
1

On Table Resource Virtualization and Network
Slicing in Programmable Data Plane
Yuhan Xue, Jianquan Peng, Kai Han, and Zuqing Zhu,Senior Member, IEEE

Abstract—Recently, the advances on programmable data plane
(PDP) promote the studies on the network virtualization in a
PDP-based substrate network (SNT). In this paper, we address
the table resource virtualization and network slicing in PDP-
based SNTs. We first leverage the idea of “Big-Switch” to design
an effective table resource virtualization scheme in whichthe
flow tables of a virtual switch (V-SW) can be installed in multiple
adjacent substrate switches (S-SWs) according to their table sizes,
while the feasible table size(s) on each S-SW are determined
based on the global information of the SNT. By doing so, we can
regulate the flow tables in the S-SWs in a more organized way to
minimize memory fragmentation. Next, we address the network
slicing based on the virtualization scheme, and come up witha
three-layer VNE problem. To the best of our knowledge, such
a VNE problem has not been studied before and the existing
algorithms designed for traditional two-layer VNE problems can
hardly solve it. We formulate an integer linear programming
(ILP) model to solve the VNE problem exactly, and also design
a time-efficient heuristic that can provide near-optimal solutions.
Finally, we implement the heuristic in TPVX, which is a network
hypervisor based on protocol-oblivious forwarding (POF), and
also improve its performance by introducing source routing. The
new TPVX is experimentally demonstrated in a real network
testbed, and the results verify that our proposal maintainsthe
additional latency caused by the three-layer VNE well and would
not degrade the network services in virtual networks (VNTs).

Index Terms—Network virtualization, Virtual network em-
bedding (VNE), Software-defined networking (SDN), Protocol-
oblivious forwarding (POF), Programmable data plane (PDP).

I. I NTRODUCTION

OVER the past decade, we have witnessed astonishing
advances on network technologies to overcome the ossi-

fication of the current Internet infrastructure [1–4]. Among
them, software-defined networking (SDN) [1] and network
virtualization [5] are two most referenced ones, since they
provide network operators and service providers the capability
to deliver short time-to-market, flexible and cost-effective solu-
tions. Specifically, SDN decouples the control and data planes
of a network for enhanced programmability and application-
awareness [6–8], while network virtualization allows an infras-
tructure provider (InP) to slice its substrate network (SNT) into
logically-isolated virtual networks (VNTs) and lease themto
service providers (SPs) dynamically and adaptively [9–11].

The symbiosis of these two orthogonal technologies would
amplify their individual advantages dramatically and bring
us significantly more programmability, agility and scalability

Y. Xue, J. Peng, K. Han, and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on January 27, 2019.

[12–14]. However, these benefits cannot be fully explored
without the programmable data plane (PDP) [15, 16]. This is
because an SDN-based network is not full-stack programmable
without PDP, and PDP removes unnecessary restrictions on
VNT slicing to make it future-proof [17]. PDP is a general
term for packet processing and forwarding elements that have
programmable features and depend less on existing protocols.
People have come up with PDP proposals such as P4 [16]
and protocol-oblivious forwarding (POF) [18], and the devel-
opment and deployment in this field have gained momentum
from innovations in semiconductor industry [19–21].

Some issues remain, however, in PDP environments,e.g.,
the table resource management in switches. Actually, the issue
with table resource management is not newly introduced by
PDP but has been a tricky problem throughout the develop-
ment of SDN [22]. This is because both the ternary content
addressable memory (TCAM) and static random-access mem-
ory (SRAM) are very limited hardware resources in switches,
which usually makes them insufficient to accommodate all the
active flow tables [23]. The problem becomes more intimidat-
ing when network virtualization tries to create various VNTs
over an SDN-based environment. Furthermore, when it comes
to considering the network virtualization in an SNT built with
PDP, table resource management can be even more challenging
for the following two reasons. Firstly, in PDP environments,
the enhanced programmability also exacerbates the pressure
on memory usage, due to the tendency of offloading network
functions directly into the data plane [16]. Secondly, PDP
makes the sizes of flow tables change irregularly when sup-
porting VNTs running different protocols. Therefore, without
effective table resource virtualization, such variable-sized flow
tables can cause severe memory fragmentation in substrate
switches and eat up their table resources quickly [24–26].

In order to realize high-performance network virtualization
in an SNT built with PDP, we have to address two problems
properly, i.e., 1) table resource virtualization and 2) network
slicing based on the virtualization scheme. Specifically, an
effective table resource virtualization scheme should be able
to partition and organize the table resources in the SNT such
that they can be allocated to VNTs to store their variable-
sized flow tables with minimum memory fragmentation. Then,
based on the virtualization scheme, a specific version of virtual
network embedding (VNE) should be formulated and solved to
facilitate cost-effective network slicing. However, to the best of
our knowledge, these two problems have not been considered
jointly to seek for a systematic solution before.

In this paper, we study the two problems for PDP. We first
leverage the idea of “Big-Switch” to design an effective table

2

VNTs

Big-Switch Network

SNT

……

Table Resource Virtualization

……

Network Slice 1 Network Slice 2

Virtual Network Embedding

……

S-SW

Big-Switch

V-SW

V

V V

V V

VV

V

B B B

B

S S S

S

Fig. 1. Three-layer VNE considered in this work.

resource virtualization scheme in which the flow tables of a
virtual switch (V-SW) can be installed in multiple adjacent
substrate switches (S-SWs) according to their table sizes,while
the feasible table size(s) on each S-SW are determined based
on the global information of the SNT. In other words, our
table resource virtualization forms a Big-Switch over multiple
adjacent S-SWs, each of which has feasible table size(s) that
are predetermined, and then embeds a V-SW onto the Big-
Switch by distributing the variable-sized flow tables in theV-
SW to a proper S-SW in it. By doing so, we can regulate the
flow tables in the S-SWs in a more organized way to minimize
memory fragmentation.

Next, we address the network slicing based on the virtual-
ization scheme by formulating a three-layer VNE problem (as
shown in Fig. 1), to describe the one-to-one mapping between
V-SWs and Big-Switches and the many-to-many mapping
between V-SWs and S-SWs. To the best of our knowledge,
such a VNE problem has not been investigated before, and the
existing algorithms designed for two-layer VNE problems can
hardly solve it. We formulate an integer linear programming
(ILP) model to solve it exactly, and also design a time-efficient
heuristic that can provide near-optimal solutions.

Finally, we extend TPVX, which is the POF-enabled net-
work hypervisor that we developed in [25], implement our
VNE algorithm in it, and improve its performance by lever-
aging POF-based source routing [27]. The new TPVX is
then experimentally demonstrated in a real network testbed
that includes11 stand-alone S-SWs. Our experimental results
suggest that the additional latency caused by the many-to-
many mapping between V-SWs and S-SWs is maintained well
and thus would not cause noticeable performance degradation.

The rest of paper is organized as follows. Section II in-
troduces the background regarding PDP and provides a brief
survey on the related work. We explain the network model
and problem description in Section III. Then, the ILP for the
three-layer VNE problem is formulated in Section IV, while
the time-efficient heuristic is designed in Section V. Section
VI evaluates the algorithms with numerical simulations. Next,
we describe the system implementations for extending TPVX
and the experimental results to demonstrate its effectiveness
in Section VII. Finally, Section VIII summarizes the paper.

Physical Table

Resources

PDP Switch

1

2 3 4

1

2

3

4

Flow Tables

.

1 2

3

4

Physical Table

Resources

PDP Switch

2

3

1

4

Flow Tables

Free Memory

Match Fields

Memory

Fragmentation

Poorly Managed Table Resources Well Managed Table Resources

Fig. 2. Organizations of flow tables in PDP switches.

II. BACKGROUND AND RELATED WORK

In this section, we first explain the operation principle of
PDP, and then conduct a literature survey on the related work.

A. Background

Different from the OpenFlow switches that operate on the
match fields defined based on existing network protocols,
a switch with PDP has the freedom of defining arbitrary
match fields and packet processing procedure. To achieve this,
PDP schemes such as P4 and POF have been proposed [16,
18]. Supported by several commercially-available solutions
[19, 20], the P4-based scheme has been widely considered.
Specifically, P4 defines a high-level programming language to
program the processor(s) in a PDP switch for customizing the
formats and processing procedure of packets. On the other
hand, a POF switch matches to an arbitrary packet field with
the tuple<offset, length>, whereoffset represents the start
location (in bits) of the field in a packet andlength denotes
its length (also in bits) [15], and processes the field with the
protocol-oblivious forwarding instruction set (POF-FIS)[18].

As both P4 and POF allow us to define arbitrary packet
fields with various lengths, the sizes and organization of flow
tables in a PDP switch are much different from those in an
OpenFlow switch. The sizes of OpenFlow-based flow tables
are the same, since each of them needs to include all the
match fields supported by the OpenFlow specifications. For the
fields that will not be matched during packet processing, the
OpenFlow switch just ignores them with wildcards. However,
with enhanced programmability, a PDP switch uses variable-
sized flow tables and irrelevant match fields can be excluded
from them. Hence, as shown in Fig. 2, if an effective table re-
source management scheme is absent, memory fragmentation
can happen and eventually lead to severe waste of the table
resources in the PDP switch [19]. This actually motivates us
to study the problem that in the case of network virtualization,
how to efficiently accommodate variable-sized flow tables
from V-SWs in S-SWs to reduce memory fragmentation.

B. Related Work

The authors of [19] have considered how to optimize the
hardware design to relieve the memory fragmentation in SDN
switches, but their proposals are hardware-specific, which
means that they might not be enabled on all the PDP switches.
Both the studies in [28, 29] proposed to use slow but abundant
software-based table resources as the supplement to overcome
the shortage of hardware-based table resources. However, the

3

long lookup time of software-based table resources could
be an issue. Meanwhile, we notice that hardware resource
disaggregation [30],i.e., spreading the usage of one or multiple
types of hardware resources across multiple switches, might
be leveraged to potentially solve the memory fragmentationin
PDP switches. This is because existing techniques such as the
remote direct memory access (RDMA) [23] can be utilized to
access remote memory with relatively low latency.

Shirali-Shahrezaet al. [31] considered how to expedite flow
rule evictions and delay flow rule installations to adapt to
the limited table resources in SDN switches. The authors of
[32] tried to address the shortage of table resources in large-
scale SDN-based networks with deploying aggregated default
paths specified by wildcard forwarding rules. They formulated
the problem as an ILP model and designed a time-efficient
approximate algorithm. In [33], the proposal is to divide the
TCAM in an SDN switch into small blocks with a fixed size
and leverage fine-grained memory operations to reduce the
memory fragmentation in TCAM. Nevertheless, the scheme
might need to segment and reassemble flow tables frequently,
which would lead to extra delay and overheads.

A few network hypervisor systems have been developed to
realize network virtualization in PDP [17, 24, 25, 34]. HyPer4
[34] was implemented to achieve network virtualization in P4-
based PDP. However, since VNT requests cannot be known
in advance and runtime reconfiguration of physical tables
would be prohibitively difficult, HyPer4 has to pre-allocate
a relatively large number of physical tables if it needs to
reconfigure virtual tables at runtime. This might waste a lotof
memory in typical HyPer4 deployments. Previously, we have
developed PVFlow [24] and SR-PVX [17] to facilitate network
virtualization in POF-based PDP. Nevertheless, the systems
developed in [14, 17, 24, 34] did not consider how to address
the memory fragmentation in S-SWs. In [25], we showed the
preliminary results on TPVX, which is a POF-enabled network
hypervisor that can leverage the idea of Big-Switch to realize
effective table resource virtualization for reducing the memory
fragmentation in S-SWs. However, the system performance
has not been optimized, and more importantly, the three-layer
VNE algorithm for network slicing has not been designed yet.

Finally, we hope to point out that the three-layer VNE
considered in this work is fundamentally different from the
traditional multilayer VNE [35, 36]. More specifically, the
traditional multilayer VNE tries to embed VNTs onto an SNT
that includes multiple physically-separated layers (e.g., an IP-
over-optical network), while in our three-layer VNE, the layers
of Big-Switches and S-SWs are actually based on the same
network elements and only logically-separated. In other words,
the one-to-one mapping between V-SWs and Big-Switches
and the many-to-many mapping between V-SWs and S-SWs
in our problem are correlated and thus cannot be optimized
separately. Therefore, our VNE problem is more complex.

III. PROBLEM DESCRIPTION

In this section, we first describe the table resource virtu-
alization scheme that leverages Big-Switch to realize network
virtualization in PDP, then explain the network model basedon

the scheme, and finally define the three-layer VNE problem.
As abbreviations are frequently used in this paper, we list all
the major but not well-known ones in Table I.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name Abbrev. Full Name
POF Protocol-oblivious forwarding SNT Substrate network

TCAM Ternary content-addressable memory S-SW Substrate switch
VNE Virtual network embedding SL Substrate link
PDP Programmable data plane VNT Virtual network
SP Service provider VL Virtual link
InP Infrastructure provider V-SW Virtual switch

A. Table Resource Virtualization in PDP

In network virtualization, the memory fragmentation in Fig.
2 cannot be removed with the one-to-one mapping between V-
SWs and S-SWs in traditional VNE schemes [37, 38]. This is
because the flow tables in each V-SW have irregular sizes.

Definition 1: Sub-tables are obtained by partitioning a
physical table, and mapping a flow table in a V-SW to a sub-
table means to put all the flow table’s entries in the sub-table.

One approach to reduce such memory fragmentation is to
map flow tables to partitioned table resources (i.e., sub-tables
of different sizes) [39]. However, since the table resources
on each PDP switch are very limited, we have the dilemma
that each physical table can only carry very few flow tables
if sub-tables with many sizes are partitioned on each S-SW;
otherwise, memory fragmentation still exists since we needto
round up flow table sizes frequently. Meanwhile, considering
the fact that each S-SW can be shared by several V-SWs, we
cannot repartition the sub-tables in it at runtime. Hence, our
table resource virtualization scheme allows the flow tablesof a
V-SW being mapped to the sub-tables in multiple adjacent S-
SWs (i.e., they form a Big-Switch), while the feasible size(s)
of the sub-tables on each S-SW are predetermined.

Fig. 3 explains the operation principle of the table resource
virtualization scheme. The three-layer VNE scenario is shown
in Fig. 3(a), where we form two Big-Switches over the three
S-SWs and embed the V-SWs onto the Big-Switches. To
minimize memory fragmentation in the S-SWs, we partition
the table resources in them into sub-tables with different sizes
and install flow tables of the V-SWs in the sub-tables in a best-
fit way (as illustrated in Fig. 3(b)). Specifically, if the size of
a flow table does not equal to any of the feasible ones, we pad
it with wildcards to round up its size to the next available one.
Then, the S-SWs in a Big-Switch cooperate with each other
to realize the packet processing in each embedded V-SW.

B. Network Model of Three-layer VNE

We model the SNT as an undirected graphGs(Vs, Es),
whereVs andEs are the sets of S-SWs and substrate links
(SLs), respectively. For simplicity, we assume that each S-
SW vs ∈ Vs only contains sub-tables with one size1. Hence,
the table resources in each S-SW have a table sizewvs and

1Note that, this assumption would not limit the generality ofthe algorithms
designed in this work, since they can handle S-SWs with multiple table sizes
after minor modifications.

4

 ! "#$! "#%

&'(!)'*+,#$ &'(!)'*+,#%

-'.*/01'20*'34#5067.#

 89
 ! "#$

 /:!90:17;

 ! "#%

 /:!90:17;

 ! "#<

 /:!90:17;
 ! "#<

=0> =:>

$ %

%

<

?

?

$

<

&'(!)'*+,#%

%

<

$

?

&'(!)'*+,#$

$

%

<

?

-! "#$ -! "#%

97404*#-89

@.77#A7B3.6#

A0*+,#@'71C;

"'1C+0.C

-! "#$

$

%

<

?

%
<

$

?

-! "#%

Fig. 3. Table resource virtualization in PDP leveraging Big-Switch.

an entry depthdvs , which denote the size of each physical
sub-table and the number of entries that the S-SW can store,
respectively. Note that, we allow one S-SW can be used
by multiple Big-Switches in the three-layer VNE,i.e., the
mapping between S-SWs and Big-Switches is many-to-many.
The bandwidth capacity of an SLes ∈ Es is denoted asbes .

The Big-Switches generated over the S-SWs form a net-
work, which can also be modeled as an undirected graph
Gb(Vb, Eb). Here, Vb and Eb are the sets of Big-Switches
and the links to interconnect them, respectively. Since each
Big-Switch vb ∈ Vb includes several adjacent S-SWs that
are fully connected,vb has a set of table sizes and a set
of corresponding entry depths. We usewi

vb
to denote the

table size of thei-th S-SW in Big-Switchvb ∈ Vb and the
corresponding entry depth isdivb . A VNT is also an undirected
graphGr(Vr, Er), whereVr andEr are the sets of V-SWs and
virtual links (VLs), respectively. Each V-SW requires certain
table resources, which can be represented by pairs of flow table
sizes and entry depths. Similarly, we usewi

vr
to denote the

table size of thei-th flow table array in V-SWvr ∈ Vr and the
corresponding entry depth isdivr . The bandwidth requirement
of a VL er ∈ Er can be denoted asber . The mapping between
V-SWs and Big-Switches is one-to-one.

C. Problem Description of Three-Layer VNE

To facilitate the three-layer VNE, we first determine all the
feasible Big-Switch configurations in the SNT. Specifically,
this can be done by searchGs(Vs, Es) to find all the complete
subgraphs in it, and to limit the complexity of the search,
we can restrict the node-count of each complete graph below
certain threshold (e.g., 3). Then, we obtainGb(Vb, Eb) and
can solve the three-layer VNE problem with either an ILP
model or a time-efficient heuristic. To explain the three-layer
VNE, we show an illustrative example in Fig. 4. Here, Fig.
4(b) shows the SNT, where the number on each SLes is its
bandwidth capacitybes while the tuple aside each S-SWvs
is its table size (in bits) and entry depth,i.e., (wvs , dvs). For
example, the(64, 100) asideS-SW1 means that the S-SW
has a table size of64 bits and the corresponding entry depth
is 100 entries. The two VNTs are plotted in Fig. 4(a), where
the number on each VL is its bandwidth requirement, and the
tuples aside each VN are its table resource requirement in

the pairs of table size (in bits) and entry depth. For instance,
the (32, 60) and(20, 80) asideV-SWa means that the V-SW
requires two types of flow tables: 1)60 flow tables whose
sizes are32 bits and 2)80 entries of20-bit ones.

Fig. 4(c) explains how to map the VNTs onto the SNT by
leveraging the Big-Switches, where the dotted cycles indicate
the configurations of Big-Switches (i.e., the many-to-many
mapping between Big-Switches and S-SWs). It can be seen
clearly that our three-layer VNE problem is different from and
more complex than the traditional two-layer and multilayer
VNE problems. Specifically, our problem not only has more
complex node mapping but also needs to address more so-
phisticated link mapping. For instance, each link between two
Big-Switches actually relates to a set of SLs and/or substrate
paths, since each Big-Switch includes multiple S-SWs.

IV. ILP FORMULATION

In this section, we formulate an ILP model to solve the
aforementioned three-layer VNE problem for embedding a
VNT in the SNT. We first preprocess the SNT and VNT
as follows. The connectivity ofGs(Vs, Es), which is the
probability that any two S-SWs inVs are directly connected in
Gs, is represented asε. We calculateK shortest paths between
each S-SW pair inGs(Vs, Es)

2 and store them in the path set
P , where a subsetPus,vs includes all the calculated paths
betweenus and vs (us, vs ∈ Vs). If we haveK = 1, Pus,vs

degenerates as the shortest substrate pathpus,vs . Then, we
definehop(·) to return the hop-count of a path, and useh̄
andσh to denote the average value and standard deviation of
the hop-counts of all the paths inP , respectively. The average
value and standard deviation of the required table sizes of the
VNT are denoted as̄w andσw, respectively.

Notations:

• Gs(Vs, Es): the topology of the SNT.
• ε: the connectivity of the SNT.
• P : the set of substrate paths, wherepus,vs ∈ P is the

path to connectus andvs (us, vs ∈ Vs).
• h̄ and σh: the statistics regarding the hop-counts of all

the paths inP .
• b(us,vs): the available bandwidth on substrate pathpus,vs .
• wvs : the table size of the sub-tables on S-SWvs.
• dvs : the entry depth of S-SWvs.
• Gb(Vb, Eb): the topology of the Big-Switch network.
• ξvbvs : the indicator that equals1 if S-SW vs is included in

Big-Switch vb, and0 otherwise.
• Gr(Vr, Er): the topology of the VNT.
• wi

vr
: the table size of thei-th flow table array in V-SW

vr ∈ Vr.
• divr : the entry depth of thei-th flow table array in V-SW
vr ∈ Vr.

• ber : the bandwidth requirement of VLer ∈ Er.
• w̄ andσw: the statistics regarding the required table sizes

of the VNT.

2In an SNT where the bandwidth resources are much more abundant than
the table resources (i.e., in most of the practical cases), we can only calculate
the shortest path between each S-SW pair (i.e., K = 1) to limit the complexity
of the model and avoid causing unnecessary latency in the VNTs.

5

!

"

#

$

%&

%&

%'

('

(a) VNTs

!

"

#

$

%

 $

"&

"$

"$

#$

"$

"&

 $

(b) SNT

E F

C A

B

2

1

3

25

30
35

4

5

6

35

45

35

30

25

e f
10

2

1

3

25

30 35

4

5

6

35

45

35

30

25

c a

b15

20

15

VNT

Big-Switch Network

SNT

(c) Three-layer VNE solutions

Fig. 4. Example on three-layer VNE for network virtualization in a PDP-based SNT.

Variables:
• δvrvb : the boolean variable that equals1 if V-SW vr is

embedded onto Big-Switchvb, and0 otherwise.
• ρi,vrvs

: the boolean variable that equals1 if the i-th flow
table array in V-SWvr is embedded onto S-SWvs, and
0 otherwise.

• ωer
(us,vs)

: the boolean variable that equals1 if VL er is
embedded onto substrate pathpus,vs , and0 otherwise.

Objective:
In our three-layer VNE, each VNT actually consumes two

types of resources in the SNT,i.e., the table resources on
S-SWs and the bandwidth resources on SLs. For the table
resources, since a flow table array in a V-SW can be embedded
onto an S-SW whose table size is larger than its, we should
try to minimize such table resource wastes (i.e., the memory
fragmentation). Hence, we leverage the coefficient of variation
to normalize the memory fragmentation in the SNT as

ψt =
1

σw







1
∑

vr,i

divr

(

∑

vs,vr

∑

i

ρ
i,vr
vs · wvs · divr

)

− w̄






. (1)

Similarly, the bandwidth utilization can be normalized as

ψb =
1

σh







1

|Er|





∑

pus,vs∈P

∑

er

ω
er
(us,vs)

· hop(pus,vs)



− h̄







.

(2)
We try to minimize the total normalized resource utilization.
Meanwhile, we hope to point out that the connectivity of SNT
actually affects the formulation of Big-Switches in it,i.e., a
better connected SNT leads to more feasible Big-Switches.
For instance, the well-known14-node NSFNET topology [40]
only provides23 Big-Switches while we can form455 Big-
Switches in a14-node complete graph, if we limit the number
of S-SWs in each Big-Switch within[2, 3]. Therefore, we
design the overall optimization objective of the ILP as

Minimize ψ = α · ψt + ε · (1− α) · ψb, (3)

whereα is the weight coefficient to balance the importance
of the two terms. In general, we haveα > 0.5 to ensure that
minimizing the first term is the major objective, while the
actual setting ofα will be discussed in Section VI when we
present the numerical simulation results.

Constraints:
1) Node Mapping Constraints:

∑

vb∈Vb

δ
vr
vb

= 1, ∀vr ∈ Vr. (4)

Eq. (4) ensures that a V-SW can be embedded onto one and
only one Big-Switch.

ρ
i,vr
vs ·

(

dvs − d
i
vr

)

≥ 0, ∀vr ∈ Vr, vs ∈ Vs. (5)

Eq. (5) ensures that all the flow table arrays in each V-SW
are embedded onto the S-SWs whose entry depths are large
enough to accommodate them.

ρ
i,vr
vs ·

(

wvs − w
i
vr

)

≥ 0, ∀vr ∈ Vr, vs ∈ Vs. (6)

Eq. (6) ensures that if a V-SW is embedded onto a Big-Switch,
each of its flow table array can be embedded onto an S-SW
in the Big-Switch and the S-SW’s table size is large enough.

∑

vs∈Vs

ρ
i,vr
vs · ξvbvs = δ

vr
vb
, ∀vr ∈ Vr, vb ∈ Vb, i. (7)

Eq. (7) ensures that the node mapping relations defined by
two variablesρi,vrvs

andδvrvb are consistent.
2) Link Mapping Constraints:

∑

er∈Er

ω
er
(us,vs)

· ber ≤ b(us,vs), ∀pus,vs ∈ P. (8)

Eq. (8) ensures that if a VL is embedded onto a substrate path,
its bandwidth demand would not exceed the path’s capacity.

∑

pus,vs∈P

ω
er
(us,vs)

= 1, ∀er ∈ Er. (9)

Eq. (9) ensures that each VL is embedded onto one and only
one substrate path.

∑

vs∈Vs

∑

vr∈Vr

ω
(ur,vr)
(us,vs)

· ξub
us

= δ
ur
ub
,

∀ub ∈ Vb, us ∈ Vs, {ur : (ur, vr) ∈ Er}.

(10)

∑

us∈Vs

∑

ur∈Vr

ω
(ur,vr)
(us,vs)

· ξvbvs = δ
vr
vb
,

∀vb ∈ Vb, vs ∈ Vs, {vr : (ur, vr) ∈ Er}.

(11)

6

Eqs. (10) and (11) ensure that if a VL gets embedded onto a
substrate path, the node mappings of its two end V-SWs are
correctly represented by variableδvrvb , andvice versa.

ω
(ur,vr)
(us,vs)

= ω
(vr,ur)
(vs,us)

, ∀(ur, vr) ∈ Er, pus,vs ∈ P. (12)

Eq. (12) ensures that all the link mappings are bidirectional.

V. HEURISTIC ALGORITHM

To solve large-scale three-layer VNE problems time-
efficiently, we design a heuristic in this section.Algorithm 1
shows its overall procedure, which includes four major steps:
1) preprocessing to build the Big-Switch network, 2) finding
node mapping candidates, 3) finding link mapping candidates,
and 4) determining the three-layer VNE scheme based on
dispersed mapping. The following subsections explain the
details of the four steps (i.e., Algorithms2-5).

Algorithm 1: Overall procedure of dispersed three-
layer VNE (D3L-VNE)

Input : Latest SNTGs(Vs, Es), VNT Gr(Vr, Er).

1 preprocess SNTGs with Algorithm 2 to build a
Big-Switch networkGb(Vb, Eb) for carryingGr;

2 find node mapping candidates withAlgorithm 3;
3 find link mapping candidates withAlgorithm 4;
4 try to get the VNE scheme forGr with Algorithm 5;
5 if a feasible VNE scheme cannot be foundthen
6 mark VNTGr as blocked;
7 end

A. Preprocessing of SNT

Algorithm 2 explains how we preprocess the SNT
Gs(Vs, Es) to build a Big-Switch networkGb(Vb, Eb) on
which the VNTGr(Vr , Er) can potentially be embedded. Note
that, to limit the problem size when the SNT is relatively large,
we set upper-bounds on the number of Big-Switches that will
be included in the Big-Switch network and the number of S-
SWs in each Big-Switch, which areV andVm, respectively.
Here, we usually setVm = 3 since complete subgraphs with a
larger size are difficult to be found in a normal SNT topology,
while the setting ofV should be determined based on the
size of the VNT. Lines 1 and 2 are for the initialization,
where we ignore the S-SWs whose table resources are not
compatible with at least one required flow table array in the
VNT. Then, the while loop that coversLines 3-15 tries to
build Big-Switches one by one based on S-SWs that form
complete subgraphs. The time complexity ofAlgorithm 2 is
O(|Vs|2 · Vm).

B. Finding Node Mapping Candidates

With the Big-Switch networkGb(Vb, Eb) obtained byAl-
gorithm 2, Algorithm 3 checks the Big-Switches in it based
on their table resources to find the candidate Big-Switches
for node mapping.Line 1 is for the initialization. Then, the
for-loop coveringLines 2-14 checks whether each V-SW in

Algorithm 2: Preprocessing of SNT to build big-
switch network

Input : Latest SNTGs(Vs, Es), number of
Big-Switches in Big-Switch networkV ,
maximum S-SWs in a Big-SwitchVm.

Output : Big-Switch networkGb(Vb, Eb).

1 remove S-SWs inVs whose table size and entry
depth cannot satisfy at least one required flow table
array inVr;

2 i = 0, V t
s = Vs;

3 while i < V or V t
s 6= ∅ do

4 select an S-SW invs ∈ V t
s ;

5 V t
s = V t

s \ vs, j = 1, i = i+ 1;
6 create a new Big-Switchvb, insertvs in vb, and

updateξvbvs ;
7 while j < Vm do
8 try to find an S-SWus ∈ Vs that is adjacent

to all the S-SWs invb;
9 if such an S-SW cannot be foundthen

10 break;
11 end
12 insertus in Big-Switch vb and updateξvbus

;
13 j = j + 1;
14 end
15 end
16 return (Gb(Vb, Eb));

Gr(Vr, Er) can be embedded onto at least one Big-Switch
in Gb(Vb, Eb). Here, we useflag to indicate whether a V-
SW vr can be accommodated by at least one Big-Switch in
Gb(Vb, Eb) (Line 3). In the for-loop that coversLines 4-10,
each Big-Switch is checked to see whether the table resources
in its S-SWs can support all the required flow table arrays in
the V-SWvr. Note that, to avoid severe memory fragmentation
in the substrate table resources, we set an upper-bound on
the largest wasted table fragmentation,i.e., Wf . Suppose we
plan to embed thei-th required flow table array invr onto
S-SWvs, then we must havewi

vr
≤ wvs and the wasted table

fragmentation can be calculated as

W =
wvs − wi

vr

wi
vr

, (13)

which should be less thanWf . Meanwhile, since each required
flow table array applies two-dimensional requirements, we also
have to ensure the entry depth invs is sufficient, i.e., dvs ≥
divr . If the two-dimensional requirements of all the required
flow table arrays invr can be satisfied byvb, we insert the
mapping as a tuple(vr, vb) in the node mapping candidate
set Mv and updateflag (Lines 6-9). Otherwise, if any of
the required flow table arrays invr cannot find at least one
feasible S-SW in all of the Big-Switches, we will return an
emptyMv to indicate that the VNTGr should be blocked
(Lines11-13). Finally, inLine 15, we return the obtained node
mapping candidate setMv. The time complexity ofAlgorithm
3 isO(|Vb| · |Vr| ·Vm ·Vr

m), whereVr
m is the maximum number

of flow table arrays required by V-SWs.

7

Algorithm 3: Finding node mapping candidates

Input : Big-Switch networkGb(Vb, Eb), VNT
Gr(Vr, Er), largest wasted table
fragmentation that is permittedWf .

Output : Set of node mapping candidatesMv.

1 Mv = ∅;
2 for each V-SWvr ∈ Vr do
3 flag = 0;
4 for each Big-Switchvb ∈ Vb do
5 try to embed all the required flow table arrays

in vr onto the S-SWs invb while making sure
that the constraint onWf is not violated;

6 if all the flow table arrays can be embedded
then

7 insert tuple(vr , vb) in Mv;
8 flag = 1;
9 end

10 end
11 if flag = 0 then
12 return (Mv = ∅);
13 end
14 end
15 return (Mv);

C. Finding Link Mapping Candidates

Algorithm 4 finds all the feasible link mapping candidates
based on the set of node mapping candidatesMv from
Algorithm 3. Line 1 is for the initialization. We use the for-
loop coveringLines2-23 to find all the feasible link mapping
candidates for each VL(ur, vr) ∈ Er in the VNT. Based on
Mv, Lines3 and 4 find all the feasible Big-Switches that can
carry the end V-SWs of(ur, vr) and store them inV t

b,1 and
V t
b,2, respectively. We still useflag to indicate whether the

VL (ur, vr) can be accommodated by at least one substrate
path (Line 5). Then, the multi-level for-loops fromLine 6 to
19 try to determine the link mapping candidates. Note that,
the mapping between Big-Switches and S-SWs are many-to-
many. Hence, for each feasible Big-Switchub in V t

b,1, we need
to check all of its S-SWs for the link mapping, and the same
thing is applied to each feasible Big-Switchvb in V t

b,2.
Here, we would like to point out that the three-layer VNE

and the introduction of Big-Switches make the link mapping
in this work significantly different from those in traditional
VNE problems. Specifically, as long as an S-SW is in the Big-
Switch on which a V-SW gets embedded on, the V-SW can
use it as an end S-SW in the related link mapping even though
none of the required flow table arrays actually gets embedded
on the S-SW. This additional freedom in link mapping is
brought by the operation principle of Big-Switches,i.e., the
S-SWs in a Big-Switch cooperate with each other to process
packets as in a logic switch. InLines 11-15, we insert the
tuple ((ur, vr), pus,vs) as a link mapping candidate inMe,
if the substrate pathpus,vs has sufficient bandwidth capacity
to carry(ur, vr) and its hop-count does not exceed the preset
thresholdhm. Here, the preset threshold on hop-count is used

to avoid considering the substrate paths that are too long inlink
mapping, for saving bandwidth resources. Next, after having
checked all the feasible S-SW pairs, we will return emptyMv

andM̃v to indicate that the VNTGr should be blocked (Lines
20-22) if zero feasible link mapping candidate has been found.
Here, the updated node mapping candidate setM̃v is used to
store each node mapping candidate that will lead to feasible
link mapping candidate(s), and thus we havẽMv ⊆ Mv.
Finally, Line 24 returns the obtainedMv andM̃v. The time
complexity ofAlgorithm 4 is O(|Er |2 · |Vb|2 · Vm

2).

Algorithm 4: Finding link mapping candidates

Input : SNT Gs(Vs, Es), Big-Switch network
Gb(Vb, Eb), VNT Gr(Vr , Er), node mapping
candidate setMv, maximum hop-counthm.

Output : updated node mapping candidate setM̃v,
link mapping candidate setMe.

1 Me = ∅, M̃v = ∅;
2 for each VL(ur, vr) ∈ Er do
3 checkMv to find all the feasible Big-Switches

that can carry V-SWur and store them inV t
b,1;

4 checkMv to find all the feasible Big-Switches
that can carry V-SWvr and store them inV t

b,2;
5 flag = 0;
6 for each Big-Switchub in V t

b,1 do
7 for each S-SWus in Big-Switchub do
8 for each Big-Switchvb in V t

b,2 do
9 for each S-SWvs in Big-Switchvb do

10 get substrate pathpus,vs from P ;
11 if hop(pus,vs) ≤ hm and the

bandwidth requirementb((ur ,vr))

can be satisfied bypus,vs then
12 insert tuple((ur, vr), pus,vs)

in Me;
13 insert tuples(ur, ub) and

(vr, vb) in M̃v;
14 flag = 1;
15 end
16 end
17 end
18 end
19 end
20 if flag = 0 then
21 return (Me = ∅, M̃v = ∅);
22 end
23 end
24 return (Me, M̃v);

D. Determining Three-Layer VNE Scheme

Finally, we designAlgorithm 5 to calculate the three-layer
VNE scheme for the VNTGr(Vr, Er) based onMv and
M̃v. Here, we leverage dispersed mapping to avoid the “big
island” problem [37],i.e., when multi-dimensional resources
are considered, the unbalanced utilization of certain type(s)
of resources could make the remaining types of available

8

resources unusable [37, 41, 42]. Therefore, in the initialization
in Lines1-10, we assign a counter to each Big-Switch to check
how many times its S-SWs could be used in a potential node
mapping of certain V-SW. Then, in the node mapping of each
S-SW, we should try the feasible Big-Switches in ascending
order of their counters, as shown inLines 11-19. Note that,
the “total entry depth” of a V-SWvr (Line 11) means the
summation of the entry depths of all its required flow table
arrays,i.e.,

∑

i

divr . Lines20-22 take care of the exception that

one or more V-SWs cannot be embedded in the SNT. The link
mapping for each VL is handled inLines23-33. Here, when
there are multiple feasible substrate paths,Line 26 randomly
selects one and tries to use it for the link mapping. This is
also for realizing the dispersed mapping. The time complexity
of Algorithm 5 is O(|Vr | · |Vb| · Vm + |Er | · |P |).

VI. PERFORMANCEEVALUATION

In this section, we first evaluate the performance of our
proposed algorithms with extensive numerical simulations.
Specifically, we consider two scenarios: 1) the small-scaleone
time operation and 2) the large-scale dynamic operations. Due
to the complexity of the ILP, the small-scale scenario is used to
analyze the ILP’s sensitivity to parameter in the optimization
objective (i.e., α in Eq. (3)) and to compare its performance
with that of the heuristic (D3L-VNE). In the large-scale sce-
nario, we consider the dynamic VNT requests that come and
leave on-the-fly in relatively large SNTs to further investigate
the performance of D3L-VNE with respect to two benchmark
algorithms. In the simulations, the topologies of the SNT and
VNTs are all randomly generated with the GT-ITM tool [43].
Each data point is obtained by averaging the results from20
independent simulations.

1.0 0.9 0.8 0.7 0.6 0.5

Weight Coefficient

0.3

0.4

0.5

0.6

0.7

O
ve

ra
ll

O
bj

ec
tiv

e
w

ith
 E

q.
 (

3) = 0.22
 = 0.4

Fig. 5. Sensitivity analysis of the ILP.

A. Small-Scale One Time Operation

In this scenario, we use an SNT that includes14 S-SWs (i.e.,
|Vs| = 14) whose connectivityε is within {0.22, 0.3, 0.4}. For
the sub-tables on each S-SW, their table sizes and entry depths
are randomly selected from{32, 48, 64, 128} bits and within
[50, 100], respectively. The available bandwidth on each SL
is uniformly distributed within[50, 100] units. Meanwhile, the
size of a VNT is fixed as|Vr| = 6 and the connectivity of its
V-SWs is 1. We assume that each V-SW requires[2, 3] flow
table arrays, while the table size and entry depth of each array

Algorithm 5: Determining VNE scheme with dis-
persed mapping

1 assign a countercvb = 0 to each Big-Switchvb ∈ Vb;
2 for each tuple(vr , vb) ∈ M̃v do
3 for each required flow table arrayi in vr do
4 for each S-SWvs in Big-Switchvb do
5 if embedding ofvr on vb can take table

resources invs then
6 cvb = cvb + 1;
7 end
8 end
9 end

10 end
11 for each V-SWvr ∈ Vr in descending order of total

entry depthdo
12 flag = 0, get all the feasible Big-Switches forvr

from M̃v and store them inV t
b ;

13 for eachvb ∈ V t
b in ascending order ofcvb do

14 try to embedvr on the S-SWs invb;
15 if the embedding is successfulthen
16 flag = 1, updateGs andGb, break;
17 end
18 end
19 end
20 if flag = 0 then
21 return (FAILURE);
22 end
23 for each VLer ∈ Er do
24 flag = 0, get all the feasible link mappings for

er from Me and store them inP t;
25 while P t 6= ∅ do
26 select a substrate pathp ∈ P t randomly;
27 P t = P t \ p;
28 if p has enough bandwidth to carryer then
29 embeder onto p and updateGs andGb;
30 flag = 1, break;
31 end
32 end
33 end
34 if flag = 0 then
35 return (FAILURE);
36 else
37 return (SUCCESS);
38 end

are randomly selected within{16, 20, 32, 48, 64, 96, 128} bits
and [5, 20], respectively. The bandwidth requirement of each
VL is uniformly distributed within[5, 10] units.

1) Sensitivity Analysis of ILP:We first conduct simulations
with different settings of the weight coefficientα to analyze
the sensitivity of the ILP. Here, we fix|Vs| = 14 and
|Vr| = 6 and consider two connectivity settings for the SNT,
i.e., ε = {0.22, 0.4}. Fig. 5 shows the simulation results on the
overall optimization objective calculated with Eq. (3). Itcan
be seen that in both scenarios, the overall objective decreases

9

with α. This suggests that the value ofµt (i.e., the normalized
memory fragmentation in the SNT) in the first term of Eq.
(3) is actually larger and thus contributes more to the overall
objective. Therefore, the results in Fig. 5 confirm that the
optimization objective of the ILP is properly designed, and
we will setα = 0.9 in the subsequent simulations.

2) Comparison between ILP and D3L-VNE:Then, we
compare the performance of the ILP and D3L-VNE. Here, we
consider the different connectivity of substrate network,and
Table II summarizes the results. The overall objective from
D3L-VNE is close to that from the ILP, while the running
time of D3L-VNE is much shorter than that of the ILP. The
results verify the effectiveness of our proposed algorithm.

B. Large-Scale Dynamic Operations

In this scenario, we consider two large-scale SNTs with50
S-SWs whose connectivityε is 0.2 and 0.3 (i.e., there are
238 and361 SLs, respectively). For the sub-tables on each S-
SW, their table sizes and entry depths are randomly selected
from {32, 48, 64, 128} bits and within[50, 100], respectively.
The available bandwidth on each SL is uniformly distributed
within [50, 100] units. On the other hand, the size of each
VNT is |Vr | ∈ [2, 6] and we set the connectivity as0.5. Each
V-SW requires[2, 3] flow table arrays whose entry depths are
randomly selected within[10, 20]. To mimic the table size
distribution in a real network, we follow the procedure in
[19, 39] to analyze a program for L2/L3 switches, which is
derived from the open-source P4 program switch.p4 [44], and
determine that the table sizes of the flow table arrays should
be selected from{32, 42, 60, 108, 128} bits with probabilities
of {0.21, 0.04, 0.66, 0.01, 0.08}, respectively. The bandwidth
requirement of each VL is within[10, 20] units. The dynamic
VNT requests follow the Poisson process that has an average
arrival rate ofλ VNTs per time-unit and the average life-time
of each VNT as1

µ
time-units,i.e., their load isλ

µ
in Erlangs.

In addition to D3L-VNE, the simulations consider two
benchmarks as follows.

• Normal two-layer VNE (N2L-VNE): this algorithm does
not consider Big-Switches, and it applies the normal two-
layer VNE to embed the V-SWs in each VNT onto the
S-SWs with one-to-one mapping.

• First-fit based three-layer VNE (FF3L-VNE): this algo-
rithm considers Big-Switches in the same manner as
D3L-VNE, but it utilizes the first-fit scenario to determine
the VNE schemes. In other words, FF3L-VNE leverages
Algorithms 1-4 in D3L-VNE, but replacesAlgorithm 5
with a first-fit based mapping selection scenario.

The simulations compare the algorithms in terms of the
following performance metrics.

• Acceptance ratio: the ratio of accepted VNTs to total
arrived ones in each simulation.

• Average bandwidth usage: the average bandwidth usage
on each SL over the time of each simulation.

• Average table usage: the average usage of the sub-tables
in the S-SWs over the time of each simulation3.

3Here, an entry in a sub-table is either fully used or not used at all, and
thus this average table usage includes the memory fragmentation.

• Average table waste: the average table waste due to
memory fragmentation on the sub-tables in the S-SWs
over the time of each simulation.

Fig. 6 shows the simulation results with the SNT that has
|Vs| = 50 andε = 0.2. In Fig. 6(a), we can see that among the
algorithms, D3L-VNE provides the highest acceptance ratio,
which confirms its effectiveness. As expected, the acceptance
ratio from N2L-VNE is the lowest and much worse than those
from D3L-VNE and FF3L-VNE since it does not consider Big-
Switches. The fact of D3L-VNE accepting more VNTs than
FF3L-VNE confirms that the dispersed mapping inAlgorithm
5 helps to accommodate more VNTs. The average bandwidth
and table usages in Figs. 6(b) and 6(c), respectively, further
explain the superiority of D3L-VNE,i.e., it can organize the
VNTs in the SNT in the best way such that the most bandwidth
and table resources can be utilized in the service provisioning.
Again, since N2L-VNE does not consider Big-Switches or
memory fragmentation, it causes the highest table waste as
shown in Fig. 6(d). Meanwhile, it is interesting to notice
that D3L-VNE and FF3L-VNE perform similarly in terms of
the average table waste. This is because both of them try to
minimize the memory fragmentation during node mapping.
The results in Fig. 7, which are from the simulations using
the SNT with |Vs| = 50 and ε = 0.3, exhibit the similar
trends as those in Fig. 6.

VII. SYSTEM IMPLEMENTATION AND EXPERIMENTAL

DEMONSTRATIONS

A. System Implementation

Previously, in [25], we have designed and implemented a
network hypervisor, namely, TPVX, which can realize the
table resource virtualization and network slicing for PDP.
Specifically, TPVX can create and manage VNTs over an SNT
that is built with POF-based S-SWs, and when mapping the
flow tables in V-SWs to S-SWs, TPVX considers their table
sizes and the pre-formatted sub-tables in the S-SWs to improve
table resource utilization and avoid memory fragmentation.
However, TPVX should still be improved from two perspec-
tives, which are 1) an effective three-layer VNE algorithm
(e.g., D3L-VNE) should be implemented in it to ensure that
cost-effective VNE schemes can be calculated for various VNT
requests, and 2) the overheads on table resource utilization
and packet processing due to the network virtualization should
be minimized. The first perspective can be easily understood
while the explanations on the second one are as follows.

Note that, to realize network virtualization, a network hy-
pervisor needs to tell the S-SWs how to distinguish packets
belonging to different VNTs, and this is done by the hypervisor
installing control flow tables in the S-SWs in addition to
the flow tables from the VNTs (i.e., the tenant flow tables).
For example, control flow tables need to be installed in
intermediate S-SWs to route the packets in different VNTs
correctly. Here, the intermediate S-SWs refer to the S-SWs
that are intermediate nodes on the substrate paths carrying
VLs. As shown in Fig. 8(a),VL a-b in VNT 1 is embedded on
substrate paths1-2-3. Hence,S-SW2 is an intermediate S-SW,
and control flow tables need to be installed on it for processing

10

TABLE II
PERFORMANCECOMPARISONS BETWEENILP AND D3L-VNE

ILP D3L-VNE

SNT VNT First Second Overall Running First Second Overall Running

|Vs| ε |Vr| ε Term Term Objective Time (s) Term Term Objective Time (s)

14 0.22 6 1 0.56 0.01 0.57 35.5 0.67 0.02 0.69 0.06

14 0.3 6 1 0.51 0.07 0.58 47.5 0.54 0.05 0.59 0.09

14 0.4 6 1 0.49 0.11 0.60 289.3 0.57 0.07 0.64 0.13

10 20 30 40 50 60
Traffic Load

0.5

0.6

0.7

0.8

0.9

A
cc

ep
ta

nc
e

R
ad

io D3L-VNE
FF3L-VNE
N2L-VNE

(a) Acceptance ratio

10 20 30 40 50 60

Traffic Load

0

0.02

0.04

0.06

0.08

A
ve

ra
ge

 B
an

dw
id

th
 U

sa
ge

D3L-VNE
FF3L-VNE
N2L-VNE

(b) Average bandwidth usage

10 20 30 40 50 60

Traffic Load

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 T
ab

le
 U

sa
ge

D3L-VNE
FF3L-VNE
N2L-VNE

(c) Average table usage

10 20 30 40 50 60

Traffic Load

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 T
ab

le
 W

as
te

D3L-VNE
FF3L-VNE
N2L-VNE

(d) Average table waste

Fig. 6. Large-scale dynamic simulation results (SNT:|Vs| = 50, ε = 0.2).

10 20 30 40 50 60

Traffic Load

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

R
ad

io

D3L-VNE
FF3L-VNE
N2L-VNE

(a) Acceptance ratio

10 20 30 40 50 60

Traffic Load

0

0.02

0.04

0.06

0.08

0.1

A
ve

ra
ge

 B
an

dw
id

th
 U

sa
ge

D3L-VNE
FF3L-VNE
N2L-VNE

(b) Average bandwidth usage

10 20 30 40 50 60

Traffic Load

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 T
ab

le
 U

sa
ge

D3L-VNE
FF3L-VNE
N2L-VNE

(c) Average table usage

10 20 30 40 50 60

Traffic Load

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

 T
ab

le
 W

as
te

D3L-VNE
FF3L-VNE
N2L-VNE

(d) Average table waste

Fig. 7. Large-scale dynamic simulation results (SNT:|Vs| = 50, ε = 0.3).

Fig. 8. Examples on control flow tables in an intermediate S-SW for (a)
original TPVX, and (b) extended TPVX that uses SR.

packets going throughVL a-b, even thoughS-SW2 does not
carry any V-SW. On an intermediate S-SW, we normally need
to install one control flow table for each VL that uses it, to
match to the tenant ID encoded in packets going through the
VL and route the packets correctly. For instance, in Fig. 8(a),
we also have VLc-d in VNT 2 embedded on substrate path
1-2-4, and thus two control flow tables needs to be installed in
S-SW2, each of which matches to the tenant ID of a VL and
route the corresponding packets correctly. This is also howthe
previous version of TPVX in [25] was implemented.

Nevertheless, the control flow tables lead to additional over-
heads, since each intermediate S-SW needs to spend table re-
sources on them and matching packets to them would bring in

additional operation complexity and thus latency. This explains
why TPVX should be improved from the second perspective.
Therefore, we leverage POF-based source routing (SR) [27,
45] to extend TPVX for using much fewer control flow tables.
Specifically, as described in [27], POF-based SR inserts an
SR Header in each packet to explain its forwarding path to
each intermediate switch (i.e., which output port the packet
should take on a particular switch). Hence, each intermediate
S-SW only needs a fixed number of shared control flow tables
to process all the packets going through the VLs that use it.
For each packet, the shared control flow tables pop the first
Port field in its SR Header, parse the designated output port,
and then forward the packet accordingly [27]. As shown in
Fig. 8(b), the TPVX with this extension can minimize the
overheads due to control flow tables in intermediate S-SWs.

The overall system architecture of the improved TPVX is il-
lustrated in Fig. 9, where we divide the system into the service,
control, orchestration, virtualization and infrastructure layers
according to their functionalities. The service layer provides
the API to the service providers (SPs), through which they
can submit their VNT requests to the infrastructure provider
(InP). After a VNT request has been provisioned successfully,
the InP creates a tenant controller in the control layer for the
VNT and passes it to the VNT’s SP, and then the SP can use
it as an SDN controller to manage the tenant flow tables in
the VNT. The orchestrator in the orchestration layer works as
the “brain” of TPVX to calculate the VNE schemes for the

11

Fig. 9. Overall system architecture of improved TPVX.

VNT requests based on the latest SNT state, and we implement
our D3L-VNE algorithm in it. The virtualization layer bridges
the control communications between the tenant controllersand
the S-SWs in the infrastructure layer, and according to the
VNE schemes, it installs both control flow tables and translated
tenant flow tables in the SNT. Specifically, as plotted in Fig.
9, this layer handles the network slicing from both the node
and link aspects, where the POF-based SR is considered in the
link aspect. The infrastructure layer contains the SNT, where
POF-based switches can form Big-Switches. Since the design
and implementation of TPVX have already been elaborated in
[25], we save the discussion on them here.

 !

" #

$ %

& '

(

)

*
+ ,

-

.

/

0

(1

((

"
'

&

#

23456789&:

;<=9

!8>?6789&:

Fig. 10. Experimental setup.

B. Experimental Setup

The SNT in our experimental setup is shown in Fig. 10,
which consists of11 stand-alone POF-based S-SWs and4
hosts. Each S-SW is based on our homemade software POF
switch [46] running on a high-performance Linux server. All
the network connections in the SNT are based on 1GbE. The
TPVX system in Fig. 9 is implemented on a Linux server
too. Note that, even though the simulations in Section VI have
already evaluated D3L-VNE from a few aspects, the additional

latency induced by the Big-Switches cannot be evaluated with
simulations. Therefore, our experiments will first measurethe
latency in various situations and then send high-definition
(HD) video streams through the VNTs built over Big-Switches
to further verify the practicalness of our proposal.

1 2 3 4 5 6
Number of Tenant Flow Tables in Packet Processing Pipeline

0

50

100

150

200

250

300

A
ve

ra
ge

 P
ac

ke
t P

ro
ce

ss
in

g
La

te
nc

y
(

 s
)

Fig. 11. The worst-case latency in a Big-Switch that includes three V-SWs.

C. Latency Measurements

We first consider a Big-Switch including three S-SWs (i.e.,
S-SWs9-11 in Fig. 10) and embed a V-SW on it. Then,
we change the packet processing pipeline in the V-SW from
containing1 to 6 tenant flow tables, and measure the worst-
case latency for the packet processing in the Big-Switch. The
results in Fig. 11 show that as expected, the average latency
increases with the number of tenant flow tables in the pipeline,
but the latencies are in the order ofµs and thus very short.
Next, we consider the multi-hop scenario and map two VNTs
in the SNT as shown in Fig. 10. Specifically, each VNT only
consists of one VL, and the VL:a-A-B-b is embedded asa-(5,
6)-8-(10, 9, 11)-b (Path1) while the VL:c-C-D-d is embedded
asc-(1, 2)-4-(5, 6)-7-(9,10,11)-b (Path2), where the S-SWs in
“()” form a Big-Switch. We still fix the total number of tenant
flow tables over each VL as6, consider different distributions
of the flow tables over each path, measure the total packet
processing latency with the standard scheme in [47], and plot
the results in Fig. 12. It can be seen that the longest latencies
in the worst-case scenarios are still in the order ofµs. Since
our proposal actually sacrifices the memory access latency in
exchange of the efficiency of memory utilization, we expect
it to be useful in the environment where the network latency
can be controlled well (e.g., in a datacenter network).

Path 1 Path 2
Different Distributions of Tenant Flow Tables over Path

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 P
ac

ke
t P

ro
ce

ss
in

g
La

te
nc

y
(

 s
)

Fig. 12. Packet processing latency in multi-hop scenarios.

12

0 20 40 60 80 100
Time (seconds)

0

1

2

3

4

5

6

7
B

an
dw

id
th

 (
M

bp
s)

(a) onHost b

0 20 40 60 80 100
Time (seconds)

0

1

2

3

4

5

6

7

B
an

dw
id

th
 (

M
bp

s)

(b) on Host d

0 20 40 60 80 100
Time (seconds)

0

1

2

3

4

5

6

7

R
ec

ei
vi

ng
 B

an
dw

id
th

 (
M

bp
s)

(c) on S-SW9

Fig. 13. Receiving bandwidth for HD video streaming.

D. HD Video Streaming in VNTs Embedded on Big-Switches

To further verify the practicalness of our proposal, we keep
the VNTs embedded in the previous subsection and stream
HD videos over them. The experiment measures the receiving
bandwidths and quality of video playbacks to confirm that our
three-layer VNE would not cause noticeable service degrada-
tion on upper-layer applications,i.e., our proposal maintains
good isolation between VNTs that share the same S-SWs.
We still use the embedding schemes in Fig. 10, and thus
the two VLs share the Big-Switch (9,10,11). Then, two HD
video streams are sent froma to b and c to d at different
time in the experiment. Fig. 13 shows the experimental results
on the receiving bandwidth measured at different locations.
The results in Figs. 13(a) and 13(b) verify that with the
three-layer VNE, the video streams on different VLs get
delivered correctly in the SNT. Meanwhile, we can see that
the forwarding of the packets over different VLs gets isolated
well. This is because the insertion of the video stream toHost
d at aroundt = 40 seconds does not cause any noticeable
bandwidth reduction on that toHost b, even though the results
in Fig. 13(c) indicate that the two streams shareS-SW9.
Finally, we measure the luminance component’s peak signal-
to-noise ratio (Y-PSNR) of the video playbacks onHostsb and
d, to confirm the quality of the video streaming. As shown in
Fig. 14, the Y-PSNR of the video playbacks stay at relatively
high values throughout the streaming of the two videos.

VIII. C ONCLUSION

This paper studied the table resource virtualization and
network slicing in PDP-based SNTs. We first leveraged the
idea of “Big-Switch” to design an effective table resource
virtualization scheme to regulate the flow tables in the S-SWs
in a more organized way to minimize memory fragmentation.
Then, we addressed the network slicing based on the virtu-
alization scheme by formulating a three-layer VNE problem.
An ILP model and a time-efficient heuristic, namely, D3L-
VNE, were designed to solve the problem. Simulation results
confirmed that D3L-VNE can provide near-optimal solutions
to small-scale problems, while for dynamic operations in large-
scale SNTs, it outperforms two benchmark algorithms. Finally,
we implemented D3L-VNE in TPVX, which is a POF-enabled
network hypervisor, and improved the performance of TPVX
by introducing source routing. Experimental demonstrations of
the new TPVX showed that the additional latency caused by

25 35 45 55 68 75
Time (seconds)

0

20

40

60

80

100

Y
-P

S
N

R
 (

dB
)

(a) Video received onHost b

45 55 65 75 85 95
Time (seconds)

0

20

40

60

80

100
Y

-P
S

N
R

 (
dB

)

(b) Video received onHost d

Fig. 14. Y-PSNR of video playbacks.

the three-layer VNE can be maintained well and thus would
not degrade the network services in VNTs.

ACKNOWLEDGMENTS

This work was supported by the NSFC projects 61871357
and 61701472, CAS key project (QYZDY-SSW-JSC003), and
NGBWMCN key project (2017ZX03001019-004).

REFERENCES

[1] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.

[2] P. Lu et al., “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[4] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[5] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

13

[6] Z. Zhu et al., “OpenFlow-assisted online defragmentation in single-
/multi-domain software-defined elastic optical networks,” J. Opt. Com-
mun. Netw., vol. 7, pp. A7–A15, Jan. 2015.

[7] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[8] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[9] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[10] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[11] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[12] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,”IEEE Commun. Mag.,
vol. 51, pp. 24–31, Nov. 2013.

[13] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[14] H. Huang et al., “Realizing highly-available, scalable and protocol-
independent vSDN slicing with a distributed network hypervisor sys-
tem,” IEEE Access, vol. 6, pp. 13 513–13 522, 2018.

[15] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[16] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[17] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[18] H. Song, “Protocol-oblivious forwarding: Unleash thepower of SDN
through a future-proof forwarding plane,” inProc. of ACM HotSDN
2013, pp. 127–132, Aug. 2013.

[19] P. Bosshartet al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,”ACM SIGCOMM Com-
put. Commun. Rev., vol. 43, pp. 99–110, Oct. 2013.

[20] The world’s fastest & most programmable networks.
[Online]. Available: https://www.barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/

[21] S. Chole et al., “dMRT: Disaggregated programmable switching,” in
Proc. of SIGCOMM 2017, pp. 1–14, Aug. 2017.

[22] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2015.

[23] D. Kim et al., “Generic external memory for switch data planes,” in
Proc. of ACM HotNets 2018, pp. 1–7, Nov. 2018.

[24] S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: Flow-table virtualization
in POF-based vSDN hypervisor (PVX),” inProc. of ICNC 2018, pp. 1–
5, Mar. 2018.

[25] Y. Xue et al., “Virtualization of table resources in programmable data
plane with global consideration,” inProc. of GLOBECOM 2018, pp.
1–6, Dec. 2018.

[26] S. Zhao, D. Li, K. Han, and Z. Zhu, “Proactive and hitlessvSDN
reconfiguration to balance substrate TCAM utilization: From algorithm
design to system prototype,”IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 647–660, Jun. 2019.

[27] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,”IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275–288, Mar. 2018.

[28] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Proc.
of SOSR 2016, pp. 1–12, Mar. 2016.

[29] A. Mimidis-Kentis et al., “A novel algorithm for flow-rule placement in
SDN switches,” inProc. of NetSoft 2018, pp. 1–9, Jun. 2018.

[30] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,” inProc. of OSDI
2018, pp. 69–87, Oct. 2018.

[31] S. Shirali-Shahreza and Y. Ganjali, “Delayed installation and expedited
eviction: An alternative approach to reduce flow table occupancy in SDN
switches,”IEEE/ACM Trans. Netw., vol. 26, pp. 1547–1561, Aug. 2018.

[32] G. Zhaoet al., “Joint optimization of flow table and group table for
default paths in SDNs,”IEEE/ACM Trans. Netw., vol. 26, pp. 1837–
1850, Aug. 2018.

[33] W. Li, X. Li, and H. Li, “MEET-IP: Memory and energy efficient
TCAM-based IP lookup,” inProc. of ICCCN 2017, pp. 1–8, Jul. 2017.

[34] D. Hancock and J. Merwe, “HyPer4: Using P4 to virtualizethe pro-
grammable data plane,” inProc. of CoNEXT 2016, pp. 35–49, May
2016.

[35] J. Zhanget al., “Dynamic virtual network embedding over multilayer
optical networks,”J. Opt. Commun. Netw., vol. 7, pp. 918–927, Sept.
2015.

[36] S. Chowdhuryet al., “MULE: Multi-layer virtual network embedding,”
in Proc. of CNSM 2017, pp. 1–9, Nov. 2017.

[37] G. Long, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[38] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[39] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compilingpacket
programs to reconfigurable switches,” inProc. of NSDI 2015, pp. 103–
115, May 2015.

[40] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[41] W. Fanget al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[42] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[43] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. INFOCOM 1996, pp. 594–602, Mar. 1996.

[44] switch.p4. [Online]. Available: https://github.com/p4lang/switch/tree/
master/p4src

[45] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

[46] Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstration of high-
throughput protocol oblivious packet forwarding to support software-
defined vehicular networks,”IEEE Access, vol. 5, pp. 24 004–24 011,
2017.

[47] S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,”RFC 2544, Mar. 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2544

