On Table Resource Virtualization and Network
Slicing in Programmable Data Plane

Yuhan Xue, Jianquan Peng, Kai Han, and Zuqing Zbenior Member, IEEE

Abstract—Recently, the advances on programmable data plane [12—14]. However, these benefits cannot be fully explored
(PDP) promote the studies on the network virtualization in a without the programmable data plane (PDP) [15, 16]. This is
PDP-based substrate network (SNT). In this paper, we addr&s pacq,se an SDN-based network is not full-stack programenabl

the table resource virtualization and network slicing in PDP- ithout PDP d PDP tricti
based SNTs. We first leverage the idea of “Big-Switch” to degn withou » an removes unnecessary restrictions on

an effective table resource virtualization scheme in whichthe ~VNT slicing to make it future-proof [17]. PDP is a general
flow tables of a virtual switch (V-SW) can be installed in muliple term for packet processing and forwarding elements thag¢ hav
adjacent substrate switches (S-SWs) according to their tdé sizes, programmable features and depend less on existing pretocol
while the feasible table size(s) on each S-SW are determmedPeome have come up with PDP proposals such as P4 [16]

based on the global information of the SNT. By doing so, we can L .
regulate the flow tables in the S-SWs in a more organized way to and protocol-oblivious forwarding (POF) [18], and the deve

minimize memory fragmentation. Next, we address the netwde Opment and deployment in this field have gained momentum
slicing based on the virtualization scheme, and come up wita from innovations in semiconductor industry [19-21].

three-layer VNE problem. To the best of our knowledge, such Some issues remain, however, in PDP environmemnts,
a VNE problem has not been studied before and the existing e taple resource management in switches. Actually, theeis

algorithms designed for traditional two-layer VNE problems can ith tabl ti t v introduced b
hardly solve it. We formulate an integer linear programming with table resource management IS not newly introduced by

(ILP) model to solve the VNE problem exactly, and also design PDP but has been a tricky problem throughout the develop-
a time-efficient heuristic that can provide near-optimal sdutions. ment of SDN [22]. This is because both the ternary content
Finally, we implement the heuristic in TPVX, which is a netwak addressable memory (TCAM) and static random-access mem-
hypervisor based on protocol-oblivious forwarding (POF),and o (SRAM) are very limited hardware resources in switches,
also improve its performance by introducing source routing The . . i
new TPVX is experimentally demonstrated in a real network Wh'_Ch usually makes them insufficient to accommOd‘_"‘te_ a_" the
testbed, and the results verify that our proposal maintainsthe ~active flow tables [23]. The problem becomes more intimidat-
additional latency caused by the three-layer VNE well and wald ing when network virtualization tries to create various VANT
not degrade the network services in virtual networks (VNTs) over an SDN-based environment. Furthermore, when it comes
Index Terms—Network virtualization, Virtual network em- to Considering the network virtualization in an SNT builtthvi
bedding (VNE), Software-defined networking (SDN), Protocb PDP, table resource management can be even more challenging
oblivious forwarding (POF), Programmable data plane (PDP) for the following two reasons. Firstly, in PDP environments
the enhanced programmability also exacerbates the peessur
on memory usage, due to the tendency of offloading network
I. INTRODUCTION functions directly into the data plane [16]. Secondly, PDP

VER the past decade, we have witnessed astonishifigkes the sizes of flow tables change irregularly when sup-

advances on network technologies to overcome the os8frting VNTs running different protocols. Therefore, vaitht
fication of the current Internet infrastructure [1-4]. Angon effective table resource virtualization, such variabted flow
them, software-defined networking (SDN) [1] and networl@bles can cause severe memory fragmentation in substrate
virtualization [5] are two most referenced ones, since th&yitches and eat up their table resources quickly [24-26].
provide network operators and service providers the céipabi In order to realize high-performance network virtualieati
to deliver short time-to-market, flexible and cost-effeetolu- in an SNT built with PDP, we have to address two problems
tions. Specifically, SDN decouples the control and datagdarProperly,i.e., 1) table resource virtualization and 2) network
of a network for enhanced programmability and applicatioglicing based on the virtualization scheme. Specifically, a
awareness [6_8], while network virtualization allows afras- effective table resource virtualization scheme should lhle a
tructure pro\/ider (|nP) to slice its substrate network (SMITO to partition and organize the table resources in the SNT such
logically-isolated virtual networks (VNTs) and lease thesn that they can be allocated to VNTs to store their variable-
service providers (SPs) dynamically and adaptively [9-11] sized flow tables with minimum memory fragmentation. Then,

The Symbiosis of these two 0rth0g0na| techno|ogies Wouhﬂsed on the virtualization scheme, a Specific version afalir

amplify their individual advantages dramatically and grinnetwork embedding (VNE) should be formulated and solved to

us significantly more programmability, agility and scalépi facilitate cost-effective network slicing. However, tethest of
our knowledge, these two problems have not been considered

Y. Xue, J. Peng, K. Han, and Z. Zhu are with the School of Infation jointly to seek for a systematic solution before.
Science and Technology, University of Science and Teclgyolof China, In thi dv th bl for PDP. We fi
Hefei, Anhui 230027, P. R. China (email: zqzhu@ieee.org). n this paper, we study the two problems for . We Tirst

Manuscript received on January 27, 2019. leverage the idea of “Big-Switch” to design an effectiveléab

VNTs Flow Tables Flow Tables .
i i =
Network Slice 1 Network Slice 2 2
[[)
=< =< ~Z [Mateh Fields
L oy w0 @ Memory
_ _ _ _ V222 Fragmentation
- - >< - 27777772 I I 77|
— PrysicalTable) 8 7] | prysicalTable) 2T B8 Tap] [FreeMemory
; - — —
Virtual Network Embedding
PDP Switch PDP Switch

Poorly Managed Table Resources Well Managed Table Resources

Big-Switch Network

z ol 4

Fig. 2. Organizations of flow tables in PDP switches.

ITabIe Resource Virtualization

& v-sw
SNT Il. BACKGROUND AND RELATED WORK
@ @ @ s Big-Switch i i § A) . .
623 o v In this section, we first explain the operation principle of

PDP, and then conduct a literature survey on the related.work

Fig. 1. Three-layer VNE considered in this work.
A. Background

. o . : Different from the OpenFlow switches that operate on the
resource virtualization scheme in which the flow tables Ofrﬁatch fields defined based on existing network protocols

virtual SWitCh (\-SW) can be insta}lled in ”?“'“p'e ‘?‘dj?‘cené switch with PDP has the freedom of defining arbitrary
substrate switches (S-SWs) according to their table stz match fields and packet processing procedure. To achievie thi

the feasible table size(s) on each S-SW are determined b schemes such as P4 and POF have been proposed [16
on the global |n_form_at|o_n of the SNT.' In cher wor(_js, OuE’L8]. Supported by several commercially-available sohsgio
taple resource virtualization f(_)rms a B'g'S.W'tCh over_nplm 19, 20], the P4-based scheme has been widely considered.
adjacent S-SWs, each of which has feasible table size(s) t ecifically, P4 defines a high-level programming language t

are predetermined, and then embeds a V-SW onto the B ogram the processor(s) in a PDP switch for customizing the

Switch by distributing the_variable_—sized flow tables in the formats and processing procedure of packets. On the other
SWto a proper S-SW |n_|t. By doing S0, We can regul_at_e Fr}?and, a POF switch matches to an arbitrary packet field with
flow tables in the S-SWs in a more organized way to minimi

. e tuple <offset, length-, where offset represents the start
memory fragmentation.

locati in bits) of the field i ket arldngth denot
Next, we address the network slicing based on the virtuz?ﬁ)-ca lon (in bits) of the field in & packet ardngth denotes

o i s length (also in bits) [15], and processes the field with th
ization scheme by formulating a three-layer VNE problem (otocol-oblivious forwarding instruction set (POF-FIB3].

shown in Fig. 1.)’ to Qescribe the one-to-one mapping betw_eenAS both P4 and POF allow us to define arbitrary packet
;)/'?WS ar\}ds\l/Bvlg—Sw&tcgeSsWandT thtf] rr;)an);—tof-man)l: ma:ozlr}%lds with various lengths, the sizes and organization af flo
etween V-SUVs and S5-SWWS. 10 the best of our Knowledggy, o5 in 5 pDP switch are much different from those in an
such a VNE problem has not been investigated before, and
existing algorithms designed for two-layer VNE problema ca,

hardly solve it. We formulate an integer linear programmin

SenFIow switch. The sizes of OpenFlow-based flow tables
H]re the same, since each of them needs to include all the
. match fields supported by the OpenFlow specifications. For th
SLP). T.O(:EI tto solve it ggactly, andtglsol delsmtg_n a time-affiti fields that will not be matched during packet processing, the
e;.ns IIIC at can p:jo?Pt\e/Qear:phma hso ;(';?S' bled OpenFlow switch just ignores them with wildcards. However,
inally, we exten » Which s the -enabled Nelyi, enhanced programmability, a PDP switch uses variable-

work:hypervisor that we developed in [25], implement oug;, o fio tables and irrelevant match fields can be excluded
VNE algorithm in it, and improve its performance by levery, yhem Hence, as shown in Fig. 2, if an effective table re-
aging POF-based source routing [27]. The new TPVX

many mapping between V-SWs and S-SWs is maintained wgll), -, efficiently accommodate variable-sized flow tables
and thus would not cause noticeable performance degradatio) .\ \/.s\ws in S-SWs to reduce memory fragmentation
The rest of paper is organized as follows. Section Il in- '

troduces the background regarding PDP and provides a brief

survey on the related work. We explain the network mod8 Related Work

and problem description in Section Ill. Then, the ILP for the The authors of [19] have considered how to optimize the
three-layer VNE problem is formulated in Section IV, whilehardware design to relieve the memory fragmentation in SDN
the time-efficient heuristic is designed in Section V. Swutti switches, but their proposals are hardware-specific, which
VI evaluates the algorithms with numerical simulationsxt\e means that they might not be enabled on all the PDP switches.
we describe the system implementations for extending TP\Both the studies in [28, 29] proposed to use slow but abundant
and the experimental results to demonstrate its effeais®n software-based table resources as the supplement to averco
in Section VII. Finally, Section VIIIl summarizes the paper. the shortage of hardware-based table resources. Howheer, t

long lookup time of software-based table resources coulte scheme, and finally define the three-layer VNE problem.
be an issue. Meanwhile, we notice that hardware resours abbreviations are frequently used in this paper, we list a
disaggregation [30],e., spreading the usage of one or multiplehe major but not well-known ones in Table I.

types of hardware resources across multiple switches, tmigh
be leveraged to potentially solve the memory fragmentation
PDP switches. This is because existing techniques sucteas th

TABLE |
MAJORABBREVIATIONS

remote direct memory access (RDMA) [23] can be utilized toAgthV- - IFE:! _Nam? n AgﬁereV- < th:" tNam? .
. . rotocol-oblivious forwardin upstrate networ
access remote memory with relatlvely low Iatency- TCAM Ternary content-addressable mgemor S-SW Substrate switch
Shirali-Shahrezat al.[31] considered how to expedite flow VNE Virtual network embedding SL Substrate link
.. . . PDP Programmable data plane VNT Virtual network
rule evictions and delay flow rule installations to adapt to gp Sevice provider VL Virtual link
the limited table resources in SDN switches. The authors of InP Infrastructure provider V-sW Virtual switch

[32] tried to address the shortage of table resources iredarg
scale SDN-based networks with deploying aggregated defaul
paths specified by wildcard forwarding rules. They formetht A. Table Resource Virtualization in PDP

the problem as an ILP model and designed a time-efficienty, nenyork virtualization, the memory fragmentation in Fig
approximate algorithm. In [33], the proposal is to divide thy ~,nnot be removed with the one-to-one mapping between V-
TCAM in an SDN switch into small blocks with a fixed sizeq\ns and S-SWs in traditional VNE schemes [37, 38]. This is
and leverage fine-grained memory operations to reduce ig.5,se the flow tables in each V-SW have irregular sizes.
memory fragmentation in TCAM. Nevertheless, the scheme Definition 1: Sub-tables are obtained by partitioning a
m|ght need to segment and reassemble flow tables frequer}gb{ysicm table, and mapping a flow table in a V-SW to a sub-
which would lead to extra delay and overheads. table means to put all the flow table’s entries in the subetabl

A few network hypervisor systems have been developed topne approach to reduce such memory fragmentation is to
realize network virtualization in PDP [17, 24, 25, 34]. HY®e map flow tables to partitioned table resources,(sub-tables
[34] was implemented to_ach|eve network virtualization # P ¢ jifferent sizes) [39]. However, since the table resosirce
based PDP. However, since VNT requests cannot be knoyfl each PDP switch are very limited, we have the dilemma
in advance and runtime reconfiguration of physical tablggat each physical table can only carry very few flow tables
would be prohibitively difficult, HyPer4 has to pre-alloeat it gp-tables with many sizes are partitioned on each S-SW;
a relatively large number of physical tables if it needs tgierwise, memory fragmentation still exists since we rieed
reconflgu_re V|rt_ual tables at runtime. This mlght waste afot 4,,nq up flow table sizes frequently. Meanwhile, considgrin
memory in typical HyPer4 deployments. Previously, we ha\ge fact that each S-SW can be shared by several V-SWs, we
developed PVFlow [24] and SR-PVX [17] to facilitate networlgannot repartition the sub-tables in it at runtime. Henae, o
virtualization in POF-based PDP. Nevertheless, the systepe resource virtualization scheme allows the flow tabfes
developed in [14, 17, 24, 34] did not consider how to addregss\y heing mapped to the sub-tables in multiple adjacent S-
the memory fragmentation in S-SWs. In [25], we showed th§yys (e, they form a Big-Switch), while the feasible size(s)
preliminary results on TPVX, which is a POF-enabled network the sub-tables on each S-SW are predetermined.
hypervisor that can leverage the idea of Big-Switch to zeali g 3 explains the operation principle of the table reseurc
effective table resource virtualization for reducing themory i tyalization scheme. The three-layer VNE scenario isngho
fragmentation in _S-_SWs. However, the system performanﬁ:ppig_ 3(a), where we form two Big-Switches over the three
has not been optimized, and more importantly, the threerlays_g\ws and embed the V-SWs onto the Big-Switches. To
VNE algorithm for network slicing has not been designed y&hinimize memory fragmentation in the S-SWs, we partition

Finally, we hope to point out that the three-layer VNEne taple resources in them into sub-tables with differizetss
considered in this work is fundamentally different from th@ng install flow tables of the V-SWs in the sub-tables in a-best
traditional multilayer VNE [35, 36]. More specifically, thefit way (as illustrated in Fig. 3(b)). Specifically, if the sipf
traditional multilayer VNE tries to embed VNTSs onto an SN, fiow table does not equal to any of the feasible ones, we pad
that includes multiple physically-separated layerg(an IP- it with wildcards to round up its size to the next available@on
over-optical network), while in our three-layer VNE, thgdsis Tnen, the S-SWs in a Big-Switch cooperate with each other

of Big-Switches and S-SWs are actually based on the safgerealize the packet processing in each embedded V-SW.

network elements and only logically-separated. In othedsp
the one-to-one mapping between V-SWs and Big-Switchgs)
and the many-to-many mapping between V-SWs and S-SWs Network Model of Three-layer VNE

in our problem are correlated and thus cannot be optimized/Veé model the SNT as an undirected graph(V;, E),
separately. Therefore, our VNE problem is more complex. Where Vs and E are the sets of S-SWs and substrate links

(SLs), respectively. For simplicity, we assume that each S-
SW v, € V, only contains sub-tables with one sizédence,
Ill. PROBLEM DESCRIPTION the table resources in each S-SW have a table wizeand

In this section, we first describe the table resource virtu-; _ _ - . .

lizati h that lever Big-Switch to realiz W Note that, this assumption would not limit the generalitytia# algorithms
alization scheme that leverages big-owiich {0 realize o designed in this work, since they can handle S-SWs with plaltable sizes
virtualization in PDP, then explain the network model based after minor modifications.

TN vews s A the pairs of table size (in bits) and entry depth. For instanc
L — tz = the (32,60) and (20, 80) asideV-SWa means that the V-SW
\ / | E—— 3
Lzl E]]E pentecs requires two types of flow tables: B flow tables whose
Vinuahzaﬁ;;‘Layer/ B S 1 Free Memory sizgs are32 bitsI qnd E)SO entries or:ZO—bit ones. A
vy ok [2m 2
N o S SN Fig. A_,(c) explains how to map the VNTs onto the S_NT_ by
Em mm leveraging the Big-Switches, where the dotted cycles atdic
SSW3 the configurations of Big-Switched.€., the many-to-many
SNT sswi | [CEOImam | [sswe mapping between Big-Switches and S-SWs). It can be seen
ﬁv& - = == clearly that our three-layer VNE problem is different fromda
& i Sub-Tables — more complex than the traditional two-layer and multilayer
—— SEW2 Sub-Tables) T VNE problems. Specifically, our problem not only has more
complex node mapping but also needs to address more so-
Fig. 3. Table resource virtualization in PDP leveraging-Bigitch. phisticated link mapping. For instance, each link betweem t

Big-Switches actually relates to a set of SLs and/or sutestra
paths, since each Big-Switch includes multiple S-SWs.
an entry depthd,_, which denote the size of each physical
sub-table and the number of entries that the S-SW can store,
respectively. Note that, we allow one S-SW can be used
by multiple Big-Switches in the three-layer VNEg., the In this section, we formulate an ILP model to solve the
mapping between S-SWs and Big-Switches is many-to-magjorementioned three-layer VNE problem for embedding a
The bandwidth capacity of an St, € E, is denoted a$.,. VNT in the SNT. We first preprocess the SNT and VNT
The Big-Switches generated over the S-SWs form a né&s follows. The connectivity ofs(V;, E), which is the
work, which can also be modeled as an undirected grapfpbability that any two S-SWs i, are directly connected in
Gy(Vs, Ey). Here,V, and E, are the sets of Big-SwitchesGs, is represented as We calculatek” shortest paths between
and the links to interconnect them, respectively. Sinceneagach S-SW pair ir7(Vs, E,)? and store them in the path set
Big-Switch v, € Vj includes several adjacent S-SWs thal’, where a subseP,_ . includes all the calculated paths
are fully connectedy, has a set of table sizes and a sdietweenus andvs (us,vs € Vs). If we have K =1, P,_ .,
of corresponding entry depths. We ugévb to denote the degenerates as the shortest substrate path,. Then, we
table size of thei-th S-SW in Big-Switchv, € V4, and the definehop(-) to return the hop-count of a path, and use
corresponding entry depth i . A VNT is also an undirected and oy, to denote the average value and standard deviation of
graphG,(V;, E,.), whereV,. and E,. are the sets of V-SWs andthe hop-counts of all the paths i, respectively. The average
virtual links (VLs), respectively. Each V-SW requires @ént Vvalue and standard deviation of the required table sizebeof t
table resources, which can be represented by pairs of fldes tagNT are denoted as and o, respectively.
sizes and entry depths. Similarly, we usé to denote the Notations:
table size of thé-th flow table array in V-SW,. € V,. and the o G4(Vs, Ey): the topology of the SNT.
corresponding entry depth i . The bandwidth requirement .« <: the connectivity of the SNT.
ofa VL e, € E, can be denoted ds,. The mapping between . P: the set of substrate paths, wherg ,. € P is the
V-SWs and Big-Switches is one-to-one. path to connect:s andv (us,vs € V).
« h andoy,: the statistics regarding the hop-counts of all
the paths inP.
o b(u, .- the available bandwidth on substrate pagh . .
To facilitate the three-layer VNE, we first determine all the « w,_: the table size of the sub-tables on S-S\W
feasible Big-Switch configurations in the SNT. Specifically « d,_: the entry depth of S-SW,.
this can be done by search(V;, E;) to find all the complete « G (V}, E): the topology of the Big-Switch network.
subgraphs in it, and to limit the complexity of the search, , &v: the indicator that equalk if S-SW v is included in
we can restrict the node-count of each complete graph below Big-Switch v,, and0 otherwise.
certain thresholdg.g, 3). Then, we obtainG,(V;, E) and e G.(V,, E,): the topology of the VNT.
can solve the three-layer VNE problem with either an ILP o v}, : the table size of the-th flow table array in V-SW

IV. ILP FORMULATION

C. Problem Description of Three-Layer VNE

model or a time-efficient heuristic. To explain the thregela vy € Vi
VNE, we show an illustrative example in Fig. 4. Here, Fig. « d! : the entry depth of the-th flow table array in V-SW
4(b) shows the SNT, where the number on eacheSlis its vy € V.

bandwidth capacity., while the tuple aside each S-SW e b, : the bandwidth requirement of Vk,. € E,..

is its table size (in bits) and entry depite., (w,,,d,,). For « w ando,,: the statistics regarding the required table sizes
example, the(64,100) aside S-SW1 means that the S-SW of the VNT.

has a table size di4 bits and the corresponding entry depth

is 100 entries. The two VNTs are plotted in Fig. 4(a) wher 2|In an SNT where the bandwidth resources are much more abutidan

h h .. idth . ’ %e table resources.€., in most of the practical cases), we can only calculate
the number on each VL is its bandwidth requirement, and thg sportest path between each S-SW pair, (X = 1) to limit the complexity

tuples aside each VN are its table resource requirementoifihe model and avoid causing unnecessary latency in thesVNT

VNT 128,20}
10 {64,503
@——@ 15 —® 15
20,80} 32,60}
(48,30} (48,20} © @
{100,10} {5630} {64,40} (32,60}
{32,50} {20,80}
Big-Switch Network {128,50}
B){64,100}
{32,200} {32,200}
15,732,600\ 20 {64,100} {64,100}
20,80} {128,503 (64,100} (128550} {64,100} {64,100} (32,200}

{32,200} {32,200}

15 SNT

(128,20} (64,40} (12850} 5¢ {64,100} (12850} {64,100}
(64,50} 10 (32,50} 25 A2 0 25 @—5 @0
e SER> N CERD.
{20,80} {32,603 GRS (64100} (64,1000@) & 564100
48,30} {48,20} 25 (32,2001 45~ (33200} 45
{100,10} {56,30} {32,200} {32,200} i ” {32,200} {32,200}

(a) VNTs (b) SNT (c) Three-layer VNE solutions

Fig. 4. Example on three-layer VNE for network virtualiatiin a PDP-based SNT.

Variables: Constraints:
« 0,7 the boolean variable that equalsif V-SW v, is 1) Node Mapping Constraints:
embedded onto Big-Switch,, and0 otherwise.

. pf;jr: the boolean variable that equalsf the i-th flow Z Guy =1, Vor € Vi “)
table array in V-SW,. is embedded onto S-SW,, and EVD
0 otherwise. Eq. (4) ensures that a V-SW can be embedded onto one and

. w(eug) the boolean variable that equalsif VL e, is only one Big-Switch.
embe&ded onto substrate path .., and0 otherwise.))
Objective: pilr (do = i) 20, Vo, €Vi, v €V,)

In our three-layer VNE, each VNT actually consumes tWEq. (5) ensures that all the flow table arrays in each V-SW

S'SWs and the banduicth resources on SLs, For the (ajg STPedded Onfo the S-SWs whose ey depths are large
resources, since a flow table array in a V-SW can be embedc?é‘é)ugh to accommodate them.

onto an S-SW whose table size is larger than its, we should pivr . (wvs _ wi,,.) >0, Vo, €V, vs €V (6)

try to minimize such table resource wastés.(the memory

fragmentation). Hence, we leverage the coefficient of Wana Eq. (6) ensures that if a V-SW is embedded onto a Big-Switch,
to normalize the memory fragmentation in the SNT as each of its flow table array can be embedded onto an S-SW

in the Big-Switch and the S-SW's table size is large enough.
1 1 1,0 i _ .
¢t = E —E d%r <Z vas * Woyg - dv7,> —w] . (1) Z p;b;s’vr . é-:jlz; — (5:;;, Yo, € Vr, vy € %7 i (7)

Vg, Up 1
vsEVs

Similarly, the bandwidth utilization can be normalized as Eq. (7) ensures that the node mapping relations defined by

1 1 B two variablesp!;"~ anddy; are consistent.
vy = - TN D> Wi w hop(Puse) | —hp 2) Link Mapping Constraints:
" Pug,vs €EP er
(2 > Wi oy ber Sbusw)y YPusw, € P (8)
We try to minimize the total normalized resource utilizatio ercBy

Meanwhile, we hope to point out that the connectivity of SNEq. (8) ensures that if a VL is embedded onto a substrate path,

actually affects the formulation of Big-Switches in ite., a . ; , .
better connected SNT leads to more feasible Big-Switchétss. bandwidth demand would not exceed the path's capacity.

For instance, the well-knowt-node NSFNET topology [40] Z W oy =1, Ve, € By 9)

only provides23 Big-Switches while we can form55 Big- pusmneP

Switches in al4-node complete graph, if we limit the number i

of S-SWs in each Big-Switch withiri2,3]. Therefore, we Eq. (9) ensures that each VL is embedded onto one and only

design the overall optimization objective of the ILP as one substrate path.
Minimize = a -y +e- (1 —) - ¥y, ©) SN wleme)ew = s,
vsE€EVs v €V, (10)

where o is the weight coefficient to balance the importance Vup € Vi, us € Ve, {ur: (ur,vr) € B}

of the two terms. In general, we hawe> 0.5 to ensure that
minimizing the first term is the major objective, while the Z Z wguravr)). wo= g

actual setting ofx will be discussed in Section VI when we U €V urEVr (11)
present the numerical simulation results. Yoy € Vi, vs € Vs, {vr: (ur,vr) € Er}.

Egs. (10) and (11) ensure that if a VL gets embedded onto Algorithm 2: Preprocessing of SNT to build big-
substrate path, the node mappings of its two end V-SWs amwitch network

correctly represented by variabi¢-, andvice versa Input: Latest SNTG,(Vs, Es), number of
Big-Switches in Big-Switch networl,
maximum S-SWs in a Big-Switch,,.

Eqg. (12) ensures that all the link mappings are bidirectiona Output: Big-Switch networkGy(V;, Ep).

1 remove S-SWs i/, whose table size and entry

wltror) = () V(ur,vr) € Er, Dugw, € P. (12)

(us,vs) — T(vs,us)?

V. HEURISTICALGORITHM depth cannot satisfy at least one required flow table
To solve large-scale three-layer VNE problems time- array inV;;
efficiently, we design a heuristic in this sectiokigorithm 1 2i=0, V=V

shows its overall procedure, which includes four major step 3 while i <V or V! # 0 do

1) preprocessing to build the Big-Switch network, 2) finding 4 select an S-SW in, € V;
node mapping candidates, 3) finding link mapping candidates s VIi=Vi\vs, j=1,i=1i+1;
and 4) determining the three-layer VNE scheme based ons create a new Big-Switch, insertwv, in vy, and
dispersed mapping. The following subsections explain the updateg;’;
details of the four stepd.é., Algorithms2-5). 7 while j <V, do
try to find an S-SWu, € V; that is adjacent
Algorithm 1: Overall procedure of dispersed three- to all the S-SWs invy;
layer VNE (D3L-VNE) 9 if such an S-SW cannot be fouttaen
Input: Latest SNTG, (V,, B,), VNT G, (V,., E,). . e|n dbreak'
1 preprocess SNT7; with Algorithm 2 to build a 12 insertu, in Big-Switch v, and update?:;
Big-Switch networkG, (V4, E;) for carryingG,; 13 j=i+1 '
2 find node mapping candidates wiligorithm 3; 14 end
3 find link mapping candidates witAlgorithm 4; 15 end
4 try to get the VNE scheme fa&, with Algorithm 5; 16 return (G, (Vy, Ey));
5 if a feasible VNE scheme cannot be fouhdn
6 | mark VNT G, as blocked;
7 end

G.(V,., E,) can be embedded onto at least one Big-Switch
in Gy(Vs, Ey). Here, we useflag to indicate whether a V-
SW v, can be accommodated by at least one Big-Switch in
A. Preprocessing of SNT Gb(%,Eb) (Line 3) In the fOf-lOOp that covertines 4-10,
Algorithm 2 explains how we preprocess the ach Big-Switch is checked to see whether the table reseurce

G.(V,,E) to build a Big-Switch networkG(Vs, ;) on In its S-SWs can support all the required flow table arrays in

which the VNTG, (V;., E,) can potentially be embedded. Notethe V-SWou,.. Note that, to avoid severe memory fragmentation

that, to limit the problem size when the SNT is relativel\gkayr in the substrate table resources, we set an upper-bound on
we set upper-bounds on the number of Big-Switches that V\}iﬂe largest Wasted'table frqgmentatme,, Wi Suppose we

be included in the Big-Switch network and the number of Jlan to embed the-th requweid flow table array im, onto

SWs in each Big-Switch, which arg andV,,, respectively. S-SWu,, then we must havey,, < w,, and the wasted table
Here, we usually se¥,,, = 3 since complete subgraphs with Jragmentatlon can be calculated as
larger size are difficult to be found in a normal SNT topology, Wy, — W

while the setting ofV should be determined based on the W= Swgw

size of the VNT.Lines 1l and 2 are for the initialization, . S :

where we ignore the S-SWs whose table resources are Wcr)]tICh ETOUld be Ies? than/f.dMeanvyhllei since each reql;ged
compatible with at least one required flow table array in tmow table array aﬁp 1es tW%’ |mhe_nS|_ona frf(_equwe_menctis, S a
VNT. Then, the while loop that coversines 3-15 tries to ?Ve to ensure the entry depthun is sufficient,i.e, d, =

build Big-Switches one by one based on S-SWs that forﬁw'r' If the two-dimensional requirements of all the required
ow table arrays inv, can be satisfied by, we insert the

complete subgraphs. The time complexity Afjorithm 2 is mapping as a tuplév,, v,) in the node mapping candidate

O(|V5)? - V). : o
set M, and updatefiag (Lines 6-9). Otherwise, if any of
o) _ the required flow table arrays . cannot find at least one
B. Finding Node Mapping Candidates feasible S-SW in all of the Big-Switches, we will return an
With the Big-Switch network&,(V;, Ep) obtained byAl- empty M, to indicate that the VNTG, should be blocked
gorithm 2, Algorithm 3 checks the Big-Switches in it basedLines11-13). Finally, inLine 15, we return the obtained node
on their table resources to find the candidate Big-Switchesapping candidate sgi1,,. The time complexity ofAlgorithm
for node mappingLine 1 is for the initialization. Then, the 3isO(|V,|-|V;|- Vi, -V},), WhereV is the maximum number

m m

for-loop coveringLines 2-14 checks whether each V-SW inof flow table arrays required by V-SWs.

; (13)

Algorithm 3: Finding node mapping candidates to avoid considering the substrate paths that are too lohigkin

Input : Big-Switch networkGy,(V4, Ep), VNT mapping, for saving. bandwidth resources. Next, after tgavin
G,(V,, E,), largest wasted table checked all the feasible S-SW pairs, we will return empty,
fragmentation that is permitterd;. andM, to indicate that the VNT,. should be blocked nes

Output: Set of node mapping candidated.. 20-22) if zero feasible link mapping candidate has beendoun

L M. — Here, the updated node mapping candidaterdgtis used to

store each node mapping candidate that will lead to feasible

2 for each V-SWb, € V. do link mapping candidate(s), and thus we hav¢, C M,.
3 | flag=0; _ Finally, Line 24 returns the obtained1, and M,,. The time
4 | for each Big-Switchy, € V4 do complexity of Algorithm 4 is O(|E,.|2 - [Vb|2 - Vin2).
5 try to embed all the required flow table arrays
Itﬂz:t, tﬁgtgot::triir?tvx;ﬂ;?)bisw:(;lf vrig?aktgg; sure Algorithm 4: Finding link ma_pping_ candidates
6 if all the flow table arrays can be embedded Input: SNT G (V5, E;), Big-Switch network
then Gb(%,Eb), VNT GT(W,ET), node mapping
- insert tuple(v,, vy) in My; candidate setM,,, maximum holp—courlhm.
8 flag = 1; Output: updated node mapping candidate gdt,,
9 end link mapping candidate set..
10 | end 1 M, =0, M, =0;
11 if flag =0 then 2 for each VL(u,,v,) € E, do
12 | return (M, = 0); 3 | checkM, to find all the feasible Big-Switches
13 end that can carry V-SWu, and store them iV} ;
14 end 4 check M, to find all the feasible Big-Switches
15 return (M,); that can carry V-SWb,. and store them i;’,;
5 flag = 0; l
6 | for each Big-Switchy, in V}, do
— . . . 7 for each S-SW,;, in Big-Switchu, do
C. Finding Link Mapping Candidates . for each Big-Switchy, in V¢, do
Algorithm 4 finds all the feasible link mapping candidates ¢ for each S-SW; in Big:SWitchvb do
based on the set of node mapping candidatds from 10 get substrate path,,, ,, from P;
Algorithm 3. Line 1 is for the initialization. We use the for- 11 if hop(pu,.v,) < hm and the
loop coveringLines2-23 to find all the feasible link mapping bandwidth requirement(,, .,
candidates for each Vlu,,v,) € E, in the VNT. Based on can be satisfied by,, ., then
M., Lines3 and 4 find all the feasible Big-Switches that can 12 insert tuple((w,, v), Pu, v,)
carry the end V-SWs ofu,,v,) and store them i}, and in M¢;
Vit,, respectively. We still useflag to indicate whether the 13 insert tuples(u,., uy) and
VL (u,,v,) can be accommodated by at least one substrate (Up, vp) IN My,
path Line 5). Then, the multi-level for-loops frorhine 6 to 14 flag =1,
19 try to determine the link mapping candidates. Note that,is end
the mapping between Big-Switches and S-SWs are many-torg end
many. Hence, for each feasible Big-Switehin V;/,, we need 17 end
to check all of its S-SWs for the link mapping,yand the samesg end
thing is applied to each feasible Big-Switeh in beQ. 19 end
Here, we would like to point out that the three-layer VNE 20 if flag =0 then
and the introduction of Big-Switches make the link mapping 21 | return (M, = 0, M, = 0);
in this work significantly different from those in traditieh 2 end

VNE problems. Specifically, as long as an S-SW is in the Big-23 end

Switch on which a V-SW gets embedded on, the V-SW canyy return (M., M.,);

use it as an end S-SW in the related link mapping even though

none of the required flow table arrays actually gets embedded

on the S-SW. This additional freedom in link mapping is

brought by the operation principle of Big-Switchés., the D. Determining Three-Layer VNE Scheme

S-SWs in a Big-Switch cooperate with each other to processFinally, we designAlgorithm 5 to calculate the three-layer
packets as in a logic switch. lhines 11-15, we insert the VNE scheme for the VNTG, (V,, E,) based onM, and
tuple ((ur,v,), pu,v,) @s a link mapping candidate M., M,. Here, we leverage dispersed mapping to avoid the “big
if the substrate path,,, ,,, has sufficient bandwidth capacityisland” problem [37],i.e., when multi-dimensional resources
to carry (u,, v,-) and its hop-count does not exceed the presate considered, the unbalanced utilization of certain (g)pe
thresholdh,,,. Here, the preset threshold on hop-count is used resources could make the remaining types of available

resources unusable [37, 41, 42]. Therefore, in the irdtion

Algorithm 5: Determining VNE scheme with dis-

in Lines1-10, we assign a counter to each Big-Switch to checlpersed mapping

how many times its S-SWs could be used in a potential node
mapping of certain V-SW. Then, in the node mapping of each *
S-SW, we should try the feasible Big-Switches in ascending 2
order of their counters, as shown lrines 11-19. Note that, 3
the “total entry depth” of a V-SWu,. (Line 11) means the 4
summation of the entry depths of all its required flow table 5
arraysji.e, . d., . Lines20-22 take care of the exception that

one or more V-SWs cannot be embedded in the SNT. The link
mapping for each VL is handled ihines 23-33. Here, when
there are multiple feasible substrate pathise 26 randomly
selects one and tries to use it for the link mapping. This is
also for realizing the dispersed mapping. The time complexi
of Algorithm 5 is O(|V;.| - [Vs| - Vi + |Ex| - |P)).

=
o © 00 N O

11

V1. PERFORMANCEEVALUATION .
In this section, we first evaluate the performance of ours
proposed algorithms with extensive numerical simulations 14
Specifically, we consider two scenarios: 1) the small-soake 15
time operation and 2) the large-scale dynamic operations. D 15
to the complexity of the ILP, the small-scale scenario igiuse 17
analyze the ILP’s sensitivity to parameter in the optimiat g
objective (.e, « in Eq. (3)) and to compare its performance g
with that of the heuristic (D3L-VNE). In the large-scale sce
nario, we consider the dynamic VNT requests that come and;
leave on-the-fly in relatively large SNTs to further invgstie 2,
the performance of D3L-VNE with respect to two benchmark ,3
algorithms. In the simulations, the topologies of the SN@ an 4
VNTs are all randomly generated with the GT-ITM tool [43].
Each data point is obtained by averaging the results 26m
independent simulations.

25
26

_. 07 : : :
N =022 28
g ~o_ H-c=0.4 29
= 06 - _ 20
£ -
e - . 31
= 05 S .
8 .. 32
(] ~
= u.
o) S S - 33
= 04
s 34
2 35
®) | | | | J

0.3

1.0 0.9 0.8 0.7 0.6 0.5 36

Weight Coefficient «

Fig. 5. Sensitivity analysis of the ILP.

assign a countet,, = 0 to each Big-Switchy, € V4;
for each tuple(v,, vy) € M, do
for each required flow table arrayin v, do
for each S-SW);, in Big-Switchv, do
if embedding of),. on v, can take table
resources invs then
| o, =co, +1;
end
end
end
end
for each V-SWb,. € V. in descending order of total
entry depthdo
flag = 0, get all the feasible Big-Switches far.
from M, and store them iV;;
for eachv, € V}f in ascending order of,,, do
try to embedv,. on the S-SWs iny,;
if the embedding is successthen
| flag =1, updateG, and G, break;
end
end
end
if flag =0 then
| return (FAILURE);
end
for each VLe, € E, do
flag = 0, get all the feasible link mappings for
e, from M, and store them iP?;
while P? # () do
select a substrate pathe P* randomly;
Pt =P'\p;
if p has enough bandwidth to cargy. then
embede, ontop and updater, and Gy;
flag = 1, break;
end
end
end
if flag =0 then
| return (FAILURE);
else
| return (SUCCESS);
end

A. Small-Scale One Time Operation

In this scenario, we use an SNT that includéss-SWs {.e.,
|Vs| = 14) whose connectivity is within {0.22,0.3,0.4}. For

are randomly selected withifil6, 20, 32, 48, 64, 96, 128} bits
and [5, 20], respectively. The bandwidth requirement of each
VL is uniformly distributed within[5, 10] units.

the sub-tables on each S-SW, their table sizes and entrizglept 1) Sensitivity Analysis of ILPWe first conduct simulations
are randomly selected frofB2, 48, 64,128} bits and within with different settings of the weight coefficient to analyze

[50,100], respectively. The available bandwidth on each Sihe

sensitivity of the ILP. Here, we fixV;| 14 and

is uniformly distributed within/50, 100] units. Meanwhile, the |V,.| = 6 and consider two connectivity settings for the SNT,
size of a VNT is fixed asV;.| = 6 and the connectivity of its i.e, e = {0.22,0.4}. Fig. 5 shows the simulation results on the
V-SWs is1. We assume that each V-SW requifes3] flow overall optimization objective calculated with Eq. (3).cin

table arrays, while the table size and entry depth of ea@dyarbe seen that in both scenarios, the overall objective deesea

with «. This suggests that the value of (i.e., the normalized « Average table wastethe average table waste due to
memory fragmentation in the SNT) in the first term of EQ. memory fragmentation on the sub-tables in the S-SWs
(3) is actually larger and thus contributes more to the dvera over the time of each simulation.
objective. Therefore, the results in Fig. 5 confirm that the Fig. 6 shows the simulation results with the SNT that has
optimization objective of the ILP is properly designed, ang/s| = 50 ande = 0.2. In Fig. 6(a), we can see that among the
we will setar = 0.9 in the subsequent simulations. algorithms, D3L-VNE provides the highest acceptance ratio
2) Comparison between ILP and D3L-VNEFhen, we which confirms its effectiveness. As expected, the acceptan
compare the performance of the ILP and D3L-VNE. Here, Wgtio from N2L-VNE is the lowest and much worse than those
consider the different connectivity of substrate netwa@kd from D3L-VNE and FF3L-VNE since it does not consider Big-
Table Il summarizes the results. The overall objective froRyitches. The fact of D3L-VNE accepting more VNTs than
D3L-VNE is close to that from the ILP, while the rUnningFFgL_VNE confirms that the dispersed mapp”ﬂlwlgonthm
time of D3L-VNE is much shorter than that of the ILP. The; helps to accommodate more VNTs. The average bandwidth
results verify the effectiveness of our proposed algorithm gnd table usages in Figs. 6(b) and 6(c), respectively, durth
explain the superiority of D3L-VNEi.e., it can organize the
B. Large-Scale Dynamic Operations VNTs in the SNT in the best way such that the most bandwidth
In this ScenariO, we consider two |arge_scale SNTs With and table resources can be utilized in the service pI’O\lh{ipﬂ
S-SWs whose connectivity is 0.2 and 0.3 (i.e., there are Again, since N2L-VNE does not consider Big-Switches or
238 and361 SLs, respectively). For the sub-tables on each 81emory fragmentation, it causes the highest table waste as
SW, their table sizes and entry depths are randomly selecf®wn in Fig. 6(d). Meanwhile, it is interesting to notice
from {32, 48,64, 128} bits and within[50, 100], respectively. that D3L-VNE and FF3L-VNE perform similarly in terms of
The available bandwidth on each SL is uniformly distributeth€ average table waste. This is because both of them try to
within [50,100] units. On the other hand, the size of eacRlnimize the memory fragmentation during node mapping.
VNT is |V,| € [2,6] and we set the connectivity &#s5. Each The results in Fig. 7, which are from the simulations using
V-SW requires|2, 3] flow table arrays whose entry depths arée SNT with [V;| = 50 ande = 0.3, exhibit the similar
randomly selected withiff10,20]. To mimic the table size trends as those in Fig. 6.
distribution in a real network, we follow the procedure in
[19, 39] to analyze a program for L2/L3 switches, which is VII. SYSTEM IMPLEMENTATION AND EXPERIMENTAL
derived from the open-source P4 program switch.p4 [44], and DEMONSTRATIONS
determine that the table sizes of the f_Iow _table arrays _shou,hl(_j System Implementation
be selected fron{32, 42, 60, 108, 128} bits with probabilities
of {0.21,0.04,0.66,0.01,0.08}, respectively. The bandwidth
requirement of each VL is withifiL0, 20] units. The dynamic

Previously, in [25], we have designed and implemented a
network hypervisor, namely, TPVX, which can realize the

VNT requests follow the Poisson process that has an averégple_ resource virtualization and network slicing for PDP.
arrival rate ofA VNTSs per time-unit and the average life-time ecifically, TPVX can create and manage VNTSs over an SNT

of each VNT as! time-units,i.e, their load is2 in Erlangs. that is built _With POF-based S-SWs, and when mapping the
In addition to D3L-VNE, the simulations consider twollOW tables in V-SWs to S-SWs, TPVX considers their table
benchmarks as follows. sizes and the pre-formatted sub-tables in the S-SWs to wepro

. Normal two-layer VNE (N2L-VNEXhis algorithm does table resource utilization and avoid memory fragmentation

not consider Big-Switches, and it applies the normal tw(%-jowever, TPVX should still be improved from two perspec-
layer VNE to embed the V-SWs in each VNT onto th ives, which are 1) an effective three-layer VNE algorithm

. . efe.g, D3L-VNE) should be implemented in it to ensure that
S-SWs with one-to-one mapping. . .
o . cost-effective VNE schemes can be calculated for variou$ VN
o First-fit based three-layer VNE (FF3L-VNEbhis algo- o
: :) . : requests, and 2) the overheads on table resource utilizatio
rithm considers Big-Switches in the same manner Fhd packet processing due to the network virtualizatioukho
D3L-VNE, but it utilizes the first-fit scenario to determin

e minimized. The first perspective can be easily understood
the VNE schemes. In other words, FF3L-VNE leverages, . . .
Algorithms 1-4 in D3L-VNE, but replaceglgorithm 5 While the explanations on the second one are as follows.

with a first-fit based manping selection scenario Note that, to realize network virtualization, a network hy-
ppIng ' pervisor needs to tell the S-SWs how to distinguish packets

The simulations compare the algorithms in terms of tg,|5nging to different VNTS, and this is done by the hypeswis

following performance metrics. installing control flow tables in the S-SWs in addition to
« Acceptance ratinthe ratio of accepted VNTs to totalthe flow tables from the VNTsi.€. the tenant flow tables).
arrived ones in each simulation. For example, control flow tables need to be installed in
« Average bandwidth usagéhe average bandwidth usagentermediate S-SWs to route the packets in different VNTs
on each SL over the time of each simulation. correctly. Here, the intermediate S-SWs refer to the S-SWs
« Average table usagehe average usage of the sub-tablegat are intermediate nodes on the substrate paths carrying
in the S-SWs over the time of each simulafion VLs. As shown in Fig. 8(a)YL a-b in VNT 1 is embedded on

SHere, an entry in a sub-table is either fully used or not usedllaand substrate paths-2-3. Hence,S-S\NZ_is an interm_ediate S'SWv_
thus this average table usage includes the memory fragtimenta and control flow tables need to be installed on it for processi

10

TABLE I
PERFORMANCECOMPARISONS BETWEENILP AND D3L-VNE

ILP D3L-VNE
SNT VNT First | Second| Overall Running First | Second| Overall Running
[Vs| € [Ve| | € | Term | Term Objective | Time (s) || Term | Term | Objective | Time (s)
14 | 0.22 6 1| 0.56 0.01 0.57 35.5 0.67 0.02 0.69 0.06
14 0.3 6 1| 051 0.07 0.58 47.5 0.54 0.05 0.59 0.09
14 0.4 6 1| 0.49 0.11 0.60 289.3 0.57 0.07 0.64 0.13

o
©

o
@

A-D3L-VNE
©-FF3L-VNE
N2L-VNE

o
N
o

0.2

o

3
o
N

E

N2L-VNE 0.15

o
o
S

4-D3L-VNE
©-FF3L-VNE|

I3
o

Acceptance Radio
Average Bandwidth Usage
Average Table Usage

o
i
&
Average Table Waste

0.02 f 4-D3L-VNE 0.1 N2L-VNE
0.1 ©-FF3L-VNE|
05 N2L-VNE
10 20 30 40 50 6‘0 010 20 30 40 50 60 0 0510 20 30 40 50 60 0o 10 20 30 40 50 60
Traffic Load Traffic Load Traffic Load Traffic Load
(a) Acceptance ratio (b) Average bandwidth usage (c) Average table usage (d) Average table waste
Fig. 6. Large-scale dynamic simulation results (S\;| = 50, € = 0.2).
1
coo smvel § g o
go 3 0.08] S 02
g N2L-VNE = 35035 =
g 08 < 006 3 03 2
30 s R
§) o 4A-D3L-VNE g€ 02 4-D3L-VNE g 01 N2L-VNE
< © 0.02 -&-FF3L-VNE| 2 0.15 -e-FF3L-VNE 2
06 ‘ i :% N2L-VNE <7 N2L-VNE <
10 20 30 40 50 60 O10 20 30 40 50 60 0 110 20 30 40 50 60 00 10 20 30 40 50 60
Traffic Load Traffic Load Traffic Load Traffic Load
(a) Acceptance ratio (b) Average bandwidth usage (c) Average table usage (d) Average table waste
Fig. 7. Large-scale dynamic simulation results (S\;| = 50, € = 0.3).
VNT 2
¢ . Nt g . additional operation complexity and thus latency. Thislaixs
why TPVX should be improved from the second perspective.
Match ___Jcion__ Therefore, we leverage POF-based source routing (SR) [27,
‘enant = utput Pol - .
Tonant D=2 _ Output Port3 p— 45] to extend TPVX for using much fewer control flow tables.
— | Culput P Specifically, as described in [27], POF-based SR inserts an
]) , [Isresmlrdl SR Headerin each packet to explain its forwarding path to
@f """ P Br?w’@f?oii""f@ """ Port each intermediate switch.€., which output port the packet
o 0, el should take on a particular switch). Hence, each interntedia
NN S-SW only needs a fixed number of shared control flow tables
(a) ‘S (b)

to process all the packets going through the VLs that use it.
For each packet, the shared control flow tables pop the first
Port field in its SR Header parse the designated output port,
and then forward the packet accordingly [27]. As shown in
Fig. 8(b), the TPVX with this extension can minimize the
overheads due to control flow tables in intermediate S-SWs.

Fig. 8. Examples on control flow tables in an intermediateVB-®r (a)
original TPVX, and (b) extended TPVX that uses SR.

packets going througWL a-b, even thougls-SW2 does not

carry any V-SW. On an intermediate S-SW, we normally need The overall system architecture of the improved TPVX is il-

to install one control flow table for each VL that uses it, tustrated in Fig. 9, where we divide the system into the setvi

match to the tenant ID encoded in packets going through théntrol, orchestration, virtualization and infrastruetuayers

VL and route the packets correctly. For instance, in Fig),8(according to their functionalities. The service layer pdes

we also have VLe-d in VNT 2 embedded on substrate patlthe API to the service providers (SPs), through which they

1-2-4, and thus two control flow tables needs to be installed gan submit their VNT requests to the infrastructure prowide

S-SW2, each of which matches to the tenant ID of a VL anginp). After a VNT request has been provisioned succegsfull

route the corresponding packets correctly. This is alsoth@wv the InP creates a tenant controller in the control layer ler t

previous version of TPVX in [25] was implemented. VNT and passes it to the VNT’s SP, and then the SP can use
Nevertheless, the control flow tables lead to additionat-ovét as an SDN controller to manage the tenant flow tables in

heads, since each intermediate S-SW needs to spend tablehe-VNT. The orchestrator in the orchestration layer works a

sources on them and matching packets to them would bringtire “brain” of TPVX to calculate the VNE schemes for the

11

|Service ‘ latency induced by the Big-Switches cannot be evaluatell wit
ILaver Tenant 1 Tenant 2 Tenant 3 i | . . o
C2vers - . S _ S——.] simulations. Therefore, our experiments will first meaghee
 Control Tenant Char Tenant |, latency in various situations and then send high-definition
i Layer Controller Controller Controller ! A . h .
e e e ! (HD) video streams through the VNTs built over Big-Switches
trati] . h

ayer Orchestrator ; to further verify the practicalness of our proposal.
T -~

Node Aspect Link Aspect

Table Management

N
a
o

Control Table
NV_GT_Header| SR_Header | ...
SRFlag | TTL | Port| Port | ...
Control Entry

Match SR Flag

TTL -1, Remove Port
Output

Table
Padding

Table
A ad Handler

N}
o
=)

Entry Management

=
a
=}

=
o
=)

Match Rewriting

Tenant Entry Handler
Action Rewriting

3
=)

Control Entry Handler

o

1 2 3 4 5 6

Average Packet Processing Latency (1 S)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9. Overall system architecture of improved TPVX.

Number of Tenant Flow Tables in Packet Processing Pipeline

Fig. 11. The worst-case latency in a Big-Switch that inchitteee V-SWs.

C. Latency Measurements

We first consider a Big-Switch including three S-SWs.(
) S-SWs9-11 in Fig. 10) and embed a V-SW on it. Then,
VNT requests based on the latest SNT state, and we implemgat change the packet processing pipeline in the V-SW from
our D3L-VNE algorithm in it. The virtualization layer bri@s containing1 to 6 tenant flow tables, and measure the worst-
the control communications between the tenant contradiets 56 latency for the packet processing in the Big-Switcle Th

the S-SWs in the infrastructure layer, and according to thegyits in Fig. 11 show that as expected, the average latency
VNE schemes, itinstalls both control flow tables and traBsla jycreases with the number of tenant flow tables in the pigelin

tenant flow tables in the SNT. Specifically, as plotted in Figy ¢ the |atencies are in the order p§ and thus very short.

9, this layer handles the network slicing from both the nodgext, we consider the multi-hop scenario and map two VNTs
and link aspects, where the POF-based SR is considered injihge SNT as shown in Fig. 10. Specifically, each VNT only
link aspect. The infrastructure layer contains the SNT, he.,nsists of one VL, and the Vla-A-B-b is embedded as(5,
POF-based switches can form Big-Switches. Since the desigrg(10, 9, 11)-b (Path1) while the VL: c-C-D-d is embedded
and implementation of TPVX have already been elaboratedd@ ..(1, 9)-4-(5, 6)-7-(9,10,11)-b (Path 2), where the S-SWs in
[25], we save the discussion on them here. “()" form a Big-Switch. We still fix the total number of tenant
flow tables over each VL &6, consider different distributions
of the flow tables over each path, measure the total packet
processing latency with the standard scheme in [47], and plo
the results in Fig. 12. It can be seen that the longest latenci
in the worst-case scenarios are still in the ordepsf Since
our proposal actually sacrifices the memory access latancy i
exchange of the efficiency of memory utilization, we expect
it to be useful in the environment where the network latency
can be controlled welld.g, in a datacenter network).

IIL I IIL |

Path 1 Path 2
Different Distributions of Tenant Flow Tables over Path

& POF Switch

@ Host

(O Big-Switch

IS

S

S
1

)
a
=]

Fig. 10.

Experimental setup.

w
S
S

N
a
=]

N
o
=]

B. Experimental Setup

The SNT in our experimental setup is shown in Fig. 10,
which consists ofl1 stand-alone POF-based S-SWs ahd
hosts. Each S-SW is based on our homemade software POF
switch [46] running on a high-performance Linux server. All
the network connections in the SNT are based on 1GbE. The
TPVX system in Fig. 9 is implemented on a Linux server
too. Note that, even though the simulations in Section Vigha¥ig. 12.
already evaluated D3L-VNE from a few aspects, the additiona

= =
o a
S =]

Average Packet Processing Latency (i s)
o
3

o

Packet processing latency in multi-hop scenarios.

12

7 7 7
o
6 6 _§6
o Q =
85 35 < 5
s z, g
< 4 < % 4
o] c
23 EE @3
e} =]
32 F2 25
fod] fod] =
[}
1 1 g1
14
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time (seconds) Time (seconds) Time (seconds)
(a) onHost b (b) onHostd (c) on S-SW9

Fig. 13. Receiving bandwidth for HD video streaming.

D. HD Video Streaming in VNTs Embedded on Big-Switches
To further verify the practicalness of our proposal, we keep

the VNTs embedded in the previous subsection and stream

HD videos over them. The experiment measures the receiving
bandwidths and quality of video playbacks to confirm that our
three-layer VNE would not cause noticeable service degrada
tion on upper-layer applicationgge., our proposal maintains
good isolation between VNTs that share the same S-SWs.
We still use the embedding schemes in Fig. 10, and thus
the two VLs share the Big-Switc9(10,11). Then, two HD
video streams are sent fromto b and c to d at different
time in the experiment. Fig. 13 shows the experimental tesul
on the receiving bandwidth measured at different locations
The results in Figs. 13(a) and 13(b) verify that with the
three-layer VNE, the video streams on different VLs get
delivered correctly in the SNT. Meanwhile, we can see that
the forwarding of the packets over different VLs gets isadat
well. This is because the insertion of the video strearddst

d at aroundt = 40 seconds does not cause any noticeable
bandwidth reduction on that tdostb, even though the results Fig
in Fig. 13(c) indicate that the two streams sh&e&W9.
Finally, we measure the luminance component’s peak signal-
to-noise ratio (Y-PSNR) of the video playbacksldastsb and

100

80

»

40

Y-PSNR (dB)

20

25 35 45 55 68 75
Time (seconds)

(a) Video received orHost b

100

80

’

40

Y-PSNR (dB)

20

0

45 55 65 75 85 95
Time (seconds)

(b) Video received orHost d

. 14. Y-PSNR of video playbacks.

the three-layer VNE can be maintained well and thus would

d, to confirm the quality of the video streaming. As shown Iﬂot degrade the network services in VNTSs.

Fig. 14, the Y-PSNR of the video playbacks stay at relatively
high values throughout the streaming of the two videos.

VIII. CONCLUSION

ACKNOWLEDGMENTS

This work was supported by the NSFC projects 61871357

) _) o and 61701472, CAS key project (QYZDY-SSW-JSCO003), and
This paper studied the table resource virtualization apgcgwMCN key project (2017ZX03001019-004).

network slicing in PDP-based SNTs. We first leveraged the
idea of “Big-Switch” to design an effective table resource
virtualization scheme to regulate the flow tables in the SsSSW
in a more organized way to minimize memory fragmentationl1!
Then, we addressed the network slicing based on the virtu-
alization scheme by formulating a three-layer VNE problemi2]
An ILP model and a time-efficient heuristic, namely, D3L-
VNE, were designed to solve the problem. Simulation result
confirmed that D3L-VNE can provide near-optimal solutions
to small-scale problems, while for dynamic operations igda]
scale SNTSs, it outperforms two benchmark algorithms. Ripal
we implemented D3L-VNE in TPVX, which is a POF-enabled
network hypervisor, and improved the performance of TPVX®]
by introducing source routing. Experimental demonstregiof

the new TPVX showed that the additional latency caused by

REFERENCES

N. McKeown et al, “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Revol. 38, pp. 69-74,
Mar. 2008.

P. Lu et al, “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter net®grkEEE Netw,
vol. 29, pp. 36-42, Sept./Oct. 2015.

F:'ﬂ L. Gong et al, “Efficient resource allocation for all-optical multicasy

over spectrum-sliced elastic optical networkd,”"Opt. Commun. Netw.
vol. 5, pp. 836-847, Aug. 2013.

Y. Yin et al, “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical netajprt. Opt.
Commun. Netw.vol. 5, pp. A100-A106, Oct. 2013.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel locationastrained
virtual network embedding (LC-VNE) algorithms towards egtated
node and link mapping,JEEE/ACM Trans. Netw.vol. 24, pp. 3648—
3661, Dec. 2016.

(6]

(7]

(8]

(9

(20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

13

Z. Zhu et al, “OpenFlow-assisted online defragmentation in singlef32] G. Zhaoet al, “Joint optimization of flow table and group table for

/multi-domain software-defined elastic optical netwdrkk, Opt. Com-
mun. Netw.vol. 7, pp. A7-A15, Jan. 2015.

N. Xue et al, “Demonstration of OpenFlow-controlled network orches{33]

tration for adaptive SVC video manycastEEE Trans. Multimedia
vol. 17, pp. 1617-1629, Sept. 2015.

Z. Zhu et al,, “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SDE®estbed,”

J. Lightw. Techno].vol. 33, pp. 1508-1514, Apr. 2015.

L. Gong and Z. Zhu, “Virtual optical network embedding@XE) over

elastic optical networksJ. Lightw. Techno).vol. 32, pp. 450-460, Feb. 36

2014.

M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-typge¢Rforwarding
graphs in inter-DC elastic optical networksg,”Lightw. Techno].vol. 34,
pp. 3330-3341, Jul. 2016.

K. Han et al, “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based melebdge com-
puting,” IEEE Accessvol. 6, pp. 26 567-26 577, 2018.

R. Jain and S. Paul, “Network virtualization and softevadefined
networking for cloud computing: a surveyfEEE Commun. Mag.
vol. 51, pp. 24-31, Nov. 2013.

Z. Zhu et al,, “Build to tenants’ requirements: On-demand application[4o]

driven vSD-EON slicing,”J. Opt. Commun. Netywol. 10, pp. A206—
A215, Feb. 2018.

H. Huang et al, “Realizing highly-available, scalable and protocol-[4l]

independent vSDN slicing with a distributed network hypsov sys-
tem,” IEEE Accessvol. 6, pp. 13513-13 522, 2018.

S. Li et al, “Protocol oblivious forwarding (POF): Software-defined[42]

networking with enhanced programmabilityEEE Netw, vol. 31, pp.
12-20, Mar./Apr. 2017.

P. Bossharet al, “P4: Programming protocol-independent packet prog43]

cessors,’ACM SIGCOMM Comput. Commun. Rexol. 44, pp. 87-95,

Jul. 2014. [44

S. Liet al, “SR-PVX: A source routing based network virtualization- hy
pervisor to enable POF-FIS programmability in vSDNEEE Access
vol. 5, pp. 7659-7666, 2017.

H. Song, “Protocol-oblivious forwarding: Unleash tipewer of SDN

through a future-proof forwarding plane,” iRroc. of ACM HotSDN [46]

2013 pp. 127-132, Aug. 2013.
P. Bosshartet al, “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDNCM SIGCOMM Com-

put. Commun. Rewol. 43, pp. 99-110, Oct. 2013.
The world's fastest & most programmable networks.
[Online]. Available: https://www.barefootnetworks.cfresources/

worlds-fastest-most-programmable-networks/

S. Choleet al, “dMRT: Disaggregated programmable switching,” in
Proc. of SIGCOMM 2017pp. 1-14, Aug. 2017.

D. Kreutz et al, “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE vol. 103, pp. 14-76, Jan. 2015.

D. Kim et al, “Generic external memory for switch data planes,” in
Proc. of ACM HotNets 2018p. 1-7, Nov. 2018.

S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: Flow-tabl@tualization

in POF-based vSDN hypervisor (PVX),” ifroc. of ICNC 2018pp. 1-
5, Mar. 2018.

Y. Xue et al, “Virtualization of table resources in programmable data
plane with global consideration,” iffroc. of GLOBECOM 2018pp.
1-6, Dec. 2018.

S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlegSDN
reconfiguration to balance substrate TCAM utilization: riRralgorithm
design to system prototypelEEE Trans. Netw. Serv. Managol. 16,
pp. 647-660, Jun. 2019.

S. Li et al, “Improving SDN scalability with protocol-oblivious sote
routing: A system-level studyfEEE Trans. Netw. Serv. Managol. 15,
pp. 275-288, Mar. 2018.

N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cwflow:
Dependency-aware rule-caching for software-defined mé&syan Proc.

of SOSR 2016pp. 1-12, Mar. 2016.

A. Mimidis-Kentis et al,, “A novel algorithm for flow-rule placement in
SDN switches,” inProc. of NetSoft 2018p. 1-9, Jun. 2018.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A dissated,
distributed OS for hardware resource disaggregationPric. of OSDI
2018 pp. 69-87, Oct. 2018.

S. Shirali-Shahreza and Y. Ganjali, “Delayed instidia and expedited
eviction: An alternative approach to reduce flow table oecigy in SDN
switches,”IEEE/ACM Trans. Netwvol. 26, pp. 1547-1561, Aug. 2018.

[34]

[37]

(38]

[39]

[45]

[47]

default paths in SDNs,JEEE/ACM Trans. Netw.vol. 26, pp. 1837-
1850, Aug. 2018.

W. Li, X. Li, and H. Li, “MEET-IP: Memory and energy effient
TCAM-based IP lookup,” inProc. of ICCCN 2017pp. 1-8, Jul. 2017.
D. Hancock and J. Merwe, “HyPer4: Using P4 to virtualite pro-
grammable data plane,” iRProc. of CONEXT 2016pp. 35-49, May
2016.

J. Zhanget al., “Dynamic virtual network embedding over multilayer
optical networks,”J. Opt. Commun. Netwvol. 7, pp. 918-927, Sept.
2015.

S. Chowdhuryet al, “MULE: Multi-layer virtual network embedding,”
in Proc. of CNSM 201,7pp. 1-9, Nov. 2017.

G. Long, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seakimirtual
network embedding algorithm via global resource capédityProc. of
INFOCOM 2014 pp. 1-9, Apr. 2014.

H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-ane survivable
virtual network embedding (A-SVNE) in optical datacentatworks,”
J. Opt. Commun. Netywol. 7, pp. 1160-1171, Dec. 2015.

L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compilipgcket
programs to reconfigurable switches,”fmoc. of NSDI 2015pp. 103—
115, May 2015.

Z.Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic servicepisioning
in elastic optical networks with hybrid single-/multi-parouting,” J.
Lightw. Technol. vol. 31, pp. 15-22, Jan. 2013.

W. Fanget al, “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnectiahs®pt. Commun.
Netw, vol. 7, pp. 314-324, Mar. 2015.

Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualetwork
function graph (VNFG) provisioning in multidomain elastaptical
networks,”J. Lightw. Techno).vol. 35, pp. 2712-2723, Jul. 2017.

E. Zegura, K. Calvert, and S. Bhattacharjee, “How to eiaah inter-
network,” in Proc. INFOCOM 1996 pp. 594-602, Mar. 1996.

] switch.p4. [Online]. Available: https://github.cdp#lang/switch/tree/

master/p4src

D. Hu et al, “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivedorwarding
(POF),” IEEE Accessvol. 4, pp. 4707-4719, 2016.

Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstratdf high-
throughput protocol oblivious packet forwarding to supgpsoftware-
defined vehicular networks|EEE Accessvol. 5, pp. 24004-24 011,
2017.

S. Bradner and J. McQuaid, “Benchmarking methodologyy rfetwork
interconnect devices,RFC 2544 Mar. 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2544

