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Abstract: We design DeepCoop to realize service provisioning in multi-domain software-defined
elastic optical networks (SD-EONs) with cooperative deep reinforcement learning (DRL) agents.
OCIS codes: (060.1155) Software-defined optical networks; (060.4251)Networks, assignment and routing algorithms.

1. Introduction
The emergence of new network paradigms (e.g., cloud computing and 5G) has pushed backbone networks undergone
dramatic changes to adapt to the ever-increasing traffic andvarious quality-of-service (QoS) demands [1]. Software-
defined elastic optical networks (SD-EONs) are therefore widely considered as a promising solution for future back-
bone networks [2]. This is because SD-EON makes the network control and management (NC&M) more adaptive and
programmable with a centralized control plane, and thus it further promotes the agility of EON. Meanwhile, since a
backbone network can cover a relatively large geographicalarea, it is usually owned and operated by different carriers.
Hence, it would be inevitable to consider multi-domain SD-EONs [3]. Specifically, the inter-domain service provi-
sioning scheme, which considers the autonomy of each domain, should be developed with reasonably good scalability.

The basic problem of service provisioning in an EON is the routing and spectrum assignment (RSA) [4], which
is known to be NP-hard. Therefore, even though numerous heuristic RSA algorithms have been designed, they can
hardly guarantee the optimality of their solutions or even ensure the approximation gap to optimal ones. To this end,
people tried to leverage deep reinforcement learning (DRL)to solve RSA [5], because DRL can work with statistical
models to solve complex problems without being explicitly programmed. Although the DRL-based approach in [5] had
outperformed a few well-known heuristic algorithms, it still suffers from limited scalability and universality. Thisis
because the DRL model was designed to select the actual RSA scheme for each lightpath. Hence, the action space size
will increase fast, when more routing path candidates and more available frequency slot (FS) blocks on each path are
considered for each lightpath. This would make the model hard to converge, and thus cause severe scalability issues.
Moreover, as the “goodness” of RSA schemes is tightly related to the topology of the concerned EON, a DRL model
that has been trained in one EON would be inapplicable in another one. Meanwhile, for the inter-domain provisioning
in a multi-domain SD-EON, the study in [6] considered a DRL-based approach that involves multiple DRL agents.
Each DRL agent corresponds to a broker that can observe all the domains, and it accomplishes two tasks: 1) selecting
the whole inter-domain provisioning scheme for each connection request, and 2) competing with other agents for
service provisioning opportunities. For the first task, theDRL agent operates similarly as the one in [5]. Hence, the
scalability and universality issues still exist. For the second task, since the agents compete, instead of cooperate with
each other, the overall computation complexity would increase other than decrease with the number of agents.

The limitations of existing approaches motivate us to propose an inter-domain service framework that leverages
cooperative DRL agents to achieve scalable network automation, namely, DeepCoop. For each connection request,
DeepCoop first utilizes a domain-level path computation element (PCE) to get the domain sequence to go through,
and then counts on the DRL agent allocated to each domain for intra-domain RSA calculation and inter-domain link
selection. By exchanging little information among each other (i.e., sharing state parameters and feeding back rewards
collaboratively), the DRL agents calculate inter-domain provisioning schemes distributedly. Moreover, each DRL
agent is designed to select a proper RSA algorithm (i.e., from a few well-known heuristics) for each connection request,
and thus the size of its action space is significantly reducedand will be fixed for different domain topologies. Therefore,
DeepCoop effectively relieves both the scalability and universality issues. We evaluate the performance of DeepCoop
with numerical simulations, and the results indicate that DeepCoop outperforms several existing benchmarks.

2. System Architecture and Design of DeepCoop
Fig. 1(a) shows the system architecture of DeepCoop. We place a domain-level PCE on top of all the domain managers,
and use it to determine the domain-level routing path for each connection request, which is the domain sequence
from its source to its destination. Each domain manager consists of two components,i.e., a DRL agent and an SDN
controller. The controller reports current intra-domain status (i.e., the spectrum usage on each intra-domain fiber link)
and pending connection requests to the DRL agent, and configures the intra-domain lightpath segment for each request
according to the service provisioning scheme returned by the agent. The DRL agent is trained in the online manner
to learn how to choose the best RSA algorithm based on the current intra-domain status, to calculate the lightpath



segment in the domain for a connection request. Meanwhile, the DRL agents of all the domain along the inter-domain
routing path work cooperatively to determine the inter-domain RSA schemes.

We use the example in Fig. 1(b) to explain the cooperation between two DRL agents, which belong to adjacent
domains. Let us assume that for a connection request, the domain-level PCE has already determined the domain
sequence asDomain 1→Domain 2. Then,DRL Agents 1 and 2 work cooperatively to figure out the inter-domain
provisioning scheme, which is done by taking their actions sequentially. Firstly,DRL Agent 1 obtains the RSA scheme
within its domain (i.e., including the egress node toDomain 2), and sends the egress node toDRL Agent 2. Secondly,
DRL Agent 2 uses the egress node to first get the ingress node and then theRSA scheme in its domain. Here, when
calculating the intra-domain RSA schemes, each DRL agent first selects a proper RSA algorithm from several present
heuristics, and then computes RSA with the algorithm. Finally, after finalizing the intra-domain provisioning schemes
in both domains, DeepCoop obtains the spectrum assignment on the inter-domain link with the first-fit scenario. In
this work, we assume that there are mandatory optical-electrical-optical (O/E/O) conversions at border nodes to ensure
domain privacy. Hence, there is no need to consider the spectrum continuous constraint when provisioning a connection
across border nodes (i.e., from an intra-domain link to an inter-domain one, orvice versa).

Next, the SDN controllers deploy the inter-domain provisioning scheme of the request in the multi-domain SD-
EON. After this, each controller feeds back an evaluation ofthe RSA scheme implemented in its domain to the reward
system, where the reward of its DRL agent’s previous action (i.e., the selection of a RSA algorithm) gets calculated (as
shown in Fig. 1(b)). The reward system pushes the reward and its corresponding action and state into the experience
buffer as a training sample, which will be used to update the deep neural networks (DNNs) in the DRL agent on-the-
fly. Note that, the DRL agents’ actions are correlated and affect each other’s performance. For instance,DRL Agent
1 determines the ingress node toDomain 2, which will in turn affects the performance ofDRL Agent 2. Hence, the
state observed by each DRL agent should also include the status of its adjacent domains, and its reward calculation
should take the feedbacks from the agents in adjacent domains into account. As illustrated in Fig. 1(b), we design the
DRL agents to share state parameters and calculate rewards collaboratively, and in the meantime, we only allow very
necessary interactions among the agents to restrict overheads and thus ensure the cost-effectiveness of NC&M.

We model the multi-domain SD-EON as a graphG = {Gi(Vi,Ei), i ∈ [1,N]}, wherei is the domain index,N is
the number of domains, andVi andEi are the sets of nodes and links inDomain i. A dynamic connection request is
represented asχ t(s,d,BD,τ), wheret is the arrival time,s andd are the source and destination nodes, respectively,BD
is the number of required FS’, andτ is the service duration. Upon the arrival ofχ t , domain-level PCE calculates the
domain sequence for its provisioning,i.e., ψt = [Gk1, · · · ,Gkm ], whereGk1 andGkm denote the source and destination
domains, respectively, and the intermediate ones are in between of them. Then, the DRL agents in the selected domains,
i.e., {DRL j, j ∈ ψt}, utilize the procedure explained above to determine the inter-domain provisioning scheme ofχ t

through cooperation. The four basic elements of each agent’s DRL model are designed as follows.
State: The statest

j observed byDRL j includes: requestχ t , status ofDomain j, and status of the next domain. The
status ofDomain j is represented as the average number and average size of available FS blocks on each candidate path.
Here, we calculateK shortest paths throughDomain j as the candidates to provisionχ t . The status of the next domain
is defined similarly, but to keep domain privacy, the next domain will only disclose the average number and average
size of available FS blocks between each of its border node pair, but hide the path information. For the destination
domain, the status of its next domain is empty (i.e., filled with zeros).

Action: The actionat
j of DRL j is to select a proper RSA algorithm to calculate the intra-domain RSA inDomain

j, based on the observed statest
j. This work considers three famous RSA algorithms, which arethe shortest path and

first-fit (SP-FF),K shortest paths and first fit (KSP-FF), andK shortest paths and load balancing (KSP-LB) [4].
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Fig. 1. (a) System architecture of DeepCoop, and (b) Cooperation between two DRL agents for inter-domain provisioning.



Reward: The objective ofDRL j is to minimize the long-term blocking probability of inter-domain provisioning.
Hence, we calculate the instant rewardrt

j after serving requestχ t in Domain j as follows. The value ofrt
j is initialized

as 0, and it gets increased by 1 if the intra-domain provisioning in the next domain is successful. Otherwise, we
decreasert

j by the total number of remaining domains (i.e., the domains from the next one to the destination).
Agent: Each DRL agent is based on advantage actor critic (A2C) [7],which uses two DNNs to ensure good perfor-

mance on dynamic decision making. Specifically, it uses the actor DNN to choose an action in a state, while the critic
DNN evaluates the action’s performance. The DRL agents are trained in the online manner, with the common training
procedure of A2C, and each DRL agent is trained independently using its own experience buffer.

3. Performance Evaluation
We evaluate the performance of DeepCoop with a multi-domainSD-EON whose topology is shown in Fig. 2(a), which
consists of three domains whose topologies are all the 14-node NSFNET. Here, we purposely design the multi-domain
topology with relatively large numbers of nodes and links (i.e., 42 nodes and 142 directional links) to explore the scal-
ability of our proposal. We assume that each intra-domain link can accommodate 100 FS’, while the capacity of each
inter-domain link is set as 300 FS’ to prevent inter-domain bottlenecks. Connection requests are dynamically generated
according to the Poisson traffic model. Their source and destination nodes are randomly selected inDomains 1 and 3,
respectively, and their bandwidth demands are uniformly distributed within[2,9] FS’. We consider four benchmarks,
which are named as all-SP-FF, all-KSP-FF, all-KSP-LB and DeepRSA. For the first three benchmarks, they always
use the same RSA algorithm to calculate the intra-domain provisioning schemes. For instance, all-SP-FF refers to the
scenario that uses SP-FF for intra-domain provisioning in all the three domains. DeepRSA utilizes the same system
architecture as DeepCoop, but its DRL agents work independently without any cooperation or information sharing.

Fig. 2(b) shows the evolution of blocking probability alongtraining episodes, when the traffic load is fixed at
70 Erlangs. We observe that as the training goes on, the blocking probability from DeepCoop quickly converges to
2.3×10−3 (after 60 episodes), which achieves∼96%,∼90%, and∼91% reduction on blocking probability related
to all-SP-FF, all-KSP-FF and all-KSP-LB, respectively. This confirms that the cooperative DRL agents in DeepCoop
can efficiently learn how to serve connection requests in a large-scale multi-domain SD-EON. Meanwhile, we notice
that the blocking probability from DeepRSA fluctuates alongtraining episodes and is difficult to converge. This is
because the agents in DeepRSA do not cooperate, which further verifies the superiority of our cooperative design for
DeepCoop. Finally, we plot the results on blocking probability from the five algorithms at different traffic loads in Fig.
2(c). It can be see that DeepCoop outperforms all the benchmarks to provide the lowest blocking probability.

4. Summary
We leveraged cooperative DRL to propose DeepCoop, which canachieve scalable network automation for inter-
domain provisioning in multi-domain SD-EONs. Simulation results confirmed that DeepCoop can quickly learn how
to provision lightpaths in a large-scale network and achieve lower blocking probability than the existing benchmarks.
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Fig. 2. Simulation setup and results, (a) Topology of the multi-domain SD-EON, (b) Evolution of blocking probability
during training (traffic load at 70 Erlangs), and (c) Blocking probability at different traffic loads.


