
1

Deep-NFVOrch: Leveraging Deep Reinforcement
Learning to Achieve Adaptive vNF Service

Chaining in DCI-EONs
Baojia Li, Wei Lu, Zuqing Zhu,Senior Member, IEEE

Abstract—Due to the raising of cloud computing, how to realize
adaptive and cost-effective virtual network function service
chaining (vNF-SC) in a datacenter interconnection based on
elastic optical network (DCI-EON) has become an interesting
but challenging problem. In this work, we tackle this problem
by optimizing the design of a deep reinforcement learning (DR-
L) based adaptive service framework, namely, Deep-NFVOrch.
Specifically, Deep-NFVOrch works in service cycles, and tries
to reduce the setup latency of vNF-SC by invoking request
prediction and pre-deployment at the beginning of each service
cycle. We introduce a DRL-based observer (DRL-Observer) to
select the duration of each service cycle adaptively according
to the network status. The DRL-Observer is designed based on
the advantage actor critic (A2C), which can interact with the
network environment constantly through its deep neural network
(DNN) and learn how to make wise decisions based on the
environment’s feedback. Our simulation results demonstrate that
DRL-Observer converges fast in online training with the help of a
few asynchronous training threads, and the Deep-NFVOrch with
it achieves better performance than several benchmarks, interms
of balancing the tradeoff among the overall resource utilization,
the vNF-SC request blocking probability, and the number of
network reconfigurations in a DCI-EON.

Index Terms—Network function virtualization (NFV), Service
chaining, Datacenter interconnection (DCI), Elastic optical net-
works (EONs), Deep reinforcement learning (DRL), Artificial
intelligence (AI).

I. I NTRODUCTION

W ITH the emerging of new network paradigms such as
5G and Internet-of-things (IoT), the demands for real-

time, adaptive and inexpensive network services are increasing
fast [1, 2]. Therefore, if service providers (SPs) still deploy
dedicated middleboxes to cope with the demands, both the cap-
ital expenditures (CAPEX) and operational expenses (OPEX)
would be skyrocketing. This dilemma pushes people to consid-
er network function virtualization (NFV) [3] as the alternative,
which replaces dedicated middleboxes with the virtual network
functions (vNFs) realized on commodity servers [4]. Hence,
an SP can instantiate vNFs in datacenters (DCs) dynamical-
ly and adaptively in response to time-variant demands for
network services, significantly reducing both CAPEX and
OPEX. Moreover, the service provisioning enabled by NFV
can be even more flexible, if the SP defines atomic vNFs and
composes relatively complex network services with a seriesof

B. Li, W. Lu, and Z. Zhu are with the School of Information Science and
Technology, University of Science and Technology of China,Hefei, Anhui
230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on June 30, 2019.

such vNFs. This is usually referred to as vNF service chaining
(vNF-SC) [5, 6], i.e., building a network service by steering
the application traffic through a series of vNFs in sequence.

In addition to the innovations on the IT side, NFV also
gains momentum from new optical networking architectures
(e.g., flexible-grid elastic optical networks (EONs) [7–11]).
This is because vNF-SC can route high-throughput and bursty
traffic across several DCs and a DC interconnection (DCI)
has to use an optical network as its physical layer [12, 13].
With a spectrum allocation granularity at12.5 GHz or even
smaller, EONs remove the restriction due to the fixed-grids
in conventional wavelength-division multiplexing (WDM) net-
works. Therefore, a DCI based on EON (DCI-EON) becomes
promising for supporting NFV [14–16].

In order to achieve vNF-SC in a DCI-EON, an SP needs to
deploy the required vNFs in proper DCs, establish lightpaths
in the EON to interconnect the vNFs, and steer the application
traffic over the lightpaths in sequence to go through the vNFs
one by one. Previous studies have designed various algorithms
to tackle the problem of provisioning vNF-SC in DCI-EONs
[6, 16–18], including both integer linear programming (ILP)
models and time-efficient heuristics. However, these approach-
es are still reactive, which means that the deployment of vNFs
and lightpaths is only conducted when the SP actually sees
a vNF-SC request. Hence, they can hardly get around the
excessive latency from setting up lightpaths and instantiating
vNFs, and this would hinder real-time and on-demand vNF-SC
provisioning. Note that, the setup latencies of lightpathsand
vNFs are usually several seconds [19] and tens of seconds [20],
respectively, and they will make the total latency of provision-
ing a vNF-SC request in the order of minutes. Nevertheless,
in today’s Internet, there are numerous network services that
have stringent quality-of-service (QoS) requirement on setup
delay. For instance, it is known that video viewers start to
close their browsers if the loading of a video content takes
more than2 seconds, and the give-up ratio increases5.8% for
each additional second spent on loading [21].

To address this latency issue, we proposed a new service
framework that first predicts future vNF-SC requests based
on historical information, then deploys the required vNFs and
lightpaths in the DCI-EON in advance, and thus only needs
to steer the application traffic through the vNFs in sequence
when the requests actual come in [22]. The service framework
with pre-deployment is shown in Fig. 1 (adapted from [23]),
which operates based on service cycles and the duration of
the n-th cycle is ∆Tn. Each service cycle includes a pre-

2

Service Cycle: t

Provisioning Pre-deployment

• Predicting vNF-SC requests

• Pre-deploying vNFs and lightpaths

• Tearing down unused vNFs and lightpaths

• Steering traffic through pre-deployed

vNFs and lightpaths

Fig. 1. Service framework for vNF-SC provisioning with pre-deployment.

deployment phase followed by a provisioning phase. In the
pre-deployment phase1, we use a deep learning (DL) module
to predict the requests that might arrive in this service cycle,
deploy the required vNFs and lightpaths in advance based on
the prediction, and tear down the unused vNFs and lightpaths
in the DCI-EON. Next, we proceed to the provisioning phase,
and steer application traffic through the required vNFs to form
a vNF-SC upon receiving each new vNF-SC request. To this
end, the total latency of provisioning a vNF-SC request is
shortened significantly, since the setup latencies of lightpaths
and vNFs are removed from it and the traffic steering can
usually be finished within hundreds of milliseconds in a
software-defined networking (SDN) based environment [24].

Although the service framework proposed in [22] is promis-
ing in terms of real-time and on-demand vNF-SC provisioning,
it still suffers from the inflexibility due to using a fixed
service cycle duration (i.e., the value of∆Tn is predetermined
and fixed throughout the service provisioning). The value
of ∆Tn actually adjusts the tradeoff between the operation
complexity and the resource utilization of vNF-SC provi-
sioning. Decreasing∆Tn can improve the accuracy of the
prediction on new vNF-SC requests and reduce the idling
time of pre-deployed vNFs and lightpaths, which will help
to enhance resource utilization in the DCI-EON. However, a
shorter∆Tn also means that the network reconfigurations (i.e.,
setting up and tearing down vNFs and lightpaths) would be
more frequent to push up the operation complexity [25, 26].
On the other hand, even though increasing∆Tn can avoid
unnecessary network reconfigurations, it would degrade the
framework’s performance on resource utilization. Therefore,
the selection of∆Tn’s value should be careful and adaptive
to properly balance the tradeoff in a time-varying network
environment. This, however, can hardly be achieved with a
classic optimization algorithm due to the complexity of vNF-
SC provisioning in DCI-EONs [22].

Meanwhile, machine learning (ML) has recently attracted
intensive interests, because the approaches based on it can
potentially make intelligent decisions to handle complicated
environments. Hence, people started to apply ML to solve
complex optimizations in optical networks [27, 28]. Reinforce-
ment learning is a type of ML that enables online training
of neural networks, and thus it provides superior adaptivity
to address sophisticated optimizations in dynamic network

1We make the duration of the pre-deployment phase much shorter than
∆Tn, and thus we can assume that all the new vNF-SC requests in theservice
cycle arrive in its provisioning phase.

environments [29–32]. Therefore, to resolve the aforemen-
tioned issue with our service framework proposed in [22],
we leveraged deep reinforcement learning (DRL) to design an
adaptive service framework,i.e., Deep-NFVOrch [23]. More
specifically, to properly select the value of∆Tn for each
service cycle, we introduced a DRL based observer, namely,
DRL-Observer. At the beginning of each service cycle, the
DRL-Observer collects instant performance metrics regarding
the service provisioning in the previous cycle, and feeds them
into its deep neural network (DNN) to determine the duration
of the current cycle and update the DL-based vNF-SC request
predictor and its own DNN. Hence, the service framework can
always be adapted to the current network status. The DRL-
Observer is based on the advantage actor critic (A2C) [33],
which can interact with the network environment constantly
through its DNN and learn how to make wise decisions based
on the environment’s feedback (i.e., the reward calculated with
the instant performance metrics).

In this work, we expand our preliminary study in [23] to
make it much more comprehensive, and the major improve-
ments are summarized as follows:

• We describe the design of the DRL-Observer in more
detail, and further optimize the asynchronous training
scheme to expedite its convergence in online training.

• We optimize the operation to determine∆Tn in the
DRL-Observer. To verify the DRL-Observer’s benefits,
we design another adaptive framework without it and run
extensive simulations to compare the two frameworks.

• We perform extensive simulations to check how the key
parameters of the DRL-Observer affect its performance,
and summarize the empirical way to select the key
parameters’ values based on the simulation results.

The rest of paper is organized as follows. Section II
presents the design of Deep-NFVOrch. The detailed design
and operation principle of the DRL-Observer are introduced
in Section III. We conduct extensive simulations to evaluate the
performance of Deep-NFVOrch in Section IV. Finally, Section
V summaries the paper.

II. PROPOSEDADAPTIVE SERVICE FRAMEWORK

A. Architecture of Deep-NFVOrch

Fig. 2 (adapted from [23]) shows the architecture and
operation principle of our adaptive service framework for
provisioning vNF-SC in an DCI-EON (i.e., Deep-NFVOrch).
It can be seen that Deep-NFVOrch is a periodic system whose
service cycle is controlled by the system timer. The system
timer also drives the operation of Deep-NFVOrch in each
cycle, to divide it as a pre-deployment phase followed by a
provisioning phase. Meanwhile, the duration of each cycle
(i.e., ∆Tn) is determined by the DRL-Observer to ensure
adaptive service provisioning. At the beginning of a pre-
deployment phase, the system timer wakes up the DL-based
request predictor, which then forecasts the future vNF-SC
requests that will come in this service cycle (i.e., the next
∆Tn) based on historical information. Next, the vNF-SC pre-
deployment module tries to establish lightpaths and instantiate
vNFs based on the prediction, which is done by leveraging a

3

Request Handler

Incoming vNF-SC

Requests

vNF-SC Pre-Deployment

Lightpath

Establishment

vNF

Instantiation

Deployed Resources

Instant Performance

Metrics

DL-based Request

Predictor

Future Requests

in Next
Update

TED

Topology

In-Service

vNFs

In-Service

Lightpaths

Historical

vNF-SCs vNF-SC Provisioning

Traffic Steering

Requests

Requests

System Timer

DRL-based

Observer

U
p
d
a
te

D
N

N

Update

Fig. 2. Architecture and operation principle of Deep-NFVOrch, TED: traffic engineering database.

Feedback Reward

Observe state of environment

Take

action
Environment

Agent

State

DNN

Policy

(|)

Fig. 3. Operation principle of DRL-Observer.

time-efficient heuristic algorithm to orchestrate the spectrum
and IT resources in the DCI-EON for vNF-SC (e.g., the LBA
algorithm in [6]). More specifically, for each vNF-SC request,
the LBA algorithm first reuses as many deployed vNFs as
possible by finding the longest common subsequence between
requested and deployed vNFs, then deploys the remaining
vNFs with the spectrum-saving principle, and finally sets up
lightpaths to connect the deployed vNFs with the routing and
spectrum assignment (RSA) schemes that cause the smallest
increase on the maximum frequency slot index (MFSI) [8].
In the meantime, the unused vNFs and lightpaths, which were
set up for expired vNF-SC requests, are torn down to maintain
high resource utilization.

Then, the system timer moves Deep-NFVOrch to the pro-
visioning phase, and instructs the request handler to startto
accept vNF-SC requests. The incoming requests are dispatched
to the DL-based request predictor and the vNF-provisioning
module. The predictor stores the requests as historical ones
and prepares itself with them for the next prediction, whilethe
vNF-SC provisioning module steers application traffic through
the required vNFs in each vNF-SC request to accomplish the
service provisioning quickly. The traffic engineering database
(TED) is introduced to record the DCI-EON’s status, which
includes the network topology, in-service vNFs on DCs, in-
service lightpaths in the EON, and historical vNF-SC requests.

As the heart of Deep-NFVOrch, DRL-Observer monitors
the system’s performance proactively and updates its key
components/parameters accordingly. Specifically, at the be-

ginning of each service cycle, DRL-Observer collects the
instant performance metrics regarding the service provision-
ing in the previous cycle (i.e., the blocking probability, the
average utilization of pre-deployed vNFs and lightpaths, and
the number of network reconfigurations), which can be used
to evaluate previous cycle and update its DNN to get better
performance. Meanwhile it leverages its DNN to determine
the proper system configuration based on current environment,
and then updates Deep-NFVOrch accordingly. For example, it
determines the duration of the current service cycle (i.e., ∆Tn)
and feeds∆Tn to the system timer and DL-based request
predictor, and it also updates its DNN.

B. DRL based on Advance Actor Critic (A2C)

In principle, DRL is about an intelligent agent interacting
with a time-varying environment and learning how to act in
different states to maximize its reward with a DNN [34].
Hence, the design of our DRL-Observer also follows this
principle, as shown in Fig. 3. The operation of DRL-Observer
involves four elements,i.e., the agent, action, reward, and state.
The agent is our DRL-Observer, and it constantly interacts
with the environment (i.e., the DCI-EON) to receive a state
st at time t. Then, the agent leverages its DNN to generate
an action policyπθ(A|st), which denotes the distribution of
the probabilities to take possible actions at statest. Here,A
represents the set of all the possible actions that can be taken
by the agent, andθ denotes the DNN’s parameters.

Based on the action policyπθ(A|st), the agent chooses an
actionat to take in response to the statest with the stochastic
method. This means that the actions are selected randomly
according to their probability distribution inπθ(A|st). By
doing so, we can encourage the agent to explore the action
space thoroughly and prevent it from being trapped by local
extremes. After having taken actionat, the agent gets an
instant rewardrt from the environment, which can be used
to evaluate the performance ofat, and in the meantime, the
environment’s state changes tost+1. Then, the procedure gets
repeated as time goes on, and for each timet, the agent stores
the tuple of< st, at, rt > as an entry of historical experience.
The experiences are used to train the agent’s DNN and guide it
to act better. Here, the “better” means that the agent can obtain
larger rewards by taking appropriate actions in different states.

4

Note that, the actionat not only determines the next statest+1

but also affects the subsequent states (i.e., {st+k, k ∈ N
+}).

Therefore, we calculate the long-term “return” of actionat as

Rt(st, at) =
∞
∑

k=0

ξ
k · rt+k, (1)

whereξ ∈ (0, 1] is the discounted factor. The training of the
DNN in DRL-Observer needs to update its parametersθ such
that return of each action can be maximized.

The advantage actor critic (A2C) is a stable model for DRL.
Specifically, the A2C model involves two neural networks,i.e.,
an actor neural network (A-NN)θa and a critic neural network
(C-NN) θc. The A-NN chooses an action in a state, while the
C-NN evaluate the performance of the selected action. At each
time t, the A-NN takes the statest as its input to generate an
action policyπθa(A|st), and the C-NN obtains the “value”
of statest as Vθc(st). Then, the return of actionat can be
decomposed into two parts,i.e., the value of statest (Vθc(st))
and the advantage of actionat in statest (Ω(st, at)), as

Rt(st, at) = Vθc(st) + Ω(st, at). (2)

Here,Ω(st, at) not only tells the agent how good actionat
is in statest, but also indicates how much better the action
turned out to be than expected.

The training of the A2C-based DRL-Observer uses suffi-
cient entries of historical experiences, which cover the time
period [τ, τ +M]. Then, the return of actionat in Eq. (3) is
approximated with

Rt(st, at) =
τ+M−t
∑

k=0

ξ
k · rt+k, ∀t ∈ [τ, τ +M]. (3)

In the training process, the objective of the C-NN is to learn
how to evaluateVθc(st) more accurately, and thus we define
its loss function as

Lc = [Rt(st, at)− Vθc(st)]
2
. (4)

Meanwhile, the objective of the A-NN is to learn how to act in
different states to get higher long-term return. In other words,
the A-NN’s training process should try to make the probability
of choosing actionat higher, if the advantage of actionat in
statest is larger. Hence, we define its loss function as

La = − log (π(at|st)) · Ω(st, at), (5)

whereΩ(st, at) is the advantage of actionat in statest and
π(at|st) is the probability to take actionat in statest. With the
loss functions, the training process calculates their gradients
and updates the parameters of A-NN and C-NN accordingly.

C. Network Model

We model the IDC-EON as a graphG(V,E), whereV and
E denote the sets of DCs and fiber links, respectively. Each
DC v ∈ V containsCv IT resources for instantiating vNFs,
while each fiber linke ∈ E containsF frequent slots (FS’).
A lightpath can be established between any two DCs, as long
as its RSA scheme complies with the spectrum contiguous
and continuous constraints [35] and there are enough spectra
in the related fiber links. We assume that there areZ types

DRL-Observer

Environment: Action: Reward:

Fig. 4. Interaction between DRL-Observer and DCI-EON.

of vNFs available in the network, and eachz-th type of vNF
(i.e., denoted as vNF-z) consumescz IT resources. A vNF-SC
request demands for a series of vNFs, which can be model
as SC = {f1, f2, · · · , fK}. Here,K is the total number of
vNFs in the request, andfk is thek-th vNF. Then, a vNF-SC
request can be modeled asRi = {si, di, SCi, bi, tia, t

i
l}, where

i is its index,si and di are the source and destination DCs,
respectively,SCi is the required vNF-SC,bi is the bandwidth
requirement, andtia and til are the arrival time and hold-on
time, respectively.

Based on the network model above, DRL-Observer monitors
the performance of Deep-NFVOrch proactively and updates
its key components/parameters accordingly. Here, the most
important parameter is the duration of each service cycle,i.e.,
∆Tn. We denote the end-time of then-th cycle astn. The
four DRL-related elements are explained as follows.

• State: For the n-th service cycle[tn−1, tn], we define
φv,n as the ratio of used to total IT resources on DC
v ∈ V , ϕe,n as the ratio of used to total FS’ on fiber link
e ∈ E, andψτ,n as the number of requests arrived within
[tn − τ, tn]. The state of the DCI-EON attn (i.e., Sn)
is represented with the following three sets:{φv,n, ∀v ∈
V }, {ϕe,n, ∀e ∈ E}, and{ψτ,n, ∀τ ∈ [1, tn − tn−1]}.

• Agent: The agent is just DRL-Observer, and it interacts
with its environment (i.e., the DCI-EON) as shown in
Fig. 4. Specifically, DRL-Observer gets the stateSn when
the n-th service cycle ends, and determines the value of
∆Tn+1 based on it. Then, when the(n+1)-th cycle ends,
DRL-Observer receives the rewardrn+1.

• Reward: We define the rewardrn as [23]

rn = α · φ̄− β · log[max(pb, 10
−6)] + γ ·

1

η
. (6)

Here, φ̄ is the average utilization of pre-deployed light-
paths and vNFs,pb is the blocking probability, andη
is the number of network reconfigurations (i.e., the total
number of newly-established lightpaths and vNFs), in the
n-th service cycle. The number of network reconfigu-
rations is considered because it directly determines the
complexity of network control and management (NC&M)
[36, 37]. Eq. (6) is formulated in the way that the three
concerned metrics are normalized,i.e., not only making
their values be in the same magnitude but also ensuring
that they will change in a similar scale. The weight coeffi-
cientsα, β andγ are used to adjust the importance of the
three metrics. Since the network operator might have its
own preference when balancing the performance metrics,
it determines the values ofα, β andγ empirically, which

5

will be discussed in detail in Section IV.
• Action: The action of DRL-Observer is to determine the

value of∆Tn. We assume that∆Tn can only take discrete
values in[∆Tmin,∆Tmax], i.e., the size ofA is finite.

III. D ESIGN OFDRL-OBSERVER

A. Operation Principle

We design DRL-Observer based on A2C, and merge the
A-NN and C-NN as an actor-critic neural network (AC-NN).
This means that we make the two neural networks share the
first two layers. By doing so, we can reduce the number of
parameters to adjust for the AC-NN and accelerate its training
process. Meanwhile, since this would also let the training of A-
NN and C-NN affect each other, we should set their parameter
adjustment schemes carefully to avoid parameter oscillation
during the training. Then, DRL-Observer consists of an AC-
NN, an experience store, and a decision module. The AC-NN
is trained to take the current stateSn as the input, and it
outputs the action policyπ(∆Tn+1|Sn), and the value of the
stateVn. The decision module obtains the value of∆Tn+1

based onπ(∆Tn+1|Sn), and updates the system timer and DL-
based request predictor accordingly. At the end of the service
cycle, DRL-Observer gets a rewardrn+1 and transforms the
environment state toSn+1 as explained in Section II-C. Then,
it records the tuple of< Sn,∆Tn+1, rn+1,Sn+1, Vn > as an
entry of experience in the experience store, which can be used
as a training sample to update the AC-NN, before the whole
system moving to the next service cycle.

To ensure stable operation, we do not just update the AC-
NN when each service cycle ends. The training process will
only be triggered when the system has run forM cycles and
recordedM training samples in the experience store. Then,
the online training operates as follows. Firstly, we calculate
the long-term return of the action in each training sample as

Rm =
M+n−m
∑

k=0

ξ
k · rm+k, ∀m ∈ [n+ 1, n+M], (7)

where we assume that theM training samples cover(n+1)-th
to (n+M)-th service cycles. Hence, the loss function of the
C-NN can be get as

Lc(θc) =

M
∑

m=1

(Rn+m − Vn+m)2. (8)

Meanwhile, with the state valueVm provided by the C-NN,
we can get the advantage of actionam in state Sm (i.e.,
Ωm(Sm, am)) with Eq. (2). Here, actionam is essentially to
determine the duration of them-th service cycle as∆Tm. The
loss function of the A-NN becomes

La(θa) = −

M
∑

m=1

Ω(Sn+m, an+m) · log[πθa(Sn+m) · ζ(an+m)]

− ǫ

M
∑

m=1

∑

a∈A

πθa(Sn+m) · log[πθa(Sn+m)],

(9)
whereζ(an+m) is the one-hot encoding [38] of actionan+m.
Note that, compared with the loss function in Eq. (5), we
add the second term in Eq. (9), which is the policy entropy to

encourage exploring the solution space more thoroughly, and ǫ
is the hyper-parameter to denote the extending of exploration.

Algorithm 1 provides the details regarding the online train-
ing of DRL-Observer.Lines1-2 are for the initialization. The
actual training process is explained withLines 3-18. In the
while-loop coveringLines 5-13 DRL-Observer interacts with
the DCI-EON constantly to accumulate training samples in its
experience store. When it has recordedM training samples,
DRL-Observer leverages the operations inLines 14-16 to
update the AC-NN’s parameters with the adam optimization
algorithm [39] that utilizes stochastic gradient descent (SGD).
After each parameter update is completed, experience storeis
emptied for the next update inLine 17.

Algorithm 1: Online Training of DRL-Observer

1 initialize parameters of the AC-NN (θa andθc) randomly;
2 set the initial service cycle as 1;
3 repeat
4 n = 0;
5 while n < M do
6 get current stateSn;
7 use the AC-NN to generate action policyπθa(Sn)

and valueVθc(Sn);
8 use the decision module to determine∆Tn+1

based onπθa(Sn);
9 run the DCI-EON for∆Tn+1 to predict,

pre-deploy, and provision vNF-SC requests;
10 calculate rewardrn with Eq. (6);
11 record< Sn,∆Tn+1, rn+1,Sn+1, Vn > as a

training sample in the experience store;
12 n = n+ 1;
13 end
14 get the advantage ofM training samples with Eq. (2);
15 calculate the gradients of the loss functions (∇θa(La)

and∇θc(Lc)) based on Eqs. (8) and (9);
16 use the adam optimization algorithm [39] to update

θa andθc with the gradients;
17 empty the experience store;
18 until convergence;

B. Design of Neural Networks

To realize accurate mapping from environment state to
action (i.e., Sn → ∆Tn+1), we build the AC-NN with a
3-layer structure, as shown in Fig. 5. Here, the A-NN and
C-NN in the AC-NN share the first and second layers to
extract information from environment state, while the third
layer reshapes the processed information to generate the action
policy and state value. After obtaining the outputs, the A-
NN and C-NN use the loss functions in Eqs. (9) and (8),
respectively, to evaluate them. Since environment stateSn

contains three sets,i.e., {φv,n, ∀v ∈ V }, {ϕe,n, ∀e ∈ E},
and{ψτ,n, ∀τ ∈ [1, tn − tn−1]}, the elements inSn can take
different variable types (e.g., real and integer) and ranges.

Therefore, we use different types of neural networks in
the first layer to process the elements. The IT resource and

6

Policy Value

of

requests in

1,

IT Resource

Utilization

,

Environment

Layer-1

Layer-2

Layer-3

Spectrum

Utilization

,

Cell …Cell Cell

of

requests in
+ 1,

+ 2

of

requests in
,

+ 1

Fig. 5. Structure of AC-NN.

spectrum utilizations ({φv,n, ∀v ∈ V } and{ϕe,n, ∀e ∈ E})
can be represented with one-dimensional vectors, and the value
of their elements is within[0, 1]. Hence, we use a 2-layer fully
connected neural network (FC-NN) with activation function
based on rectified linear unit (ReLU) to process the vectors,
where the ReLU activation function has the expression of

g(x) = max(x, 0). (10)

To extract the temporal information from historical vNF-SC
requests, we use the long short term memory (LSTM) to
process{ψτ,n, ∀τ ∈ [1, tn− tn−1]}. Specifically, as shown in
the Fig.5, LSTM mainly consists of an memory cell, which
takes the number of vNF-SC requests over one time unit (e.g.,
[tn − τ, tn− τ +1]) as input in each time step and updates its
status vector~cn accordingly.

The second layer of the AC-NN is the concatenation layer,
which concatenates the outputs of the first layer as a vector.
The third layer is the output layer and it reshapes the vector
generated by the second layer to obtain the action policy (A-
NN) and state value (C-NN). Since the actions (i.e., possible
values for∆Tn) are discrete and limited and the A-NN needs
to generate the action policy whose elements are all within
[0, 1], we use a 2-layer FC-NN as its output layer, with the
sigmoid activation function

g(~x, i) =
exi

|A|
∑

k=1

exk

, (11)

and the number of neurons in the last layer of the FC-NN is
set as the size of the action space,i.e., ∆Tmax−∆Tmin+1.
The state value from the C-NN is a scalar within(0,+∞), and
thus we use a 2-layer FC-NN with ReLU activation function
as its output layer and the number of neurons in the last layer
of the FC-NN is set as1.

Note that, the three layers in Fig. 5 are defined according to
their functionalities, while the actual structure of the AC-NN
is much more complicated than a simple three-layer neural
network. This is because its input contains multiple types
of data (i.e., time series of requests, and IT and spectrum
resource vectors), and each of its three layers includes multiple
neural networks or sub-layers for feature extraction. Therefore,

Environment

Global AC-NN

Copied AC-NN Copied AC-NN

Environment

Thread 1 Thread N

......

......

Gradient Gradient
Latest

Parameters

Environment

Operation

Training

Fig. 6. Asynchronous training scheme.

the depth and number of parameters of the AC-NN make it
qualified for a DNN [40], which is also the reason why we
refer to the reinforcement learning that uses it as DRL.

C. Asynchronous Training

To improve the efficiency of the online training, we design
an asynchronous training scheme that uses multiple threads
to make copies of the AC-NN in DRL-Observer and let
them interact with emulated environments simultaneously.
Specifically, there is a global agent to determine∆Tn for the
real DCI-EON, while the remaining agents get trained in the
background and send the gradients back to the global agent,
as shown in Fig. 6 (adapted from [23]). In other words, the
asynchronous training scheme separates the AC-NN’s online
operation from its training process. Since the global agentwill
not be updated frequently as those in the training process, the
stability of this scheme is ensured. Meanwhile, the copied
agents that are being trained in the background with the
procedure inAlgorithm 1 use emulated environments, which
are randomly generated by taking snapshots of the historical
status in the TED. Hence, the copied agents actually interact
with different environments, which diversifies their training
samples to explore the solution space more thoroughly.

IV. PERFORMANCEEVALUATION AND ANALYSIS

A. Simulation Setup

We evaluate our proposed Deep-NFVOrch with a DCI-EON
that uses the NSFNET topology [41], which contains14 nodes
and44 fiber links. We assume that the IT resource capacity of
each DC isCv = 100 and each fiber link can accommodate
F = 358 FS’, each of which has a bandwidth of12.5 GHz.
The DCI-EON supports5 types of vNFs, which can form
10 types of vNF-SCs. The number of vNFs in a vNF-SC
ranges within[2, 4]. Since we cannot find any reference traces
to model the dynamic vNF-SC requests in a practical IDC,
we just generate the dynamic requests based on the traces
for real wide-area TCP connections in [42]. Specifically, for
the TCP connections, we map their source and destination

7

0 5 10 15 20 25 30 35

Time (in days)

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
liz

e
d
 R

e
q
u
e
s
t
A

rr
iv

a
l
R

a
te

Fig. 7. Arrival rate of vNF-SC requests in simulations.

IP addresses to the source and destination DCs of vNF-SC
requests, map their application protocols to the types of vNF-
SCs, and scale their arrival time, hold-on time and bandwidth
requirements to get the corresponding parameters for the vNF-
SC requests. For emulating the fluctuation of the workload
in the DCI-EON, we make the arrival rate of the vNF-SC
requests change according to a realistic traffic trace measured
in a wide-area network [43], as shown in Fig. 7. The trace
captures the multi-hour fluctuation of vNF-SC requests and
each sample on it represents the average request load per hour.
In the simulations, we set the range of∆Tn as [1, 10] hours.

We implement our DRL-Observer with TensorFlow 1.14.0,
and program the DCI-EON environment and vNF-SC provi-
sioning in it with Python. The simulations run on a personal
computer that equips with Intel Xeon E5-2650 CPU, 128 GB
RAM and four GTX 1080ti GPU cards. In each simulation,
we treat the period that the DCI-EON handles the first60%
dynamic vNF-SC requests as the training phase, while the
provisioning of the remaining40% requests is the testing
phase. The hyper-parameters are set asǫ = 0.01 andξ = 0.95.
Unless specifically stated, the weight coefficients in Eq. (6)
have the same value asα = β = γ = 1.

B. Training Performance

We first evaluate the performance of the asynchronous
training of DRL-Observer. We set the batch size of the training
samples asM = 4, i.e., each training sample contains the
information regarding four service cycles. We incorporate1,
4 and 16 threads in the asynchronous training, and plot the
average long-term return from DRL-Observer (calculated with
Eq. (7)) in Fig. 8. We can see that for all the cases, the
average long-term return has a sharp increase within50, 000
training steps, while the multi-thread cases (i.e., with 4 and16
threads) provide much steeper slopes than the single-thread
one. This confirms the benefit of our asynchronous training
scheme. Meanwhile, it is interesting to notice that the 1-
thread and 4-thread cases have comparable performance after
100, 000 training steps,i.e., both of their average long-term
returns converge and oscillate within[6.5, 6.8] approximate-
ly. Nevertheless, the average long-term return from the 16-

50 100 150 200 250 300 350

Length of Training (in 10
3
 steps)

5.5

6

6.5

7

7.5

A
v
e
ra

g
e
 L

o
n
g
-t

e
rm

 R
e
tu

rn

1-Thread

4-Thread

16-Thread

Fig. 8. Performance of asynchronous training.

thread case still increases after100, 000 training steps until it
converges after around250, 000 steps. This is because with
more threads, the asynchronous training scheme makes DRL-
Observer explore the solution space more thoroughly. In the
simulations, the first50, 000 training steps take1, 008 seconds
in a thread on average. After this, DRL-Observer can be
considered as a trained one and be incorporated in Deep-
NFVOrch for online operation and training.

C. Performance of Deep-NFVOrch

We then evaluate the performance of Deep-NFVOrch on
provisioning dynamic vNF-SC requests in the DCI-EON.
Here, we design three benchmarks. The first two benchmarks
are based on fixed service cycles, which means that they fix
∆Tn as 1 (i.e., the smallest possible value) and10 (i.e., the
largest possible value), respectively, and keep the remaining
design of Deep-NFVOrch. The third benchmark also deter-
mines∆Tn adaptively (namely, the adaptive benchmark), but it
does not do it with DRL-Observer. Specifically, it first chooses
the durations of the first two service cycles (∆T1 and∆T2)
randomly, and then determines∆Tn(n ≥ 3) as follows.

∆Tn =

∆Tn−1 + 1, ψn−1 < ψn−2 and∆Tn−1 6= 10,

∆Tn−1 − 1, ψn−1 > ψn−2 and∆Tn−1 6= 1,

∆Tn−1, ∆Tn−1 = 1 or ∆Tn−1 = 10,

(12)

whereψn denotes the number of requests arriving in then-th
service cycle. The main idea of this adaptive benchmark is to
achieve load balancing among service cycles,i.e., preventing
the traffic load in each service cycle from becoming too
high or too low. To measure the performance of the adaptive
benchmark accurately, we run it with10 different initial states
(i.e., initializing the values of∆T1 and∆T2 randomly for10
times), and average the results as its performance metrics.

Fig. 9 shows the results on overall resource utilization in the
DCI-EON at different workloads. Specifically, the simulations
change the normalized arrival rate of vNF-SC requests over
time as that in Fig. 7, while the maximum number of new
vNF-SC requests per hour gets increased from50 to 200.
We observe that DRL-Observer provides the second-highest
overall resource utilization among the four schemes. The

8

20 50 80 110 140 170 200

vNF-SC Requests per Hour

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e
ra

ll
R

e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n

T = 1 hour

T = 10 hours

Adaptive Benchmark

DRL-Observer

Fig. 9. Results on overall resource utilization.

20 50 80 110 140 170 200

vNF-SC Requests per Hour

1

2

3

4

5

6

7

T
o
ta

l
R

e
c
o
n
fi
g
u
ra

to
in

s
 (

x
 1

0
5
)

T = 1 hour

T = 10 hours

Adaptive Benchmark

DRL-Observer

Fig. 10. Results on total reconfigurations.

reason why DRL-Observer can outperform the adaptive bench-
mark is that the adaptive benchmark adjusts∆Tn only based
on the fluctuation of request arrival rate, while the decision
module in DRL-Observer determines∆Tn based on both the
request fluctuation and the network status. As Deep-NFVOrch
with ∆Tn fixed as one hour reconfigures the DCI-EON most
frequently, it achieves the highest overall resource utilization.
However, this will actually cause tremendous overheads, which
can be verified with the results in Fig. 10.

In the simulations, one reconfiguration means instantiating

20 50 80 110 140 170 200

vNF-SC Requests per Hour

10
-4

10
-3

10
-2

10
-1

10
0

R
e
q
u
e
s
t

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

T = 1 hour

T = 10 hours

Adaptive Benchmark

DRL-Observer

Fig. 11. Results on request blocking probability.

TABLE I
NETWORK PERFORMANCE UNDER DIFFERENT WEIGHT COEFFICIENTS

Group
Index

Parameters
(α, β, γ)

Resource
Utilization

Blocking
Probability
(×10−2)

Reconfigurations
(×105)

1 (1,1,1) 43.6% 1.44 2.28
2 (10,1,1) 65.4% 6.15 2.38
3 (1,10,1) 34.9% 0.97 2.19
4 (1,1,10) 39.84% 1.29 2.21
5 (10,10,10) 35% 2.82 2.20
6 ∆T = 1 99.9% 0.7 3.11
7 ∆T = 10 35.3% 2.74 2.20

a new vNF or establishing a new lightpath. In Fig. 10, the
Deep-NFVOrch with∆Tn = 1 hour invokes the most recon-
figurations, which are significantly more than those invoked
by the one with DRL-Observer. The performance of DRL-
Observer on total reconfigurations is also better than that
of the adaptive benchmark, and it is just worse than the
Deep-NFVOrch with∆Tn = 10 hours, which is actually
expected. This is because the DCI-EON is reconfigured the
least frequently, if Deep-NFVOrch fixes∆Tn as 10 hours.
To this end, by combining the results in Figs. 9 and 10,
we can conclude that the Deep-NFVOrch with DRL-Observer
achieves the best tradeoff between resource utilization and
reconfiguration overheads among the four schemes. Finally,
the request blocking probability in Fig. 11 also confirms the
superiority of DRL-Observer,i.e., its adaptivity to changes in
the DCI-EON is better than that of the adaptive benchmark.

Although our DRL-Observer based approach balances the
tradeoff among the performance metrics well, it can still sacri-
fice much on the blocking probability and resource utilization
when being compared to the Deep-NFVOrch with∆Tn = 1
hour, especially when the request load is relatively low. The
reason for this could be multi-fold, such as the used request
traces, the design of the request predictor, the design of the
DRL-Observer, and the offline and online training procedures.
We will further optimize the system design in our future
work to address these issues. Meanwhile, we hope to point
out that reducing the number of network reconfigurations is
actually very important in NC&M. This is because network
reconfigurations not only shorten the life time of network
elements but also cause most of the issues/errors/failuresin a
network [44]. From this perspective, we can see that the DRL-
Observer based approach does have noticeable advantages.

D. Effects of Weight Coefficients

By designing the reward as that in Eq. (6), we enable DRL-
Observer to balance the importance of multiple performance
metrics of the DCI-EON (i.e., the overall resource utilization,
the request blocking probability, and the number of recon-
figurations) with three weight coefficientsα, β and γ. The
simulations also investigate their effects, and the results can be
leveraged to determine their values empirically. Table I shows
the simulation results. Here, we choose5 typical settings of
the weight coefficients, and evaluate the performance of Deep-
NFVOrch after the training of DRL-Observer has converged.
Table I compares the network performance when the request
arrival rate is set as50 per hour. This is because the blocking

9

probability at this traffic load is around10−2, which mimics
the situation in practical network operation. We also include
the results from the fixed benchmarks with∆T = 1 and
∆T = 10 as performance baselines.

The simulation results in Table I indicate that we can
successfully make Deep-NFVOrch more favorable to one of
the three performance metrics by increasing the corresponding
weight coefficient. Meanwhile, since there are tradeoff among
the performance metrics, the action would also degrade the
rest of the performance metrics. For instance,Group 2 uses
a higherα than that inGroup 1, to make Deep-NFVOrch
more favorable to the resource utilization. This results inthat
the resource utilization fromGroup 2 is significantly higher
than that fromGroup 1, which is achieved by sacrificing
certain performance on blocking probability and number of
reconfigurations. Therefore, in real network operation, wecan
increase the corresponding weight coefficient to guide the
optimization direction of Deep-NFVOrch, but in the meantime,
we should also watch all the performance metrics and make
sure that their values always fall into the acceptable regions.

The results in Table I also suggest that Deep-NFVOrch is
more sensitive to the weight coefficient of resource utilization
(i.e., α). More specifically, when we change the value of a
coefficient from1 to 10, the effect of increasingα is the most
significant. Hence, the value ofα should be adjusted with more
caution. The difference betweenGroups1 and 5 indicates that
both the relative and absolute values of the weight coefficients
can affect the performance of Deep-NFVOrch. This is because
applying coefficients with larger values increases the reward’s
absolute value, which would get DRL-Observer trapped in
local optimums more easily during the training process.

V. CONCLUSION

In this work, we discussed how to improve the DRL-based
adaptive service framework (i.e., Deep-NFVOrch) for realizing
high-performance vNF-SC in EON-DCIs. Specifically, Deep-
NFVOrch works in service cycles, and tries to reduce the setup
latency of vNF-SC by invoking request prediction and pre-
deployment at the beginning of each service cycle. Therefore,
we introduced a DRL-Observer to select the duration of
each service cycle adaptively, which was designed based on
A2C with an asynchronous training scheme. Our simulation
results demonstrated that DRL-Observer converges quicklyin
online training with the help of a few asynchronous training
threads, and the Deep-NFVOrch with it outperforms several
benchmarks, in terms of balancing the tradeoff among overall
resource utilization, vNF-SC request blocking probability, and
number of network reconfigurations. Moreover, we also per-
formed extensive simulations to discuss how to determine the
values of weight coefficients in the reward formulation.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC projects
61871357 and 61701472, and CAS Key Project (QYZDY-
SSW-JSC003).

REFERENCES

[1] Cisco visual networking index: Forecast and methodology, 2017-2022.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-741490.
html# Toc529314186

[2] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly-efficient data
migration and backup for Big Data applications in elastic optical inter-
datacenter networks,”IEEE Netw., vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] “Network functions virtualization (NFV),” Jan. 2012. [Online].
Available: https://portal.etsi.org/portal/server.pt/community/NFV/367

[4] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,”IEEE Trans. Netw. Serv. Manag.,
vol. 14, pp. 543–553, Sept. 2017.

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” inProc. of CloudNet 2014, pp. 7–13, Oct.
2014.

[6] W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, “Joint spectrumand IT
resource allocation for efficient vNF service chaining in inter-datacenter
elastic optical networks,”IEEE Commun. Lett., vol. 20, pp. 1539–1542,
Aug. 2016.

[7] O. Gerstel, M. Jinno, A. Lord, and S. Yoo, “Elastic optical networking:
A new dawn for the optical layer?”IEEE Commu. Mag., vol. 50, pp.
s12–s20, Feb. 2012.

[8] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[9] L. Gong, X. Zhou, X. Liu, W. Zhao, W. Lu, and Z. Zhu, “Efficient
resource allocation for all-optical multicasting over spectrum-sliced
elastic optical networks,”J. Opt. Commun. Netw., vol. 5, pp. 836–847,
Aug. 2013.

[10] Y. Yin, H. Zhang, M. Zhang, M. Xia, Z. Zhu, S. Dahlfort, and S. Yoo,
“Spectral and spatial 2D fragmentation-aware routing and spectrum
assignment algorithms in elastic optical networks,”J. Opt. Commun.
Netw., vol. 5, pp. A100–A106, Oct. 2013.

[11] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[12] C. Develder, M. De Leenheer, B. Dhoedt, M. Pickavet, D. Colle,
F. De Turck, and P. Demeester, “Optical networks for grid andcloud
computing applications,”Proc. IEEE, vol. 100, pp. 1149–1167, May
2012.

[13] W. Fang, M. Lu, X. Liu, L. Gong, and Z. Zhu, “Joint defragmentation
of optical spectrum and IT resources in elastic optical datacenter
interconnections,”J. Opt. Commun. Netw., vol. 7, pp. 314–324, Mar.
2015.

[14] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[15] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[16] X. Chen, Z. Zhu, J. Guo, S. Kang, R. Proietti, A. Castro, and B. Yoo,
“Leveraging mixed-strategy gaming to realize incentive-driven VNF
service chain provisioning in broker-based elastic optical inter-datacenter
networks,”J. Opt. Commun. Netw., vol. 10, pp. A232–A240, Feb. 2018.

[17] W. Lu, L. Liang, and Z. Zhu, “Orchestrating data-intensive vNF service
chains in inter-DC elastic optical networks,” inProc. of ONDM 2017,
pp. 1–6, May 2017.

[18] X. Chen, Z. Zhu, R. Proietti, and B. Yoo, “On incentive-driven VNF ser-
vice chaining in inter-datacenter elastic optical networks: A hierarchical
game-theoretic mechanism,”IEEE Trans. Netw. Serv. Manag., vol. 16,
pp. 1–12, Mar. 2019.

[19] J. Yin, J. Guo, B. Kong, H. Yin, and Z. Zhu, “Experimentaldemonstra-
tion of building and operating QoS-aware survivable vSD-EONs with
transparent resiliency,”Opt. Express, vol. 25, pp. 15 468–15 480, 2017.

[20] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” inProc. of NOMS
2014, pp. 1–9, May 2014.

[21] S. Krishnan and R. Sitaraman, “Video stream quality impacts view-
er behavior: Inferring causality using quasi-experimental designs,”
IEEE/ACM Trans. Netw., vol. 21, pp. 2001–2014, Dec. 2013.

[22] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service chaining
in inter-DC elastic optical networks,”J. Opt. Commun. Netw., vol. 10,
pp. D29–D41, Oct. 2018.

10

[23] B. Li, W. Lu, and Z. Zhu, “Deep-NFVOrch: Deep reinforcement learning
based service framework for adaptive vNF service chaining in IDC-
EONs,” in Proc. of OFC 2019, pp. 1–3, Mar. 2019.

[24] Z. Zhu, C. Chen, S. Ma, L. Liu, X. Feng, and S. Yoo, “Demonstration of
cooperative resource allocation in an OpenFlow-controlled multidomain
and multinational SD-EON testbed,”J. Lightw. Technol., vol. 33, pp.
1508–1514, Apr. 2015.

[25] S. Liu, W. Lu, and Z. Zhu, “On the cross-layer orchestration to address
IP router outages with cost-efficient multilayer restoration in IP-over-
EONs,” J. Opt. Commun. Netw., vol. 10, pp. A122–A132, Jan. 2018.

[26] W. Lu, X. Yin, X. Cheng, and Z. Zhu, “On cost-efficient integrated
multilayer protection planning in IP-over-EONs,”J. Lightw. Technol.,
vol. 35, pp. 5335–5346, Dec. 2017.

[27] X. Chen, B. Li, R. Proietti, Z. Zhu, and B. Yoo, “Self-taught anomaly
detection with hybrid unsupervised/supervised machine learning in op-
tical networks,”J. Lightw. Technol., vol. 37, pp. 1742–1749, Apr. 2019.

[28] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz, “A learning
life-cycle to speed-up autonomic optical transmission andnetworking
adoption,”J. Opt. Commun. Netw., vol. 11, pp. 226–237, May 2019.

[29] X. Chen, R. Proietti, H. Lu, A. Castro, and B. Yoo, “Knowledge-
based autonomous service provisioning in multi-domain elastic optical
networks,” IEEE Commun. Mag., vol. 56, pp. 152–158, Aug. 2018.

[30] T. Panayiotou, K. Manousakis, S. Chatzis, and G. Ellinas, “A data-driven
bandwidth allocation framework with QoS considerations for EONs,” J.
Lightw. Technol., vol. 37, pp. 1853–1864, May 2019.

[31] X. Chen, B. Li, R. Proietti, H. Lu, Z. Zhu, and B. Yoo, “DeepRMSA:
A deep reinforcement learning framework for routing, modulation and
spectrum assignment in elastic optical networks,”J. Lightw. Technol.,
vol. 37, pp. 4155–4163, Aug. 2019.

[32] R. Raza, C. Natalino, P.̈Ohlen, L. Wosinska, and P. Monti, “Reinforce-
ment learning for slicing in a 5G flexible RAN,”J. Lightw. Technol., in
Press, 2019.

[33] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” inProc. of ICML 2016, pp. 1928–1937, Jun.
2016.

[34] R. Sutton and A. Barto,Reinforcement Learning: An Introduction.
MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/
first/the-book.html

[35] L. Gong, X. Zhou, W. Lu, and Z. Zhu, “A two-population based
evolutionary approach for optimizing routing, modulationand spectrum
assignments (RMSA) in O-OFDM networks,”IEEE Commun. Lett.,
vol. 16, pp. 1520–1523, Sept. 2012.

[36] H. Fang, W. Lu, Q. Li, J. Kong, L. Liang, B. Kong, and Z. Zhu,
“Predictive analytics based knowledge-defined orchestration in a hybrid
optical/electrical datacenter network testbed,”J. Lightw. Technol., in
Press, 2019.

[37] S. Liu, B. Niu, D. Li, M. Wang, S. Tang, J. Kong, B. Li, X. Xie,
and Z. Zhu, “DL-assisted cross-layer orchestration in software-defined
IP-over-EONs: From algorithm design to system prototype,”J. Lightw.
Technol., vol. 37, pp. 4426–4438, Sept. 2019.

[38] A. Coates and A. Ng, “The importance of encoding versus training with
sparse coding and vector quantization,” inProc. of ICML 2011, pp.
921–928, Jul. 2011.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization
(v9),” Jan. 2017. [Online]. Available: https://arxiv.org/abs/1412.6980

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deepreinforce-
ment learning,”Nature, vol. 518, pp. 529–533, Feb. 2015.

[41] W. Lu and Z. Zhu, “Dynamic service provisioning of advance reservation
requests in elastic optical networks,”J. Lightw. Technol., vol. 31, pp.
1621–1627, May 2013.

[42] V. Paxson, “Empirically derived analytic models of wide-area TCP
connections,”IEEE/ACM Trans. Netw., vol. 2, pp. 316–336, Aug. 1994.

[43] S. Liu and Z. Zhu, “Generating data sets to emulate dynamic
traffic in a backbone IP over optical network,”Tech. Rep., 2019.
[Online]. Available: https://github.com/lsq93325/Traffic-creation/blob/
master/README.md?tdsourcetag=spctim aiomsg

[44] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Google’s network
infrastructure,” inProc. of ACM SIGCOMM 2016, pp. 58–72, Aug. 2016.

