POF switchego a specific protocol. This modification ensures that in OVS-
The one-bytd_engthfield follows Type and tells how many POF, both the match fields and the actions’ parameter fiekds ar
Metadatafields have already been inserted in the packet foepresented and parsed in the form aofffset, length, value
INT. Specifically, each time after a switch finishing an INTWe also change the protocol stack of the northbound interfac
operation on the packet, the data in thengthfield will be in OVS, and make it POF-enabled. Next, we extend OVS to
incremented by one. We use tMaplinfofield to indicate the support POF-FIS. Specifically, we redefine the action space i
data types to collect on the switches selected for INT. Her®VS according to POF-FIS and program it to support POF-
Maplnfo is essentially a one-byte bitmap, where the lowebiased actions, such add_field modify_fieldanddelete_field
six bits correspond to the six types of INT data shown iwhich operate on fields defined asftset, length, value
Fig. 2, respectively, while the highest two bits are resdrve

for future use. If a switch on the forwarding path is selected ml

for INT, its packet processing pipeline will contain a flow 5| PP

table to match to the INT header and check ktaplnfofield g

in it. For all the bits that are turned on, the switch inserts = 10 /e = = £ 110

the corresponding types of INT data into each INT packet as & > g

new Metadatafields. Specifically, eactMetadatafield only & 8f S [_Jovs 18 @

. . o [__]OVS-POF °

contains one type of INT data collected from one switch. £ —6—0VS 3
Each INT header can include sevektadatafields whose & °/ y —=-ovs-por | 1®

lengths range i1, 8] bytes. Note that, our Sel-INT supports £ . 4 a

to insert multipleMetadatafields in a packet at one hopd, I 0

more than one bits iMaplnfogets turned on). Th¥letadata § ol 1o

fields defined for the six types of INT data shown in Fig. 2 HH ﬂﬂ

are explained as follows. 0
« Bandwidth This INT data uses four bytes to record the
average bandwidth usage on the switch port that forwards
the packet out. In each POF switch, we assign a counted. 3. Fast-path packet forwarding performance of OVS aN@&®OF.
to calculate the average bandwidth usage of each output
port in every50 msec. To verify the performance of OVS-POF, we run it on a
« Hop Latency We use two bytes to record the intervalLinux server that has 2.10 GHz Intel Xeon CPU and2 GB
(in us) between when the packet comes in and when tB®R3 memory, and benchmark it with OVS. The line-rate
Metadatafield gets inserted in it, which is the penultimatef the server’s linecard i$0 Gbps, and we compare the fast-

o

64 128 256 512 1024
Packet Size (Bytes)

action before forwarding it out. path packet forwarding performance of OVS-POF and OVS by
« Ingress Timelt has eight bytes to record the local systenshanging the packet size frofid to 1024 bytes. We first run
time (in us) when the packet comes in. each measurement for a minute to obtain the average results o

« In Port/Out Port These two types of INT data use onguacket processing speed and data rate, and then for eaadt pack
byte to record the IDs of the input and output ports dfize, the measurementis repeated for three times to avienage
the packet, respectively. the final data points. Fig. 3 shows the experimental reSds.

« Device ID We use four bytes to record the unique ID obbserve that the packet forwarding performance of OVS-POF
the current switch in the POF-based network. Note thas, worse than that of OVS for small packets, especially when
the ID can be defined in many waye.g, using the MAC the packet size i$4 bytes. The reason of this performance
address of a port on the switch), while in this work, welegradation is twofold. Firstly, the protocol-obliviouagket
allocate it manually in sequence. forwarding in POF is more flexible and thus more complex

than the protocol-dependent packet forwarding in OpenFlow

i T Group id T Statisti
Secondly but more importantly, OVS has been optimized for | o | | ype | | tatisties |
protocol-dependent packet forwarding for a while. Henhe, t N —— P
performance degradation is understandable. Fortunatedy, < | 9 | | o |
packet forwarding performance of OVS-POF is already good

bucket 1 | Weight | | Actions |

enough for demonstrating the effectiveness of Sel-INT, as w
will discuss later in Section V. Meanwhile, we will continue ! /
to optimize OVS-POF in our future work.

bucket n | Weight | | Actions |
[Network Operator]
POF Controller Data Analyzer Fig. 5. Design and operation of SGT for Sel-INT.
POF Protocol Stack
POF Protocol INT Packets in our design, bucket switching can happen during the flow’s
service time, to realize selective INT header insertiog. Bi
OVS-POF illustrates the SGT designed for Sel-INT.
Pipeline with POF-FIS
Match Action |¢,| _Fastpath
Packers IR R REvaloston | || Packets Algorithm 1: Token-based Bucket Switching
.— 1 for each bucket in SGTdo
2 | get the bucket's weight and store it #a[i];
I Customized Metadata Memory l 3 end
4 while the related flow is activelo
Fig. 4. System implementation of Sel-INT. 5 receive a packet;
6 flag = 0;
7 for i =0 to len(tk) — 1 do
B. Implementation of Sel-INT in OVS-POF 8 if tk[i] > 0 then _ o
9 process packet with actions in bucket

Fig. 4 illustrates the detailed implementation of the Sel-
INT system. Here, the major part of the implementation is in11
OVS-POF. More specifically, our work in OVS-POF to support
Sel-INT can be summarized as: 1) we extend POF-FIS and
design a novel way to realize selective INT header msertlon
in OVS-POF by leveraging the select group tables (SGTs)
2) we implement an INT operation module in OVS-POF, L
which can get network statistics from the switch, store them

flag = 1, tk[i] = tk[i] —
break;
end
end
if flag =0 then
for each bucket in SGTdo
get the bucket’'s weight and store it in

in the switch’s customized metadata memory, and provide the1 endtk[l];
required network statistics to be inserted in packets durin . . :
. L process packet with actions in bucket
INT, and 3) we design a fast-path revalidation module to th[0] = £k[0] —
minimize the negative impact of selective INT operations on end a
the fast-path packet processing in OVS-POF, for opt|m|zmg 1 end

the packet processing throughput of the Sel-INT system. In
other words, the fast-path revalidation module ensurdstitea
fast-path can be leveraged as much as possible, even though
the packets in a flowig., the INT packets and normal ones)
can take different actions in a switch.

1) Selective INT Header Insertion based on SGT¥e Packet ID | tk[0] | tk[1] [Selected Bucket

TABLE |
EXAMPLE ON TOKEN-BASED BUCKET SWITCHING

utilize POF-based SGTs, each of which consists of multiple 1 2 3 bucket 0
buckets of actions, to realize selective INT header inserti 2 E S Eﬁgtgi(l)
in ingress switches. Note that, the SGTs in this work operate 2 0 > bucket 1
differently from those defined in OpenFlow. Specifically, ®V 5 0 1 bucket 1

selects a bucket from an SGT based on the bucket’s weight,

and then uses the bucket’s actions to process all the packeta straightforward way to achieve correct bucket switching
in a flow (.e., over the whole service time of a flow, therébased on their weights is to use tokens. If we assume that
is no bucket switching). On the other hand, when the floim each SGT, the buckets’ weights are all positive integers,
has a packet coming in, our OVS-POF selects a bucket in thesimple token-based bucket switching algorithm can be de-
SGT with the probability in proportion to its weight, and the signed as inAlgorithm 1. Specifically, the algorithm traverses
uses the selected bucket’s actions to process the packeteHethe buckets in an SGT in sequence, and use the actions in

a bucket to process packets as long as the bucket's token e.g, Mapinfo= 0z01 if it wants to monitor ‘Device ID.
has not been used up. When the tokens of all the buckets Then, when OVS-POF sees such a valid bitmap in the
have been used up, their values are restored to the buckets’ Maplinfg, it inserts a new INT header, which includes the

weights. Table | shows an example @édgorithm 1, when
there are two buckets in an SGT, and their weights are set
as 2 and 3, respectively. Although the token-based bucket
switching algorithm is straightforward, the selection bkt
buckets is unevenly distributed over time, which can degrad
the accuracy and timeliness of Sel-INT.

Hence, we consider a polling-based bucket switching al-
gorithm as inAlgorithm 2 to distribute the selection of the
buckets more evenly over time. Here, we first sort the buckets
in an SGT in ascending order of their weightsng 1), to
avoid unnecessary weight-check operationd.iime 9. When
we try to find the bucket whose weight is the largestine
9, we always select the one with the highest index if there is

Type Lengthand Maplnfo fields and the firsMetadata
field, into an INT packet. Otherwise, if the switch is not
an ingress one, the controller will set tiMapinfo as
0xzf f, and when OVS-POF sees such an invalid bitmap,
it checks theMaplnfo field in the packet's INT header
to know the required type of INT data, and then inserts
only a newMetadatafield accordingly.
delete_int_fieldkoffset: Here, theoffsetindicates the s-
tart location of the INT header to be deleted. As an egress
switch, OVS-POF can check thieength and Mapinfo
fields in an INT packet to calculate the actual length of
its INT header. Hence, no other parameters are required
in the delete_int_fieldaction.

a tie among multiple buckets. For the example discussed inFig. 6 illustrates the examples on INT-related group/flow
Table |, Algorithm 2 operates as in Table Il and the selectiotables on the switches along a forwarding path. The SGT for
of the buckets distributes more evenly over time. Thereforgelective INT header insertion in the ingress switch is ig. Fi
we implementAlgorithm 2 in OVS-POF for bucket switching. 6(a), and there are two buckets in it for inserting an INT legad
and forwarding packet normally, respectively.BacketO, the
add_int_fieldaction inserts a new INT header in the packets
of a flow with a sampling rate of%-- (i.e., we normally have
m < n). Then, before forwarding the INT packet out, OVS-
POF invokes themodify_fieldaction to increase théength
field in the INT header by one, since a ndWetadatafield
has already been inserted. For an intermediate switch #iat g
involved in Sel-INT, Fig. 6(b) indicates that OVS-POF uses
a flow table to match to th@ypefield (i.e., an INT packet
has itsTypefield as <offset= 272 bits, length= 16 bits>
and the value is= 020908), for detecting INT packets. Next,
for each INT packet, it uses tredd_int_fieldaction to insert
a new Metadatafield, updates thd_engthfield in the INT
header accordingly, and forwards the packet out. Findlly, t
egress switch leverages the all group table in Fig. 6(c) to
simultaneously perform 1) INT data insertion and INT packet
duplication to the Data Analyzer, and 2) INT header deletion
and packet delivery to the destination host.

3) Fast-Path Revalidation:To maintain high packet pro-
cessing throughput, we develop the fast-path of OVS-POF
based on that of OVS. However, the logic of OVS’ fast-path

Algorithm 2: Polling-based Bucket Switching

1 sort buckets in SGT in ascending order of weights;

2 while the related flow is activelo

3 receive a packet;

4 if there is notk[i] > 0 then

5 for each bucket in SGTdo

6 get the bucket’s weight and store it in
tk[i];

7 end

8 end

9 j = argmax(tk[i]);

10
11
12

process packet with actions in bucket
tklj] = tk[j] — 1;
end

TABLE I
EXAMPLE ON POLLING-BASEDBUCKET SWITCHING

Packet ID| ¢k[0] | ¢[1] | Selected Bucket would prevent bucket switching due to the caching of flow
1 2 3 bucket 1 rules,i.e., all the packets in a flow will be processed with the
2 2 2 bucket 1 . .
3 5 1 bucket 0 flow rules cached in the fast-path and none of them will be sent
4 1 1 bucket 1 to the slow-path to invoke bucket switching there. Spedifica
> 1 0 bucket 0 when a packet arrives, OVS first sequentially searches the flo

rules for it in theMicroflow and Megaflowcaches in its fast-

2) Extensions on POF-FIS and INT Pipeline§o ensure path, and only when the flow rules cannot be found there, it
that the INT-related actions can be executed efficiently Wil look up the slow-path and update the fast-path caches.
OVS-POF, we improve the POF protocol to support Sel-INTo overcome this issue, we implement a fast-path revatidati
Specifically, we extend thadd_fieldand delete_fieldactions scheme in OVS-POF with the operation principle in Fig. 7.
defined in POF-FIS to obtain two new actions as follows. Here, we use thRevalidatorthreads in OVS-POF to delete

« add_int_fielozoffset, MapInfe: Here, theoffsetindicates the flow rules cached iMicroflow and Megaflowperiodically

the start location to insert INT-related field(s), whileand force the packet processing to go through the slow-path
depending on the value dflapinfo, the action can insert and invoke bucket switching there. Specifically, for eackvflo
either a new INT header (as shown in Fig. 2) or just a nemle that is related to Sel-INT and gets cached in the fast;pa
Metadatdafield. In an ingress switch, the controller will setRevalidatorsets a threshold on the number of processed pack-
the MapInfoas a valid bitmap according to its definitionets, and when the threshold is reached, it will delete the flow

Select Group Table All Group Table
Bucket 0: Inserting an INT Header Bucket 0: Mirroring to Data Analyzer
Weight Instructions Instructions
add_int_field<272b, Maplnfo> add_int_field<offset, MapInfo = Oxff>
m deify_fieId<288iJ, 8b, 1> m?)iltfyaf'lzlg:azsaenlglsse’:>
output: next_hop Flow Table 2L = Y
Bucket 1: Forwarding Packet Normally Match Instructions BlckeatonvaldnglolEndlhiost
Instructions
Weight Instructions add_int_field<offset, MaplInfo = Oxff> - u I
X <272b, 16b> modify_field<288b, 8b, 1> del_int_field<272b>
w output: next_hop output: next_hop output: end_host
(a) Ingress switch (b) Intermediate switch (c) Egress switch

Fig. 6. Examples on INT-related group/flow tables on swisching the forwarding path of a flow.

= [Microfiow] - (PSD) in Fig. 9(a). We choose the lowest power point in Fig.
§ Jj; j} 9(a), and select its frequencie(, Fiy = 7.1 Hz) as the cut-
FostPatn & [Megaflow } off frequency, to make sure that the sampling would preserve
PRSI | Ralfpieintieltiebeliuieiiuiietiseinisiiil - most of the information in the traffic trace. In other words,
[Slow-Path the sampling frequency should & = 2 - Fy = 14.2 Hz,
= [FowTaneo [Group Table 0 according to the Nyquist Sampling Theorem. This means that
‘qﬁ % e buckel0 .. Sel-INT should switch between “inserting an INT header” and
I E [T Growp Ruls '1"' “processing packets normally without INT header inseftion
o Translation [% for at least14.2 times per second.
Reve As explained in the previous sub-section, Sel-INT levesage
Revaldate Flow Rules _] r an SGT containing multiple buckets to apply different acsio
to packets belonging to a same flow. Specifically, by switghin
Fig. 7. Operation principle of fast-path revalidation in &¥OF. among the buckets, the SGT applies the action(s) in selected

bucket to packets. In our implementation, an SGT can switch

between two buckets f@00 times per second at most. Hence,
rule from the fast-path caches and force the packet prowgssihe analysis above leads to a sampling ratel 4 /200 =
go back to the slow-path to check whether a bucket switchingl %, which can be realized with an SGT containing two
should be invoked. Note that, the fast-path revalidationldo puckets. One bucket is for “inserting an INT header” with
only affect the packet processing performance of OVS-POF @ight m = 1, and the other one is for “processing packets
INT-related flows, and the threshold mentioned above dg[uahormally without INT header insertion” with weight = 13.
determines the period of fast-path revalidation and thosish
be optimized. We adjust the threshold to get revalidation
periods from1 to 500 msec, and find that the period &f 8r
msec is a reasonably good choice, which can not only ensure a
non-degraded packet processing performance on INT-telate ol ’
flows but also maintain high accuracy and timeliness in INT. \\ il J\M }W" “‘ \1 V“ \‘}‘ “ *\wh f\m W‘ \ﬁ” lﬂ\ l\

9

S)

Data Rate (Gbp
&

C. Method to Determine Sampling Rate

In our Sel-INT system, the sampling rate of selective
INT header insertion is determined and implemented by the
SDN controller. Specifically, the SDN controller can analyz
historical INT data with the Fourier transform to estimatevh O T 0 s a0 as a0 w40 as
fast data samples will vary in the network environment. l& th Time (s)
following, we will explain the procedure by using the INT
data on bandwidth usage as an example, while the sampli

rates of other types of INT data can be determined similarly. To verify the effectiveness of our approach, we re-sample

To emulate the traffic fluctuation in a practical networlfhe modified real-world trace with an interval @0.4 msec
environment, we leverage the real-world traffic trace in] [52(| e.. 7.1% sampling rate), and get a new trace, nametace
scale |ts_ band_/wdth usage to W'ﬂfm.g] Gbps, and sample_ theB. We refer to the origin’al trace in Fig. 8 él'sac’:e A. Then,
tracg with an interval 060 mseé. Fig. 8 s_hows the obtaunedWe apply up-sampling and interpolation to both traces and
trafnctrgce. Then, we apply the fast .Fourlertransform Oz.ﬂéT unify their sampling intervals. Next, we compare the two up-
the traffic trace, and get the single-sided power spectraite sampled traces to get the relative errors caused byr tHg

IHere, the50 msec interval is selected because OVS collects the bamdwicﬁamp”ng rate. The_dis_tribUtion of the relative err(_)rs isvgh
usage of a port every0 msec, and so does our OVS-POF. in Fig. 9(b), which indicates tha&7.9% of the relative errors

w
T

ﬁ% 8. Traffic trace obtained by scaling the real-world omg52].

are within 10%, while 97.61% of them are within20%. This only changes slowly over time or actually should not change
confirms that the selected sampling rate ensures relatigly (e.g., In/Out Port,or Device 1D, the filtering mechanism is
accuracy. In a highly dynamic network environment, analgzi designed as ihine 26. Specifically, we insert a new record to
historical INT data helps us get the initial sampling rate tthe Metadatas entry when the filtering condition is satisfied,
start with. Then, the SDN controller can appl§0% sampling and otherwise, we only update the counter of its entry.

rate over a very short period from time to time to update the

historical INT data, and leverage the approach discussexkab Algorithm 3: Operation Procedure of Data Analyzer

to adapt the sampling rate to the latest network status.

1 while a packet is receivedo

70 T™

2

o 3
°

g 4

£ 5

6

7

Frequency (Hz) 8

(a) Single-sided PSD obtained by applying FFT to trafficerac Fig. 8 9

20% 10

c 15% & 1
(=}

= 12

2 10% J
°
[a] O |
5% 13
0 N . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 14
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Relative Error 15

(b) Distribution of the relative errors betwedmnaces A and B
16

Fig. 9. Results on obtaining sampling rate of selective IN&ader insertion. 17

18

D. Implementation of Data Analyzer ii

In our Sel-INT system, an egress switch will duplicate each
INT packet to the Data Analyzer, which extracts the INT data,,
in the packet and records the data for network monitoring,,
and further processing. As the processing capacity andggor .
usage of the Data Analyzer also affect the performance of the
Sel-INT system greatly, we design its operation procedsiiea ,,
Algorithm3. Here Lines1-6 are for the initialization, and then .
if the Data Analyzer does receive an INT packet, it will use .
the for-loop that coverkines7-33 to process all theletadata
fields in the packet’s INT headdrines8 and 9 extract the data
in a Metadataand hash it to geh, respectively. Next, if the o
Metadatais a new entry, which means that such type of INT g
data of a flow has not been collected on the locatldnes
10-14 create a new entry in the data storage for it. Note ithat,
our design, each INT data entry in the data storage asssciatg,
with a counter, which can be updated independently from the,,
records in the entry. Then, if theletadatadoes not lead to .,
a new entryline 15 gets the data and hash value in its last,,

30

if the packet is not an INT orthen

| continug;

end

get the current system time &s

parse the packet;

for eachMetadatafield in the INT headedo

store theMetadatas value indata;

h = Hash(data);

if the Metadatais a new entrythen
create a new entry with a countest = 0;
store <ata, h, cnt, t> as the first record
in the entry;
continue;

end

get the last recorddatay, hy, *, *> from the

Metadatas entry;

get the entry’s counter to store imt;

if the Metadatais a fast-changing onéhen

fl _ A(datap, data)
ag = min(data,, data)’

if flag > thy or (t —t,) > thy then
store <ata, h, cnt, t> as a new
record in the entry;

update the entry’s counter ast = 0;

else
update the entry’s counter as
cnt = ent + 1;
end
else

if h# hy or (t —t.) > thy then

store <ata, h, cnt, t> as a new
record in the entry;

update the entry’s counter ast = 0;

else
update the entry’s counter as
cnt = ent + 1;
end
end
end

end

record, and the entry’s counter is also obtainkeith€ 16).
If the Metadata contains fast-changing INT datee.g.,
Bandwidth, Hop Latencyor Ingress Timg we calculate the

The SDN controller determines the valuetdf by analyz-

“neighbor difference” between the current and last values eng the distribution of neighbor differencesg(, the flag in

in Line 18, and apply a filtering mechanism as lime 19 Line 18 of Algorithm 3). We still use the traffic trace in Fig. 8
to avoid recording too many similar records. Hetk; and as an example to explain the procedure, and:thefor other
thy are preset thresholds, amdand ¢, are the current time- types of INT data can be get similarly. Fig. 10 shows the
stamp and the one of the last record, respectively. We wdistribution of the neighbor differences for the trace im.Fi
explain how to determine the values ¢, and thy in the 8, which indicates tha2.07% of the neighbor differences
next paragraph. On the other hand, if thietadatés value are larger thanl%. Hence, we can empirically seh; as

1%. Similar to the sampling rate, the value @f; should be made sure that it always generates traffic as expected. The
updated regularly in a highly dynamic network environmentraffic analyzer is a hardware-based commercial product. Ou
to adapt to the latest network status. Tiheg is the threshold experiments include three categoriés,, feature validation,

on the time difference between adjacent records, whichdavoperformance evaluation, and usecase demonstration.

not updating the entry of INT data for a relatively long

period. Therefore, its value actually depends on the systen & ovsror
implementation. In the safest case, we can #et as the

shortest interval between which the switches based on OVS ﬁ ONOS
POF update the value of the concerned INT data. For instance
as OVS-POF collects the bandwidth usage of a port every Detafnalyzer - S
50 msec, we can just set thé, for the INT data regarding
bandwidth usage a&) msec.

12%
10% 4 SwW4

8% [y 1 Fig. 11. Experimental setup.

6% 3

Distribution

4% i . |

2% 1 A. Feature Validation
0 - i i i i i i i) . .
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% We first perform experiments to verify that the proposed
Neighbor Difference features have been correctly implemented in the Sel-INT

system. Specifically, the experiments confirm that our S4&l-|
system can achieve selective INT, is runtime-programmable

The operation procedure ialgorithm 3 helps us improve and can change the locations to collect INT data and the
the processing capacity and save the storage usage of the B8fresponding data types and sampling rate dynamicalke He
Analyzer. To verify this, we conduct an INT experiment thaf/® send64-byte packets at Mpps (.e., 672 Mbps) to go
only contains an OVS-POF, where the controller asks it §rough the path as indicated by red arrowed line in Fig.
collect all the six types of INT data with00% sampling. 11. During runtime of the network and when the flow is
The source host pumgl-byte packets a2 million packets active, we let the POF controller adjust the INT data types
per second (Mpps)i.e., 1.344 Gbps) through the switch for O be collected and the corresponding sampling rate, and
15 seconds, and we repeat the experiment for three times &§§¢ the Data Analyzer to receive and parse the INT packets
average the results to ensure sufficient statistical acgLifhe for extracting theirMetadatafields. More specifically, after
results in Table IIl compare the Data Analyzer’s perforneanc>€l-INT has been initialized on all the switches along the
with and without the filtering mechanism, which suggests thBath, the runtime adjustments can be easily achieved by the
the filtering mechanism improves the processing capacity @#ntroller updating the Sel-INT policy through sending POF
the Data Analyzer for more thad7 times, and reduces its PasedGroupModmessages to the ingress switcke.(SWL).

Fig. 10. Distribution of the neighbor differences for traffrace in Fig. 8.

memory usage for more thas, 000 times. Fig. 12 shows t_he Wireshark capture o_fG!oupMod_re—
ceived onSWL, which includes the instructions regarding the
TABLE 1l INT data types to be collected and the corresponding samplin

PERFORMANCEBENCHMARKING OF DATA ANALYZER rate. Here, we have extended Wireshark to make it POF-

Memory usage| Packets processefl Packets recorded compatible. It can be seen that toupMod contains two

(MB/s) per second per second buckets, between which the first origucketO) is for normal

wio filtering 369 53,717 53,717 packet forwarding and has waeight of 19, while Bucket1
wi filtering 0.016 1,993,683 20 enables selective INT operations on packets andéightis 1.

Hence, the Sel-INT has a sampling rat&s&§. By looking into
Bucketl, we can see that the first action in itadd_int_field
V. EXPERIMENTAL DEMONSTRATIONS ANDEVALUATIONS \hjch tellsSWL to insert an INT header inte#% of the packets
In this section, we discuss the experiments to demonstraighe flow, withoffset= 272 bits andMapinfo= 0x31. Here,
and evaluate our proposed Sel-INT system. The experimerited MapInfds value means that Sel-INT will collect the INT
setup uses the topology in Fig. 11, which consists of sixdstardata types oDevice 1D Bandwidthand Hop Latency
alone software switches running OVS-POF, an ONOS-basedrhen, we conduct an experiment to demonstrate that the
POF controller, a Data Analyzer, and two end hosts. Ea8el-INT policy can be programmed in runtime. Specifically,
OVS-POF runs on a Linux server that has linecards with the experiment includes four stages: {1¥ [0,26) seconds,
GbE ports. The traffic generator in the testbed is softwarie controller sets the sampling rate 8% and Maplinfo
based and realized with the open source software pktgek-dpd 0201 (i.e, to collect Device ID only), 2) ¢ € [26,53)
[53], and we run it on a dedicated Linux server. We haveeconds, the controller adjusts the sampling rat20t and
calibrated the traffic generator with the procedure in [l updateMaplinfo as 0220 (i.e. to collectBandwidthonly), 3)

10

Filter: | pof ~ | Expression... Clear Save

o
w

Maplnfo = 0x31

Time Source Destination Protocol Length Info

Maplnfo = 0x20

o
IN)
T

B8.276627412 192.168.109.212 192.168.109.228 POF 2258 Type:POFT_FLOW_MOD

P Transmission Control Protocol, Src Port: 6643, Dst Port: 48072, Seq: 161, Ack: 9, Len: 1848

©

INT Packets (Mpps)

Version: 0x04 Maplnfo = 0x01

Type: 0x10
Length: 1848 0 i I I i i
Transaction_ID: 138986 0 30 60 90 120 150
~ SelGroupMod
group_command: 0x00 Time (s)
group_type: 0x01))
2‘:25;23‘.’222 (a) Throughput of INT packets to Data Analyzer in runtime
counter_id: 0
slot_id: @ .
Forwarding packet normally 203 4
action_num: 1 o
Weight of bucket 0 =
watch_slot_1d: 0x0000 202} 4
watch_port: oxff T
watch_group: oxffffffff jmmmm--- *'acshonu% 1 5
vact: List 0 L] int_fie ©
b output i ~modify_Field @ 0.1 7
Inserting an INT header | action_type: 0x0003 E
actlﬁ: nim: 3 R ! action_len: 16 - 0 i i i i i
eight of bucke :
e P T (FYle] Ak GERmH 0 30 60 90 120 150
watch_port: oxff . +
CERELLETENpR (AR 2 e @ Time (s)
SgeeaniaIELEEEELEEEEE SIS e - output . L. .
'a‘ii;ﬂﬁrgiﬁ R R e e (b) Throughput of INT packets containiri@evice 1D
action_len: 32 action_len: 24
field id: Oxffff port_id_typs: Ox00 .
Start location of INT header metadata_offset: 0 203F §
enqth: 24 metadata_len: O a
Types of INT data to collect packet_offset: o =3
pmodity field out_port: 3 202+ 4
b output)
0lad Ol 10 00 OO OO 18 31 OO 00 0O OO 00 0O OO 00 0O %
0lbo 00 0O 0O 00 OO 00 00 OO 00 G0 00 00 00 00 00 00 a 01 |
0lcO 00 OO0 OO OO OO OO OO OO OO0 OO0 00 03 00 10 00 10 =
01do 01 20 00 08 00 00 00 00 00 Ol 00 00 00 00 00 0O Z
0le0 0O 00 0O OO OO0 00 OO 00 00 OQ 00 00 OO 00 00 0O 0 L L L L L
0 30 60 90 120 150
Time (s)
Fig. 12. Wireshark capture of @roupModreceived onSWL. - .
9 P P (c) Throughput of INT packets containirgandwidth
: :
203 i
. o
t € [53,116) seconds, the sampling rate aMhpinfo get s
' : 202+ R
changed ta30% and 0231 (i.e., to collectDevice ID, Band- o
. . ©
width andHop Latency, respectively, and 4) > 116 seconds, o 1
e H z
the controller modifies the sampling rate 56t and keeps = ‘ ‘ ‘ ‘ ‘

o

30 60 90 120 150

Maplnfo unchanged. Fig. 13(a) shows how the throughput of ~ ° Time ()
the INT packets to the Data Analyzer changes over time. The
INT packets’ throughput actually reveals the sampling rate
since the original throughput of the flowisMpps. The results Fig. 13. Results on INT packets to Data Analyzer when chan@al-INT
in Fig. 13(a) confirm that the sampling rate gets implement&gicy in runtime.

in the Sel-INT system exactly as we designed. Figs. 13(b)-

13(d) plot the throughput of the INT packets that contain the

INT data related tdDevice ID, Bandwidthand Hop Latency experimental_results are shown in Fig. 14, e_md we still cnbta@
respectively, which verify that the types of INT data to et them by running each measurement for a minute and repeating

each measurement for three times to average for the final data

are programmed correctly too. points. It can be seen that for all of the three cases, petgpac
) based INT {e. 100% sampling) would decrease the packet
B. Performance Evaluation processing speed of OVS-POF significantly. However, if we

1) Packet Processing Throughput during Sel-INgs Sel- limit the sampling rate below20%, the packet processing
INT needs to invoke bucket switching and involve adspeed of OVS-POF i4.029 Mpps in the worst casei.é.,
ditional packet processing actione.q, add_int fieldand collecting all types of INT data) and the relative degreaafati
delete_int_fiely) the packet processing speed of OVS-POB only 11.2%. This verifies the benefit of Sel-INT in saving
would be affected. Hence, we conduct experiments to meastire processing burdens on switches. Among the three cases,
the packet processing speed of OVS-POF during Sel-INthe one that collects all types of INT data provides the
Specifically, we install different Sel-INT pipelines in avS- lowest packet processing throughput as expected. Meaawhil
POF {.e., collecting different types of INT data with differentit is interesting to notice that the packet processing spded
sampling rates) and measure its packet processing speedOUs-POF with Mapinfo = 0207 is higher than that with
consider the worst-case scenario, we puédpbyte packets Mapinfo = 0x38. This suggests that in Sel-INT, collecting
through the OVS-POF at the maximum rate that it can handkst-changing INT data is more costly.
when no INT is invokedi.e., 4.538 Mpps. 2) Benchmarking with Existing ApproachiVe then use

We consider three cases asMapinfo = 0z3f to collect the P4-based selective INT scheme in [4Rf.(SINT) as
all types of INT data, 2MaplInfo = 0z07 to collect all types the benchmark, which, to the best of our knowledge, is the
of slow-changing INT datai.€., In/Out Port and Device ID, only existing approach in the literature for selective INIRd
and 3)Maplinfo = 0238 to collect all types of fast-changingconduct experiments to compare our Sel-INT with it. Our Sel-
INT data {.e., Bandwidth Hop Latencyandingress Timg The INT is different from sINT from three major perspectives.

(d) Throughput of INT packets containirtdop Latency

11

Mim = [Evesmo-oar for Sel-INT and sINT are).00116 and0.00621, respectively.
. [Mapinfo = 0x38 In Scenaria@2, we fix the packet rate of a flow atMpps, but
B Mapinfo = 0x07 invoke equal-cost multi-path routing (ECMP) in the network
Specifically, the initial sampling rates of sINT and Sel-INT
are still set a2%, but EMCP is invoked at = 38 seconds.
f With ECMP, the INT data of the flow will indicate two sets of
Device IDsfor the intermediate switches on the flow’s routing
paths. This, however, will mislead the sampling rate salact
algorithm in sSINT and make it quickly increase its sampling
rate to 100% again, as shown in Fig. 15(b). The average
standard deviations of the results for Sel-INT and sINT are
0.00089 and 0.00192, respectively. Since the SDN controller
R R R helps Sel-INT detect the situation correctly, its sampliate
0% 0.1% 10% 20% 30% 40% 50% 60% 70% 80% 90%100% does not change throughout the experiment (as illustrated i
Sampling Rate Fig. 15(b)). The results in Fig. 15 suggest that Sel-INT can
determine the sampling rate of selective INT header irerti
more accurately than sINT. Meanwhile, we hope to point out
that Sel-INT also has other advantages over sI&l@, it is
totally transparent to end-hosts and thus is securer aneé mor
Firstly, since sINT is based on P4-based switches, its packgliable, and with the runtime-programmability enabled by

processing pipelines can hardly be modified in runtime, vhiboF, it can change the locations to collect INT data and the
our POF-based Sel-INT can change its packet processtitresponding data types in runtime.

pipelines in runtime according to the instructions from an
SDN controller. Secondly, sINT adjusts the sampling rate ¢ -
selective INT header insertion by modifying packet Corﬂentéo.s—
at source hosts, while our Sel-INT relies on the SDN con os|
troller to instruct switches about sampling rate adjustimien ¢ o4 -
Finally, sINT has to utilize a feedback-based algorithm t(§0-2f
adjust the sampling rate. Specifically, it monitors the INafad o o p” o o p o 2 o
continuously, if the difference between adjacent data $esnp Time (s)

goes above a preset threshold, it will double the Sampllt@ ra (a) Results on throughput of INT packets collectedSirenariol
until reaching100%, and if the data samples do not change | ‘ ‘ ‘ _
significantly over a preset duratioe.g, 10 seconds), it will Sel-INT

reduce the sampling rate directly to the minimum value,(£ 7 |
2%). This scheme, however, would make the sampling rat 2
change sharply and unreasonably, which is less effecte th gm - .
the one used by our Sel-INTg., leveraging the global view £, ,
obtained by the SDN controller to determine the sampling. rat

In order to illustrate the aforementioned differences, wt
compare SINT and Sel-INT in two experimental scenarios. In
each scenario, we conduct the experiment for six runs, and
plot the average results in Fig. 15. 8tenariol, we make the Fig. 15. Performance comparisons of Sel-INT and sINT.
packet rate of a flow change according[@05,1,0.5,1, -]

Mpps, and the flow stays at each rate foseconds, which 3) Monitoring Accuracy of Sel-INT:In this experiment,

is slightly shorter than the preset duration in sINJe.(10 we study how the sampling rate and flow pattern affect the
seconds). Without a global view on the network, SINT cannatonitoring accuracy of Sel-INT. We still make the flow use
make the duration adaptive. Hence, even if we set its inititle forwarding path as indicated by the red arrowed line in
sampling rate to the minimum valué.g, 2%), sINT will Fig. 11. Here, to mimic the traffic fluctuations in a practical
double its sampling rate each time when it sees a packet ragwork environment, we adopt two real-world traffic traces
change. In consequence, as shown in Fig. 15(a), its sampling52, 55], refer to them a%racesl and 2, respectively, and
rate will quickly increase to100%, which makes it not scale their bandwidth usages to witi) 8] Gbps. The packet
“selective” anymore. On the other hand, Sel-INT can recognisize of the flows that use the two traces is sel @&l bytes,

the fluctuation of the flow’s packet rate precisely and adjust and Sel-INT use$apinfo= 0x20 to collect the INT data on
sampling rate correctly, with the help of the SDN controlleBandwidth We leverage the schemes developed in Section IV
Hence, its sampling rate changes[2%, 4%,2%,4%,---] in to determine the sampling rates ®faces1 and 2 as7.1%

Fig. 15(a), which achieves significant savings on both tHE INand 8.2%, respectively, and seth; and th, as 1% and 50
overhead in the network and the data processing burden in theec, respectively, for both traces. The monitoring resialt
Data Analyzer. The average standard deviations of theteesitigs. 16(a) and 16(b) indicate that Sel-INT can successfull

Packet Processing Speed (Mpps)
=

Fig. 14. Packet processing speed during Sel-INT.

Mpp!

0.6 - i

0
0 10 20 30 40 50 60 70 80

Time (s)

(b) Results on throughput of INT packets collectedSicenario2

12

monitor the bandwidth of highly dynamic flows. system using path validation as a usecase. We still ¢nd

Here, the results are also the average values from six runge packets at Mpps through the path as indicated by red
for each monitoring experiment, and the average standamtiowed line in Fig. 11i.e., SW1—SW2— SW3—SW5—SW6.
deviations of the results to obtain the curves in Figs. laga) We first consider the scenario in which a misconfigura-
16(b) are0.15783 and0.16163, respectively. Note that, with tion on SW2 invokes unwanted load-balancing to switch the
the sampling rates of.1% and8.2%, our Sel-INT system can flow between two pathsSW1—SW2— SW3—SW5—SW6
achieve shorter monitoring intervals than the smallegtrisi and SW1L—SW2—SWA—SW5—SW6. Meanwhile, the Sel-
(i.e, 1 second) that our commercial BigTao traffic analyzediNT system collectdDevice IDon each hop with a sampling
can achieve. In order to verify the monitoring accuracy ahate of 10% for path validation. The results from the Data
our Sel-INT system, we average its monitored bandwidth ovanalyzer, which are the average throughputs of the INT
every second and compare the results with the “ground trugbdckets that contain theevice IDsof different switches, are
(i.e, the average bandwidth usage per second in the origipébtted in Fig. 17. It can be seen that the throughputs of the
traces). Fig. 16(c) shows the distributions of the measargmINT packets containin@WL, SW2, SW5 andSW6 are normal
errors, which indicate that all the measurement errors aas expected. However, the INT packets that congaM8 only
below3%, and forTracesl and 295.35% and98.18% of their have a throughput as half of the expect value, while there
measurement errors are bel@i, respectively. The results are unexpected INT packets containi8g#4. Hence, with the
suggest that our proposal can achieve relatively high mpnitmonitoring results in Fig. 17, the network operator canlgasi
ing accuracy on fast-changing INT data suchBamdwidth figure out that there is a misconfiguration S8M2.

10
= 5015]
o 8 <
8 s Unexpected Should not
=6 S 01f Low Exist 1
< -
£ Q
_Tg 4 S V V
] £ 0.05 4
g 2 5

0 L L L L - 0 Il Il Il Il 1 Il

0 10 20 30 40 SWi1 Sw2 Sw3 Sw4 SW5 Swe

Time (s)
(a) Monitored bandwidth from Sel-INT witii.1% sampling rate foffrace1 Fig. 17. INT packet throughputs for path validation (mistguaration).

10

Next, we emulate the scenario in which an attacker hacks

into SW2 andSW to intentionally diverge the flow’s forward-

ing path to SW1—SW2—SWA—SW5—SWe, for realizing a
harmful purpose €.g, eavesdropping or man-in-the-middle

‘ ‘ ‘ attack). Note that, as the attacker can modifyEtexice 1D of

0 0 e (53)0 40 %0 SWA and make it impersona®n\B, the path validation scheme

discussed above would not be able to detect the path change.

This can be verified with the results in Fig. 18(a), which skow

Bandwidth (Gbps)

(b) Monitored bandwidth from Sel-INT wit.2% sampling rate foiTrace 2

100% Tt that the throughput of the INT packets containiB93 stays
g B EOmee2/ | at the expected value throughout the whole experiment, even

2 %%r 1 though the path has already been changed=at70 seconds.
3 ;‘Zj Hence, to detect such intentional path changes, the operato

; : y—\’—‘ —_— needs to collect not onlpevice IDbut alsoln Port on each
0%-1% 1%-2% 2%-3% hop along the path. Then, as long as not all the switches have
Measurement Error been hacked, the path change can still be detected by looking

(c) Distribution of measurement errors related to the gdotrath into theln Portsprovided by the intact switch(e}.¢., SV& in

this experiment). However, such a monitoring scheme would
cause too much overhead. Hence, we let the Sel-INT system
invoke 10% selective collection orin Port for 5 seconds in
) o every 30 seconds, to reduce the monitoring overhead. Fig.
C. Usecase Demonstration: Path Validation 18(b) shows the monitoring results f&A5, which indicate

In a network, the forwarding path of a flow can experiendhat the flow’s input port t&&W5 has been changed before the
some unexpected changes due to either misconfiguratitiisd monitoring period onin Port. Then, by combining the
(e.g, incorrect load-balancing and errors in group tables) oesults in Fig. 18, the operator can infer that certain dveitc
intentional attackse.g, eavesdropping and man-in-the-middlenight have been hacked. This further verifies the advantages
attack). Path validation with INT can provide a powerfubrought by the runtime-programmability. The results indrig
and illustrative way to detect the changes, and our Sel-INIB(a) and 18(b) are also obtained by averaging the resalts fr
can make this task much easier with more flexibility angix runs. The average standard deviation of the resultsgn Fi
significantly less overheads. In the following, we perforri8(a) is0.00253, while those of the four curves in Fig. 18(b)
experiments to demonstrate the effectiveness of our SEl-INre0.00231, 0.00249, 0.00298 and 0.00218, respectively.

Fig. 16. Results on bandwidth monitoring with Sel-INT.

015
g
= 0.1 g
g
005+ 8
-
z
0 ; ; ; ; ; ;
0 20 40 60 80 100 120
Time (s)
(a) Throughput of INT packets containing tBevice ID of SW3
015
&
S o1f — — ~—~ —
g * * A A
§005 N 1
= In Port = 1 ormal Abnormal
P In Port =2
0 1 L L L 1 L
0 20 40 60 80 100 120
Time (s)
(b) Throughput of INT packets containing the Port at SW6
Fig. 18. INT packet throughputs for path validation (intenal attack).

VI. CONCLUSION

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

We proposed and implemented Sel-INT as a runtime-
programmable selective INT system. Our implementation wHS!

verified and evaluated in a real network testbed that canefst

a few stand-alone software switches. The experimentaltsesyis]
verified that Sel-INT can not only adjust the sampling rate of

INT in runtime but also program the corresponding data types,
dynamically, and they also demonstrated that Sel-INT can

ensure proper accuracy and timeliness for network montjori

while greatly reducing the overheads of INT. More specifical (18]

restricting the sampling rate bel®9% could greatly improve

the packet processing throughput of our software switclilewh[19]
the system’s monitoring accuracy on fast-changing INT data

was still relatively high even with a sampling rate ©fi %.

[20]

Moreover, we utilized path validation as a simple usecase to

show the effectiveness of our Sel-INT system on reveali

both unintentional misconfigurations and intentional ckta

ACKNOWLEDGMENTS

)

[22]

This work was supported in part by the NSFC project[§3
61871357, 61771445 and 61701472, CAS Key Project
(QYZDY-SSW-JSC003), and SPR Program of CAS (XDR4]

C02010703).

REFERENCES

[25]

[1] P. Lu et al, “Highly-efficient data migration and backup for Big Data[26]

applications in elastic optical inter-datacenter netwgrkEEE Netw,
vol. 29, pp. 36-42, Sept./Oct. 2015.

[2] W. Fanget al., “Joint defragmentation of optical spectrum and IT re{27]

sources in elastic optical datacenter interconnectiahsDpt. Commun.

Netw, vol. 7, pp. 314-324, Mar. 2015.
[3]

Nov. 2016.

L. Liang, W. Lu, M. Tornatore, and Z. Zhu, “Game-assistdtributed

decision-making to build virtual TDM-PONSs in C-RANs adagty,” J.

Opt. Commun. Netwvol. 9, pp. 546-554, Jul. 2017.

[5] Z.Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic serviceopisioning
in elastic optical networks with hybrid single-/multi-parouting,” J.
Lightw. Technol.vol. 31, pp. 15-22, Jan. 2013.

(4]

P. Marschet al, “5G radio access network architecture: Design guidel28]
lines and key considerationdEEE Commun. Magvol. 54, pp. 24-32,

[29]

[30]

(31]

13

L. Gong et al,, “Efficient resource allocation for all-optical multicasy
over spectrum-sliced elastic optical networkd,”"Opt. Commun. Netw.
vol. 5, pp. 836-847, Aug. 2013.

Y. Yin et al, “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical netajprt. Opt.
Commun. Netw.vol. 5, pp. A100-A106, Oct. 2013.

M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adapti
bandwidth defragmentation in spectrum-sliced elastidgcapnetworks
with time-varying traffic,”J. Lightw. Techno).vol. 32, pp. 1014-1023,
Mar. 2014.

N. Feamster, J. Rexford, and E. Zegura, “The road to SDiNingel-
lectual history of programmable networkACM SIGCOMM Comput.
Commun. Reyvol. 44, pp. 87-98, Apr. 2014.

S. Li et al, “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmabilityEEE Netw, vol. 31, pp.
12-20, Mar./Apr. 2017.

N. Xue et al, “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycastEEE Trans. Multimedia
vol. 17, pp. 1617-1629, Sept. 2015.

L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekimirtual
network embedding algorithm via global resource capédityProc. of
INFOCOM 2014 pp. 1-9, Apr. 2014.

H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-ane survivable
virtual network embedding (A-SVNE) in optical datacentatworks,”

J. Opt. Commun. Netywol. 7, pp. 1160-1171, Dec. 2015.

L. Gong and Z. Zhu, “Virtual optical network embeddinggNE) over
elastic optical networksJ. Lightw. Techno).vol. 32, pp. 450-460, Feb.
2014.

M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-tygéRforwarding
graphs in inter-DC elastic optical networks,”Lightw. Techno).vol. 34,
pp. 3330-3341, Jul. 2016.

W. Fanget al., “Joint spectrum and IT resource allocation for efficient
VNF service chaining in inter-datacenter elastic optictivorks,” |IEEE
Commun. Lett.vol. 20, pp. 1539-1542, Aug. 2016.

Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualetwork
function graph (VNFG) provisioning in multidomain elastaptical
networks,”J. Lightw. Techno).vol. 35, pp. 2712-2723, Jul. 2017.

R. Govindanet al,, “Evolve or die: High-availability design principles
drawn from Google’s network infrastructure,” iAroc. of ACM SIG-
COMM 2016 pp. 58-72, Aug. 2016.

S. Liu, W. Lu, and Z. Zhu, “On the cross-layer orchestratto address
IP router outages with cost-efficient multilayer restamatin |P-over-
EONs,”J. Opt. Commun. Netywol. 10, pp. A122-A132, Jan. 2018.

Z. Zhu et al,, “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netywol. 10, pp. A206—
A215, Feb. 2018.

J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simpietwork
management protocol (SNMP),RFC 1098 May 1990. [Online].
Available: https://tools.ietf.org/html/rfc1157

P. Phaal, S. Panchen, and N. McKee, “InMon corporagicsFlow: A
method for monitoring traffic in switched and routed netvegtiRFC
3176 Sept. 2001. [Online]. Available: https://tools.iethydntml/rfc3176

B. Claise, “Cisco systems NetFlow services export ioers9,” RFC
3954 Oct. 2004. [Online]. Available: https://tools.ietf.éngml/rfc3954

N. McKeown et al, “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rewol. 38, pp. 69-74,
Mar. 2008.

P. Bosshartt al, “P4: Programming protocol-independent packet pro-
cessors,’ACM SIGCOMM Comput. Commun. Rexol. 44, pp. 87-95,
Jul. 2014.

H. Song, “Protocol-oblivious forwarding: Unleash tipewer of SDN
through a future-proof forwarding plane,” iRroc. of ACM HotSDN
2013 pp. 127-132, Aug. 2013.

S. Li et al, “Improving SDN scalability with protocol-oblivious soce
routing: A system-level studyfEEE Trans. Netw. Serv. Managol. 15,
pp. 275-288, Mar. 2018.

C. Kim et al, “In-band network telemetry (INT),Tech. Spec.Jun.
2016. [Online]. Available: https://p4.org/assets/INTHenNt-spec.pdf
100G in-band network telemetry with Netcope P4. [On-
line]. Available: https://www.netcope.com/Netcope/riagcontent/
100G-In-band-Network- Telemetry-With-Netcope-P4.pdf

C. Kim et al, “In-band network telemetry via programmable data-
planes,” inProc. of ACM SIGCOMM 2015p. 1-2, Aug. 2015.

Z. Liu et al, “NetVision: Towards network telemetry as a service,” in
Proc. of ICNP 2018pp. 1-2, Sept. 2018.

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

M. Shahbazet al, “PISCES: A programmable, protocol-independent
software switch,” inProc. of ACM SIGCOMM 2016p. 525-538, Aug.
2016.

P4 software switch - Behavioral Model version 2 (BmvEpnline].
Available: https://github.com/p4lang/behavioral-mbde

D. Hu et al, “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivdorwarding
(POF),” IEEE Accessvol. 4, pp. 4707-4719, 2016.

Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstratdf high-
throughput protocol oblivious packet forwarding to supgpsoftware-
defined vehicular networksEEE Accessvol. 5, pp. 24 004-24 011,
2017.

B. Pfaff et al, “The design and implementation of Open vSwitch,” in
Proc of USENIX NSDI 2015p. 117-130, May 2015.

N. Handigolet al, “I know what your packet did last hop: Using packet
histories to troubleshoot networks,” Froc. of NSDI 2014pp. 71-85,
Apr. 2014.

V. Jeyakumaret al, “Millions of little minions: Using packets for
low latency network programming and visibility,” ifProc. of ACM
SIGCOMM 2014 pp. 3-14, Aug. 2014.

Y. Zhu et al, “Packet-level telemetry in large datacenter networks,” i
Proc. of ACM SIGCOMM 20150p. 479-491, Aug. 2015.

F. Brocknerset al, “Data fields for in-situ OAM,” IETF Draft,
Oct. 2018. [Online]. Available: https://datatrackef.ietg/doc/html/
draft-ietf-ippm-ioam-data-04

J. Hyun, N. Tu, and J. Hong, “Towards knowledge-definetimorking
using in-band network telemetry,” iAroc. of NOMS 2018op. 1-7, Apr.
2018.

Y. Kim, D. Suh, and S. Pack, “Selective in-band netwaelemetry for
overhead reduction,” ifProc. of CloudNet 2018pp. 1-3, Oct. 2018.
ONQOS. [Online]. Available: https://onosproject.brg

Barefoot deep insight. [Online]. Available: httpsaiw.
barefootnetworks.com/products/brief-deep-insight/

M. Anand, R. Subrahmaniam, and R. Valiveti, “POINT: Anant-driven
framework for integrated packet-optical in-band netwaglemetry,” in
Proc. of ICC 2018 pp. 1-6, May 2018.

B. Niu et al, “Visualize your IP-over-optical network in realtime: A P4
based flexible multilayer in-band network telemetry (MLIINsystem,”
IEEE Accessvol. 7, pp. 82413-82 423, 2019.

DPDK: Data Plane Development Kit. [Online]. Availablehttps:
Iivww.dpdk.org/

S. Liet al, “SR-PVX: A source routing based network virtualization- hy
pervisor to enable POF-FIS programmability in vSDNEEE Access
vol. 5, pp. 7659-7666, 2017.

H. Huang et al, “Realizing highly-available, scalable and protocol-
independent vSDN slicing with a distributed network hypsov sys-
tem,” IEEE Accessvol. 6, pp. 13513-13522, 2018.

K. Han et al, “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based meledge com-
puting,” IEEE Accessvol. 6, pp. 26 567-26 577, 2018.

S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlesSDN
reconfiguration to balance substrate TCAM utilization: faralgorithm
design to system prototypelEEE Trans. Netw. Serv. Managol. 16,
pp. 647-660, Jun. 2019.

Caida datasets. [Online]. Available: https://datéde.org/datasets/
passive-2016/equinix-chicago/20160406-130000.UT@rext chicago.
dirA.20160406-125912.UTC.anon.pcap.gz

pktgen-dpdk. [Online]. Available: https://git.dpdikg/apps/pktgen-dpdk/
A. Botta, A. Dainotti, and A. Pescape, “Do you trust yooftware-
based traffic generatordEEE Commun. Mag.vol. 48, pp. 158-165,
Sept. 2010.

Caida datasets. [Online]. Available: https://dagi#da.org/datasets/
passive-2016/equinix-chicago/20160406-130000.UTa@rex chicago.
dirB.20160406-131500.UTC.anon.pcap.gz

14

