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Abstract: We design DeepCoop to realize service provisioning in rddtnain software-defined

elastic optical networks (SD-EONSs) with cooperative desipforcement learning (DRL) agents.

OCIScodes: (060.1155) Software-defined optical networks; (060.428dfworks, assignment and routing algorithms.
1. Introduction
The emergence of new network paradigmg.( cloud computing and 5G) has pushed backbone networks gowier
dramatic changes to adapt to the ever-increasing traffiovaridus quality-of-service (QoS) demands [1]. Software-
defined elastic optical networks (SD-EONSs) are therefodelyiconsidered as a promising solution for future back-
bone networks [2]. This is because SD-EON makes the netvaorka and management (NC&M) more adaptive and
programmable with a centralized control plane, and thusrth&r promotes the agility of EON. Meanwhile, since a
backbone network can cover a relatively large geographiea, it is usually owned and operated by different carriers
Hence, it would be inevitable to consider multi-domain SONE [3]. Specifically, the inter-domain service provi-
sioning scheme, which considers the autonomy of each dgstzonild be developed with reasonably good scalability.

The basic problem of service provisioning in an EON is thetimguand spectrum assignment (RSA) [4], which
is known to be NP-hard. Therefore, even though numerouddtieuRSA algorithms have been designed, they can
hardly guarantee the optimality of their solutions or evesuge the approximation gap to optimal ones. To this end,
people tried to leverage deep reinforcement learning (DRIsplve RSA [5], because DRL can work with statistical
models to solve complex problems without being explicitlggrammed. Although the DRL-based approachin [5] had
outperformed a few well-known heuristic algorithms, iflstuffers from limited scalability and universality. This
because the DRL model was designed to select the actual Rf&fnscfor each lightpath. Hence, the action space size
will increase fast, when more routing path candidates aneraeailable frequency slot (FS) blocks on each path are
considered for each lightpath. This would make the model barconverge, and thus cause severe scalability issues.
Moreover, as the “goodness” of RSA schemes is tightly rdl&iehe topology of the concerned EON, a DRL model
that has been trained in one EON would be inapplicable inf@raine. Meanwhile, for the inter-domain provisioning
in a multi-domain SD-EON, the study in [6] considered a DRis&d approach that involves multiple DRL agents.
Each DRL agent corresponds to a broker that can observesalidimains, and it accomplishes two tasks: 1) selecting
the whole inter-domain provisioning scheme for each cotioecequest, and 2) competing with other agents for
service provisioning opportunities. For the first task, BfRL agent operates similarly as the one in [5]. Hence, the
scalability and universality issues still exist. For the@®d task, since the agents compete, instead of cooperthte wi
each other, the overall computation complexity would iase=other than decrease with the number of agents.

The limitations of existing approaches motivate us to psepan inter-domain service framework that leverages
cooperative DRL agents to achieve scalable network automatamely, DeepCoop. For each connection request,
DeepCoop first utilizes a domain-level path computatiomelet (PCE) to get the domain sequence to go through,
and then counts on the DRL agent allocated to each domaintf@a-domain RSA calculation and inter-domain link
selection. By exchanging little information among eacheothe., sharing state parameters and feeding back rewards
collaboratively), the DRL agents calculate inter-domaiovsioning schemes distributedly. Moreover, each DRL
agentis designed to select a proper RSA algorithen {rom a few well-known heuristics) for each connection resfu
and thus the size of its action space is significantly redaceldvill be fixed for different domain topologies. Therefore
DeepCoop effectively relieves both the scalability andvarsgality issues. We evaluate the performance of DeepCoop
with numerical simulations, and the results indicate the¢@Coop outperforms several existing benchmarks.

2. System Architectureand Design of DeepCoop

Fig. 1(a) shows the system architecture of DeepCoop. We pldomain-level PCE on top of all the domain managers,
and use it to determine the domain-level routing path fohezmmnection request, which is the domain sequence
from its source to its destination. Each domain managerisnsf two components,e., a DRL agent and an SDN
controller. The controller reports current intra-domaatss (.e., the spectrum usage on each intra-domain fiber link)
and pending connection requests to the DRL agent, and coefithe intra-domain lightpath segment for each request
according to the service provisioning scheme returned byatient. The DRL agent is trained in the online manner
to learn how to choose the best RSA algorithm based on theruintra-domain status, to calculate the lightpath



segment in the domain for a connection request. MeanwhieeDRL agents of all the domain along the inter-domain
routing path work cooperatively to determine the inter-aomRSA schemes.

We use the example in Fig. 1(b) to explain the cooperatiowéen two DRL agents, which belong to adjacent
domains. Let us assume that for a connection request, thaiddevel PCE has already determined the domain
sequence aBomain 1—Domain 2. Then,DRL Agents 1 and 2 work cooperatively to figure out the inter-domain
provisioning scheme, which is done by taking their acti@uentially. FirstlyDRL Agent 1 obtains the RSA scheme
within its domain {.e., including the egress node Bomain 2), and sends the egress nod®RL Agent 2. Secondly,
DRL Agent 2 uses the egress node to first get the ingress node and thBsfhscheme in its domain. Here, when
calculating the intra-domain RSA schemes, each DRL agenhsklects a proper RSA algorithm from several present
heuristics, and then computes RSA with the algorithm. Bipafter finalizing the intra-domain provisioning schemes
in both domains, DeepCoop obtains the spectrum assignmethiecinter-domain link with the first-fit scenario. In
this work, we assume that there are mandatory opticalteatbptical (O/E/O) conversions at border nodes to emsur
domain privacy. Hence, there is no need to consider therspeciontinuous constraint when provisioning a connection
across border nodesd, from an intra-domain link to an inter-domain one vire versa).

Next, the SDN controllers deploy the inter-domain provisiy scheme of the request in the multi-domain SD-
EON. After this, each controller feeds back an evaluatiothefRSA scheme implemented in its domain to the reward
system, where the reward of its DRL agent’s previous actien the selection of a RSA algorithm) gets calculated (as
shown in Fig. 1(b)). The reward system pushes the rewardtariresponding action and state into the experience
buffer as a training sample, which will be used to update #epcheural networks (DNNs) in the DRL agent on-the-
fly. Note that, the DRL agents’ actions are correlated anecafach other’s performance. For instari2BL Agent
1 determines the ingress node@omain 2, which will in turn affects the performance BIRL Agent 2. Hence, the
state observed by each DRL agent should also include thesstéits adjacent domains, and its reward calculation
should take the feedbacks from the agents in adjacent dermmaccount. As illustrated in Fig. 1(b), we design the
DRL agents to share state parameters and calculate rewalalsaratively, and in the meantime, we only allow very
necessary interactions among the agents to restrict cagstand thus ensure the cost-effectiveness of NC&M.

We model the multi-domain SD-EON as a grah= {G;(Vi,Ei),i € [1,N]}, wherei is the domain indexN is
the number of domains, angl andE; are the sets of nodes and linksDomain i. A dynamic connection request is
represented gg' (s,d,BD, T), wheret is the arrival timesandd are the source and destination nodes, respectiBbly,
is the number of required FS’, antds the service duration. Upon the arrival pf, domain-level PCE calculates the
domain sequence for its provisionirig., Y4 = [Gy,,- - ,Gy,], whereGy, andGy,, denote the source and destination
domains, respectively, and the intermediate ones arewdsetof them. Then, the DRL agents in the selected domains,
i.e, {DRLj, j € ¢4}, utilize the procedure explained above to determine theg-eidomain provisioning scheme gt
through cooperation. The four basic elements of each agBRL model are designed as follows.

State: The statezs‘j observed byDRL; includes: request!, status ofDomain j, and status of the next domain. The
status oDomain j is represented as the average number and average sizelab/ab blocks on each candidate path.
Here, we calculat& shortest paths throudgbomain j as the candidates to provisigh The status of the next domain
is defined similarly, but to keep domain privacy, the next donwill only disclose the average number and average
size of available FS blocks between each of its border nodelpa hide the path information. For the destination
domain, the status of its next domain is emptg.(filled with zeros).

Action: The actionatj of DRL; is to select a proper RSA algorithm to calculate the intrezdim RSA inDomain
j, based on the observed sta‘}eThis work considers three famous RSA algorithms, whichtlageshortest path and
first-fit (SP-FF) K shortest paths and first fit (KSP-FF), akahortest paths and load balancing (KSP-LB) [4].
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Fig. 1. (a) System architecture of DeepCoop, and (b) Cotiperbetween two DRL agents for inter-domain provisioning.



Reward: The objective ofDRL; is to minimize the long-term blocking probability of intdemain provisioning.
Hence, we calculate the instant rewa‘[difter serving requegt! in Domain j as follows. The value c11‘J is initialized
as 0, and it gets increased by 1 if the intra-domain proviemin the next domain is successful. Otherwise, we
decreasaetj by the total number of remaining domain®( the domains from the next one to the destination).

Agent: Each DRL agent is based on advantage actor critic (A2CWHich uses two DNNSs to ensure good perfor-
mance on dynamic decision making. Specifically, it uses ther&NN to choose an action in a state, while the critic
DNN evaluates the action’s performance. The DRL agentgairged in the online manner, with the common training
procedure of A2C, and each DRL agent is trained indepengesithg its own experience buffer.

3. Performance Evaluation
We evaluate the performance of DeepCoop with a multi-dor8BIFEON whose topology is shown in Fig. 2(a), which
consists of three domains whose topologies are all the té-NSFNET. Here, we purposely design the multi-domain
topology with relatively large numbers of nodes and links,(42 nodes and 142 directional links) to explore the scal-
ability of our proposal. We assume that each intra-domakdan accommodate 100 FS’, while the capacity of each
inter-domain link is set as 300 FS’ to preventinter-domaitilbnecks. Connection requests are dynamically gercerate
according to the Poisson traffic model. Their source andrdgg&in nodes are randomly selecteddamains 1 and 3,
respectively, and their bandwidth demands are uniformdjriiuted within[2,9] FS’. We consider four benchmarks,
which are named as all-SP-FF, all-KSP-FF, all-KSP-LB ané@®SA. For the first three benchmarks, they always
use the same RSA algorithm to calculate the intra-domaivigioning schemes. For instance, all-SP-FF refers to the
scenario that uses SP-FF for intra-domain provisioninglitha three domains. DeepRSA utilizes the same system
architecture as DeepCoop, but its DRL agents work indepehdgithout any cooperation or information sharing.
Fig. 2(b) shows the evolution of blocking probability alotrgining episodes, when the traffic load is fixed at
70 Erlangs. We observe that as the training goes on, the inlpgkobability from DeepCoop quickly converges to
2.3x10°3 (after 60 episodes), which achieve®6%, ~90%, and~91% reduction on blocking probability related
to all-SP-FF, all-KSP-FF and all-KSP-LB, respectivelyiSbonfirms that the cooperative DRL agents in DeepCoop
can efficiently learn how to serve connection requests imgelacale multi-domain SD-EON. Meanwhile, we notice
that the blocking probability from DeepRSA fluctuates aldraining episodes and is difficult to converge. This is
because the agents in DeepRSA do not cooperate, which fuehiées the superiority of our cooperative design for
DeepCoop. Finally, we plot the results on blocking prokighitom the five algorithms at different traffic loads in Fig.
2(c). It can be see that DeepCoop outperforms all the bendst@provide the lowest blocking probability.

4. Summary

We leveraged cooperative DRL to propose DeepCoop, whichachreve scalable network automation for inter-
domain provisioning in multi-domain SD-EONSs. Simulati@sults confirmed that DeepCoop can quickly learn how
to provision lightpaths in a large-scale network and aahlewer blocking probability than the existing benchmarks.
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Fig. 2. Simulation setup and results, (a) Topology of thetirtldmain SD-EON, (b) Evolution of blocking probability
during training (traffic load at 70 Erlangs), and (c) Blodkiprobability at different traffic loads.



