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Abstract—Due to the raising of cloud computing, how to realize such vNFs. This is usually referred to as vNF service chginin
adaptive and cost-effective virtual network function senice (vNF-SC) [5, 6],i.e., building a network service by steering
chaining (VNF-SC) in a datacenter interconnection based on e gpplication traffic through a series of VNFs in sequence.
elastic optical network (DCI-EON) has become an interestig In addition to the innovations on the IT side. NEV also
but challenging problem. In this work, we tackle this problem . > : el
by 0pt|m|z|ng the design of a deep reinforcement |earning (_ ga|nS momentum from new 0pt|Ca| netWOI’kIng arCh|tectureS
L) based adaptive service framework, namely, Deep-NFVOrch (e.g, flexible-grid elastic optical networks (EONs) [7-11]).
Specifically, Deep-NFVOrch works in service cycles, and tés Thjs is because VNF-SC can route high-throughput and bursty
to reduce the setup latency of VNF-SC by invoking request affic across several DCs and a DC interconnection (DCI)

prediction and pre-deployment at the beginning of each seiee . . .
cycle. We introduce a DRL-based observer (DRL-Observer) to has to use an optical network as its physical layer [12, 13].

select the duration of each service cycle adaptively accarmg With @ spectrum allocation granularity a2.5 GHz or even
to the network status. The DRL-Observer is designed based on smaller, EONs remove the restriction due to the fixed-grids

the advantage actor critic (A2C), which can interact with the in conventional wavelength-division multiplexing (WDMgt

network environment constantly through its deep neural newvork 5k Therefore, a DCI based on EON (DCI-EON) becomes
(DNN) and learn how to make wise decisions based on the . .
promising for supporting NFV [14-16].

environment’s feedback. Our simulation results demonstrée that ’ |
DRL-Observer converges fast in online training with the hep of a In order to achieve vNF-SC in a DCI-EON, an SP needs to

few asynchronous training threads, and the Deep-NFVOrch wh  deploy the required vNFs in proper DCs, establish lightpath
it achieves better performance than several benchmarks, iterms i the EON to interconnect the vNFs, and steer the applicatio
of balancing the tradeoff among the overall resource utiliation, : ; ;
the VNF-SC request blocking probability, and the number of traﬁlg over thpe IIg_htpathsc;n S(;quen(;:e t.o gc:jthro_ugh tflle V_NhFS
network reconfigurations in a DCI-EON. one by one. Previous studies have designed various algwit

to tackle the problem of provisioning vVNF-SC in DCI-EONs

chaining, Datacenter interconnection (DCI), Elastic optcal net- [6, 16-18], including both integer linear programming (LP

works (EONSs), Deep reinforcement learning (DRL), Atrtificial models and tlme.-ef'fICIe.nt heuristics. However, these apgiTo
intelligence (Al). es are still reactive, which means that the deployment ofsyNF
and lightpaths is only conducted when the SP actually sees
a VNF-SC request. Hence, they can hardly get around the
excessive latency from setting up lightpaths and insténga
ITH the emerging of new network paradigms such ag\Fs, and this would hinder real-time and on-demand vNF-SC
5G and Internet-of-things (IoT), the demands for reaprovisioning. Note that, the setup latencies of lightpathd
time, adaptive and inexpensive network services are isgrga VNFs are usually several seconds [19] and tens of secongls [20
fast [1, 2]. Therefore, if service providers (SPs) still [igp respectively, and they will make the total latency of prais
dedicated middleboxes to cope with the demands, both the caqg a VNF-SC request in the order of minutes. Nevertheless,
ital expenditures (CAPEX) and operational expenses (OPEN)today’s Internet, there are numerous network servicas th
would be skyrocketing. This dilemma pushes people to censitave stringent quality-of-service (QoS) requirement otufse
er network function virtualization (NFV) [3] as the altetive, delay. For instance, it is known that video viewers start to
which replaces dedicated middleboxes with the virtual oetw close their browsers if the loading of a video content takes
functions (VNFs) realized on commodity servers [4]. Hencejore thar2 seconds, and the give-up ratio increas&ss for
an SP can instantiate vNFs in datacenters (DCs) dynamica&ch additional second spent on loading [21].
ly and adaptively in response to time-variant demands forTo address this latency issue, we proposed a new service
network services, significantly reducing both CAPEX anttamework that first predicts future vNF-SC requests based
OPEX. Moreover, the service provisioning enabled by NFWUn historical information, then deploys the required vNRd a
can be even more flexible, if the SP defines atomic vNFs alghtpaths in the DCI-EON in advance, and thus only needs
composes relatively complex network services with a sarfesto steer the application traffic through the vNFs in sequence
when the requests actual come in [22]. The service framework
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|. INTRODUCTION



» Predicting vNF-SC requests |
» Pre-deploying vNFs and lightpaths i
» Tearing down unused VNFs and lightpaths /

environments [29-32]. Therefore, to resolve the aforemen-
tioned issue with our service framework proposed in [22],
we leveraged deep reinforcement learning (DRL) to design an
adaptive service frameworke. Deep-NFVOrch [23]. More
FiEEgtamE i cning specifically, to properly select the value &7, for each
,—l_ Service Cycle: AT, t service cycle, we introduced a DRL based observer, namely,
TP e e R DRL-Observer. At the peginning of each servicg cygle, the
| UNFs and lightpaths ; DRL-Observer collects instant performance metrics regard
the service provisioning in the previous cycle, and feedsnth
Fig. 1. Service framework for vNF-SC provisioning with meployment.  into its deep neural network (DNN) to determine the duration
of the current cycle and update the DL-based VNF-SC request
predictor and its own DNN. Hence, the service framework can
deployment phase followed by a provisioning phase. In thgways be adapted to the current network status. The DRL-
pre-deployment phasewe use a deep learning (DL) moduleDbserver is based on the advantage actor critic (A2C) [33],
to predict the requests that might arrive in this servicdegyc which can interact with the network environment constantly
deploy the required vNFs and lightpaths in advance based #@fough its DNN and learn how to make wise decisions based
the prediction, and tear down the unused vNFs and lightpais the environment's feedbacke, the reward calculated with
in the DCI-EON. Next, we proceed to the provisioning phasehe instant performance metrics).
and steer application traffic through the required vNFs tmifo  |n this work, we expand our preliminary study in [23] to
a VNF-SC upon receiving each new VNF-SC request. To thisake it much more comprehensive, and the major improve-
end, the total latency of provisioning a VNF-SC request [gents are summarized as follows:

shortened significantly, since the setup Iatenc_ies ofﬂigthts « We describe the design of the DRL-Observer in more
and vNFs are removed from it and the traffic steering can detail, and further optimize the asynchronous training

usually be finished within hundreds of milliseconds in a  gcheme to expedite its convergence in online training.
software-defined networking (SDN) based environment [24]. | \\e optimize the operation to determin&7}, in the
Although the service framework proposed in [22] is promis-  pRr|-Observer. To verify the DRL-Observer's benefits,
ing in terms of real-time and on-demand vNF-SC provisioning \ve design another adaptive framework without it and run
it still suffers from the inflexibility due to using a fixed extensive simulations to compare the two frameworks.
service cycle duration.g, the value ofAT;, is predetermined | \ye perform extensive simulations to check how the key

and fixed throughout the service provisioning). The value parameters of the DRL-Observer affect its performance,
of AT, actually adjusts the tradeoff between the operation 5,4 summarize the empirical way to select the key

complexity and the resource utilization of VNF-SC provi-  narameters’ values based on the simulation results.
sioning. DecreasingAT, can improve the accuracy of the The rest of paper is organized as follows. Section Il

prediction on new VNF-SC requests and reduce the idiin esents the design of Deep-NFVOrch. The detailed design

time of pre-deployed vNFs and lightpaths, which will hel : L2 i X
to enhance resource utilization in the DCI-EON. However, %nd operation principle of the DRL-Observer are introduced

' - in Section Ill. We conduct extensive simulations to evadibe
shorterAT,, also means that the network reconfiguratiares, . . . .
. . : erformance of Deep-NFVOrch in Section IV. Finally, Seatio
setting up and tearing down vNFs and lightpaths) would ti)fsummaries the paper
more frequent to push up the operation complexity [25, 26|. '
On the other hand, even though increasifs@,, can avoid
unnecessary network reconfigurations, it would degrade the
framework’s performance on resource utilization. Therefo A. Architecture of Deep-NFVOrch
the selection ofAT,’s value should be careful and adaptive Fig. 2 (adapted from [23]) shows the architecture and
to properly balance the tradeoff in a time-varying networperation principle of our adaptive service framework for
environment. This, however, can hardly be achieved with govisioning vNF-SC in an DCI-EONi.e., Deep-NFVOrch).
classic optimization algorithm due to the complexity of vNF|t can be seen that Deep-NFVOrch is a periodic system whose
SC provisioning in DCI-EONs [22]. service cycle is controlled by the system timer. The system
Meanwhile, machine learning (ML) has recently attractegimer also drives the operation of Deep-NFVOrch in each
intensive interests, because the approaches based on it §afle, to divide it as a pre-deployment phase followed by a
potentially make intelligent decisions to handle comgéca provisioning phase. Meanwhile, the duration of each cycle
environments. Hence, people started to apply ML to sol\Be, AT),) is determined by the DRL-Observer to ensure
complex optimizations in optical networks [27, 28]. Reirde- adaptive service provisioning. At the beginning of a pre-
ment learning is a type of ML that enables online trainingeployment phase, the system timer wakes up the DL-based
of neural networks, and thus it provides superior adagtivitequest predictor, which then forecasts the future VNF-SC
to address sophisticated optimizations in dynamic netwofkquests that will come in this service cyclee( the next
IWe make the duration of the pre-deployment phase much st AT,) based on historical information. Next, the vNF-SC pre-

ATy, and thus we can assume that all the new VNF-SC requests $eithiee deployment module tries _to_eStab"_Sh Ii_ghtpaths and imm
cycle arrive in its provisioning phase. VNFs based on the prediction, which is done by leveraging a

Il. PROPOSEDADAPTIVE SERVICE FRAMEWORK
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Fig. 2. Architecture and operation principle of Deep-NF@QrTED: traffic engineering database.
Feedback Reward r; ginning of each service cycle, DRL-Observer collects the
1 instant performance metrics regarding the service prowisi
Agent Policy ing in the _prev!ous cycleig. the blocking propablllty, the
mo(Alse) average utilization of pre-deployed vNFs and lightpath] a
State . the number of network reconfigurations), which can be used
st Ta}[!‘e Environment to evaluate previous cycle and update its DNN to get better
O acalon performance. Meanwhile it leverages its DNN to determine
DNN 6 t the proper system configuration based on current envirofmen

and then updates Deep-NFVOrch accordingly. For example, it
determines the duration of the current service cyicke, AT},)

and feedsAT,, to the system timer and DL-based request
predictor, and it also updates its DNN.

Observe state of environment s;

Fig. 3. Operation principle of DRL-Observer.

B. DRL based on Advance Actor Critic (A2C)

time-efficient heuristic algorithm to orchestrate the $peo In principle, DRL is about an intelligent agent interacting
and IT resources in the DCI-EON for vNF-S€.¢, the LBA  with a time-varying environment and learning how to act in
algorithm in [6]). More specifically, for each VNF-SC reqtiesdifferent states to maximize its reward with a DNN [34].
the LBA algorithm first reuses as many deployed VNFs a$ence, the design of our DRL-Observer also follows this
possible by finding the longest common subsequence betweginciple, as shown in Fig. 3. The operation of DRL-Observer
requested and deployed VNFs, then deploys the remainingolves four elements.e., the agent, action, reward, and state.
VNFs with the spectrum-saving principle, and finally sets uphe agent is our DRL-Observer, and it constantly interacts
lightpaths to connect the deployed vNFs with the routing andith the environmenti(e., the DCI-EON) to receive a state
spectrum assignment (RSA) schemes that cause the smallesit timet. Then, the agent leverages its DNN to generate
increase on the maximum frequency slot index (MFSI) [8an action policyry(A|s;), which denotes the distribution of
In the meantime, the unused vNFs and lightpaths, which wetge probabilities to take possible actions at stateHere, A

set up for expired vNF-SC requests, are torn down to maintaipresents the set of all the possible actions that can lea tak
high resource utilization. by the agent, ané denotes the DNN’s parameters.

Then, the system timer moves Deep-NFVOrch to the pro-Based on the action policy,(A|s:), the agent chooses an
visioning phase, and instructs the request handler to &iartactiona; to take in response to the statewith the stochastic
accept VNF-SC requests. The incoming requests are digghtcimethod. This means that the actions are selected randomly
to the DL-based request predictor and the vNF-provisionirsgcording to their probability distribution imrg(A|s;). By
module. The predictor stores the requests as historicad om®ing so, we can encourage the agent to explore the action
and prepares itself with them for the next prediction, whtle space thoroughly and prevent it from being trapped by local
VNF-SC provisioning module steers application traffic tigb extremes. After having taken action, the agent gets an
the required vNFs in each VNF-SC request to accomplish timstant rewardr; from the environment, which can be used
service provisioning quickly. The traffic engineering desise to evaluate the performance af, and in the meantime, the
(TED) is introduced to record the DCI-EON's status, whickenvironment’s state changesdp, ;. Then, the procedure gets
includes the network topology, in-service vNFs on DCs, irepeated as time goes on, and for each tiftbe agent stores
service lightpaths in the EON, and historical vNF-SC retgiesthe tuple of< s, a;, 7; > as an entry of historical experience.

As the heart of Deep-NFVOrch, DRL-Observer monitor¥he experiences are used to train the agent’s DNN and guide it
the system’s performance proactively and updates its k&yact better. Here, the “better” means that the agent caairobt
components/parameters accordingly. Specifically, at the Warger rewards by taking appropriate actions in differeates.



Note that, the action; not only determines the next statg ;
but also affects the subsequent staies, ({s;4x, k € Nt}). DRL-Observer
Therefore, we calculate the long-term “return” of actignas

Environment: S, “ Action: AT, 44 l Reward: 7,44
l

Ri(se,a) =D €8 rgn, (1) | | |
k=0 AT, ATn41

where¢ € (0, 1] is the discounted factor. The training of the
DNN in DRL-Observer needs to update its paramefessich Fig. 4. Interaction between DRL-Observer and DCI-EON.
that return of each action can be maximized.

The advantage actor critic (A2C) is a stable model for DRL.
Specifically, the A2C model involves two neural netwoiilks, 0f VNFs available in the network, and eactth type of vVNF
an actor neural network (A-NN), and a critic neural network (i.€., denoted as VNE) consumes: IT resources. A VNF-SC
(C-NN) 6. The A-NN chooses an action in a state, while theequest demands for a series of vNFs, which can be model
C-NN evaluate the performance of the selected action. At eags SC = {f1, f2,--- , fx}. Here, K is the total number of
time ¢, the A-NN takes the state, as its input to generate anvNFs in the request, anf, is thek-th vNF. Then, a vNF-SC
action policy 7o, (A|s¢), and the C-NN obtains the “value” request can be modeled &S = {s*,d", SC*, V", t;,t;}, where
of states; as Vj,(s¢). Then, the return of action; can be i is its index,s* andd" are the source and destination DCs,
decomposed into two partse., the value of state; (Vy_(s:)) respectively,SC* is the required vNF-S@y' is the bandwidth
and the advantage of actian in states; (2(s¢, a;)), as requirement, and;, andt; are the arrival time and hold-on

time, respectively.
Ri(se, ac) = Voo (s0) + s, ar). ) Based on the network model above, DRL-Observer monitors

Here, (s, a;) not only tells the agent how good actian the performance of Deep-NFVOrch proactively and updates
is in states;, but also indicates how much better the actioits key components/parameters accordingly. Here, the most
turned out to be than expected. important parameter is the duration of each service cyde,

The training of the A2C-based DRL-Observer uses suffA7,. We denote the end-time of theth cycle ast,. The
cient entries of historical experiences, which cover timeeti four DRL-related elements are explained as follows.

period[r, 7 + M]. Then, the return of action, in Eq. (3)is  « State For the n-th service cycle[t, 1,t,], we define

approximated with du.n as the ratio of used to total IT resources on DC
M-t v eV, e as the ratio of used to total FS’ on fiber link
Ri(s,a0) = Y & -ripn, VEE 1,7+ M] (3) e € E, andy, ,, as the number of requests arrived within

k=0 [tn, — 7,tn]. The state of the DCI-EON at, (i.e, S,)

In the training process, the objective of the C-NN is to learn is represented with the following three sefsy, ,,, Vv €

how to evaluatél_(s;) more accurately, and thus we define  V'}, {¢e.n, Ve € E}, and{yrn, V7 € [1,t, — ty-1]}.
its loss function as o Agent: The agent is just DRL-Observer, and it interacts
with its environment i(e., the DCI-EON) as shown in

_ o 2
Le = [Relse,ae) = Voo (s)]” “) Fig. 4. Specifically, DRL-Observer gets the stdtewhen
Meanwhile, the objective of the A-NN is to learn how to actin  then-th service cycle ends, and determines the value of
different states to get higher long-term return. In otherdsg AT, 1 based on it. Then, when ti{e +1)-th cycle ends,
the A-NN's training process should try to make the probapili DRL-Observer receives the rewargd, ;.
of choosing actionu; higher, if the advantage of actian in « Reward: We define the reward, as [23]
states; is larger. Hence, we define its loss function as _ e 1
rn =a-¢— B -loglmax(py, 10" )]+ —. (6)
Lo =— IOg (ﬂ—(at|8t)) : Q(st7 at)? (5) n

Here, ¢ is the average utilization of pre-deployed light-
paths and vNFsp, is the blocking probability, and

is the number of network reconfiguratiori(, the total
number of newly-established lightpaths and vNFs), in the
n-th service cycle. The number of network reconfigu-
rations is considered because it directly determines the

whereQ(s:, at) is the advantage of actiom. in states; and
m(a¢|st) is the probability to take actiom; in states;. With the
loss functions, the training process calculates their igras
and updates the parameters of A-NN and C-NN accordingly.

C. Network Model complexity of network control and management (NC&M)
We model the IDC-EON as a gragh(V, E), whereV” and [36, 37]. Eq. (6) is formulated in the way that the three

E denote the sets of DCs and fiber links, respectively. Each concerned metrics are normalized., not only making

DC v € V containsC, IT resources for instantiating VNFs, their values be in the same magnitude but also ensuring

while each fiber linke € E containsF frequent slots (FS’). that they will change in a similar scale. The weight coeffi-

A lightpath can be established between any two DCs, as long cientsq, § and~ are used to adjust the importance of the
as its RSA scheme complies with the spectrum contiguous three metrics. Since the network operator might have its
and continuous constraints [35] and there are enough spectr own preference when balancing the performance metrics,
in the related fiber links. We assume that there dréypes it determines the values af, 8 and~ empirically, which



will be discussed in detail in Section IV. encourage exploring the solution space more thoroughdlc an

« Action: The action of DRL-Observer is to determine thés the hyper-parameter to denote the extending of exptorati
value of AT;,. We assume thak7,, can only take discrete  Algorithm 1 provides the details regarding the online train-

values in[AT™™ AT™a*] j.e, the size ofA is finite.  ing of DRL-ObserverLines1-2 are for the initialization. The

actual training process is explained witlines 3-18. In the

I1l. DESIGN OFDRL-OBSERVER while-loop coveringLines 5-13 DRL-Observer interacts with
A. Operation Principle the DCI-EON constantly to accumulate training samplessn it
experience store. When it has recordedtraining samples,

A XIVE dejl%nN[,)\IRL—Obser\{[er bi.ifed on 'lAZCt' anlii xgrﬂl?\ltBQRL—Observer leverages the operations Limes 14-16 to
T;T an -th X as an 6I1<C ?[L'CQW'\? neura Ine Vt\\’;r k( h )ypdate the AC-NN's parameters with the adam optimization
IS means that we make the two neural Neworks share Sorithm [39] that utilizes stochastic gradient desc&GD).

first wo layers. By doing so, we can reduce the r?“mb‘?r.ﬁ& ter each parameter update is completed, experience istore
parameters to adjust for the AC-NN and accelerate its "gm'emptied for the next update irine 17

process. Meanwhile, since this would also let the trainiiwy-o
NN and C-NN affect each other, we should set their parameter : _

adjustment schemes carefully to avoid parameter osoifiati_Algorithm 1: Online Training of DRL-Observer

during the training. Then, DRL-Observer consists of an ACr initialize parameters of the AC-NNJ{ andd.) randomly;
NN, an experience store, and a decision module. The AC-NNset the initial service cycle as 1,

is trained to take the current stag, as the input, and it 3 repeat

outputs the action policyt(AT,,+1|S.), and the value of the 4 n =0;

stateV,,. The decision module obtains the value &f/},,; s while n < M do

based omr(AT,,+1|S.), and updates the system timer and DLs get current stats,,;
based request predictor accordingly. At the end of the servi7 use the AC-NN to generate action poligy, (S,,)
cycle, DRL-Observer gets a rewarg; and transforms the and valueVy, (S,,);
environment state t8,,,.1 as explained in Section II-C. Then, s use the decision module to determind’,
it records the tuple ok S,,, AT}, 11,7n+1,Sn+1, Ve > @S an based onry, (S,,);
entry of experience in the experience store, which can be use run the DCI-EON forAT,; to predict,
as a training sample to update the AC-NN, before the whole pre-deploy, and provision VNF-SC requests;
system moving to the next service cycle. 10 calculate reward-,, with Eq. (6);

To ensure stable operation, we do not just update the AC- record< S,, ATy 41,7n+1,Sn+1, Vn > @S a
NN when each service cycle ends. The training process will training sample in the experience store;
only be triggered when the system has run fdrcycles and 12 n=n-++1,

recordedM training samples in the experience store. Thers, | end
the online training operates as follows. Firstly, we cadtal 14 get the advantage d¥/ training samples with Eq. (2);
the long-term return of the action in each training sample as | calculate the gradients of the loss functioR&((L,)

Man—m andVy,_(L.)) based on Egs. (8) and (9);
R = Z & vk, Ymen+1,n+ M), (7) 16 use the adam optimization algorithm [39] to update
k=0 0, and . with the gradients;

where we assume that thi¢ training samples coven+1)-th 17 | €mpty the experience store;
to (n + M)-th service cycles. Hence, the loss function of tHé until convergence
C-NN can be get as

M
Lc(gc) = Rn m Vn m)2~ (8) .
,;( " ’ B. Design of Neural Networks
Meanwhile, with the state valu®,, provided by the C-NN, To realize accurate mapping from environment state to
we can get the advantage of actiap, in state S,, (i.e, action (e, S,, — AT,11), we build the AC-NN with a
Q. (S, am)) with Eq. (2). Here, action,,, is essentially to 3-layer structure, as shown in Fig. 5. Here, the A-NN and
determine the duration of the-th service cycle aa\T;,. The C-NN in the AC-NN share the first and second layers to

loss function of the A-NN becomes extract information from environment state, while the dhir
M layer reshapes the processed information to generatetibe ac
Lq(0,) = — Z Q(Sntms Gntm) - log[me, (Sntm) - C(@ntm)] policy and state value. After obtaining the outputs, the A-
m=1 NN and C-NN use the loss functions in Egs. (9) and (8),

respectively, to evaluate them. Since environment sfte
contains three sets.e., {¢y.n, Yv € V}, {@en, Ve € E},
9 and{y,,, V7 €[l,t, —t,_1]}, the elements ir8,, can take
where((a,+m,) is the one-hot encoding [38] of actian,;,,,. different variable typese(g, real and integer) and ranges.
Note that, compared with the loss function in Eq. (5), we Therefore, we use different types of neural networks in
add the second term in Eq. (9), which is the policy entropy the first layer to process the elements. The IT resource and

— ¢3S o, (Snm) - loglmo, (Snm)],

m=1a€A
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Fig. 5. Structure of AC-NN.
Fig. 6. Asynchronous training scheme.

spectrum utilizations{(, », Yv € V} and{ye¢n, Ve € E})

can be represented with one-dimensional vectors, and the vahe depth and number of parameters of the AC-NN make it
of their elements is within0, 1]. Hence, we use a 2-layer fully qualified for a DNN [40], which is also the reason why we
connected neural network (FC-NN) with activation functionefer to the reinforcement learning that uses it as DRL.
based on rectified linear unit (ReLU) to process the vectors,

where the ReLU activation function has the expression of ~ Asynchronous Training

9(z) = max(z, 0). (10) To improve the efficiency of the online training, we design

To extract the temporal information from historical vNF-S@n asynchronous training scheme that uses multiple threads
requests, we use the long short term memory (LSTM) {8 make copies of the AC-NN in DRL-Observer and let
process{t, ., Vr € [1,t, —t,_1]}. Specifically, as shown in them interact with emulated environments simultaneously.
the Fig.5, LSTM mainly consists of an memory cell, whiciPPecifically, there is a global agent to determié,, for the
takes the number of vNF-SC requests over one time erg't,( real DCI'EON, while the remaining agents get trained in the
[tn — T, t, — 7+ 1]) as input in each time step and updates if@ckground and send the gradients back to the global agent,
status vector, accordingly. as shown in Fig. 6 (adapted from [23]). In other words, the
The second layer of the AC-NN is the concatenation layé¥Synchronous training scheme separates the AC-NN's online
which concatenates the outputs of the first layer as a vect@Peration from its training process. Since the global aggint
The third layer is the output layer and it reshapes the vectd®t be updated frequently as those in the training prockss, t
generated by the second layer to obtain the action policy (Atability of this scheme is ensured. Meanwhile, the copied
NN) and state value (C-NN). Since the actions.( possible agents that are being trained in the background with the
values forAT;,) are discrete and limited and the A-NN needBrocedure inAlgorithm 1 use emulated environments, which
to generate the action policy whose elements are all with€e randomly generated by taking snapshots of the historica
[O7 1], we use a 2_|ayer FC-NN as its Output |ayer, with thétatus in the TED. Hence, the COpied agents aCtUa”y interac

sigmoid activation function with different environments, which diversifies their triaig
o samples to explore the solution space more thoroughly.
9(&1) = (11)
kZ:)le” V. PERFORMANCEEVALUATION AND ANALYSIS

and the number of neurons in the last layer of the FC-NN f§ Simulation Setup
set as the size of the action space, AT™ — AT™" 41, We evaluate our proposed Deep-NFVOrch with a DCI-EON
The state value from the C-NN is a scalar witliin+oo), and that uses the NSFNET topology [41], which contaldsnodes
thus we use a 2-layer FC-NN with ReLU activation functiomnd44 fiber links. We assume that the IT resource capacity of
as its output layer and the number of neurons in the last laygach DC isC, = 100 and each fiber link can accommodate
of the FC-NN is set ag. F = 358 FS’, each of which has a bandwidth ©2.5 GHz.
Note that, the three layers in Fig. 5 are defined accordingThe DCI-EON supports$ types of vNFs, which can form
their functionalities, while the actual structure of the AIDI 10 types of VNF-SCs. The number of vNFs in a vNF-SC
is much more complicated than a simple three-layer neurahges within2, 4]. Since we cannot find any reference traces
network. This is because its input contains multiple typde model the dynamic vNF-SC requests in a practical IDC,
of data {.e., time series of requests, and IT and spectrume just generate the dynamic requests based on the traces
resource vectors), and each of its three layers includespieul for real wide-area TCP connections in [42]. Specifically; fo
neural networks or sub-layers for feature extraction. &we, the TCP connections, we map their source and destination
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Fig. 8. Performance of asynchronous training.
Fig. 7. Arrival rate of vNF-SC requests in simulations.

thread case still increases aftig€l0, 000 training steps until it

IP addresses to the source and destination DCs of vNF-8@hverges after aroun2b0, 000 steps. This is because with
requests, map their application protocols to the types df-vNmore threads, the asynchronous training scheme makes DRL-
SCs, and scale their arrival time, hold-on time and bandwidDbserver explore the solution space more thoroughly. In the
requirements to get the corresponding parameters for tire vidimulations, the firs§0, 000 training steps také, 008 seconds
SC requests. For emulating the fluctuation of the workload a thread on average. After this, DRL-Observer can be
in the DCI-EON, we make the arrival rate of the vNF-S@onsidered as a trained one and be incorporated in Deep-
requests change according to a realistic traffic trace medsuNFVOrch for online operation and training.
in a wide-area network [43], as shown in Fig. 7. The trace
captures the multi-hour fluctuation of vNF-SC requests ar&j
each sample on it represents the average request load ger hou
In the simulations, we set the range &fl,, as[1,10] hours. ~ We then evaluate the performance of Deep-NFVOrch on

We implement our DRL-Observer with TensorFlow 1.14.@rovisioning dynamic VNF-SC requests in the DCI-EON.
and program the DCI-EON environment and vNF-SC proviiere, we design three benchmarks. The first two benchmarks
sioning in it with Python. The simulations run on a person&® based on fixed service cycles, which means that they fix
computer that equips with Intel Xeon E5-2650 CPU, 128 GBI» as1 (i.e, the smallest possible value) and (i.e, the
RAM and four GTX 1080ti GPU cards. In each simulationl@rgest possible value), respectively, and keep the rengin
we treat the period that the DCI-EON handles the &% design of Deep-NFVOrch. The third benchmark also deter-
dynamic VNF-SC requests as the training phase, while tRdnesAT;, adaptively (namely, the adaptive benchmark), but it
provisioning of the remainingl0% requests is the testing does not do it with DRL-Observer. Specifically, it first chees
phase_ The hyper-parameters are setad).01 andg = 0.95. the durations Of the firSt two SerVice CyClQSIl and ATQ)
Unless specifically stated, the weight coefficients in Eq. (6andomly, and then determinésr;, (n > 3) as follows.
have the same value as= g =~ = 1.

Performance of Deep-NFVOrch

AT, 1+ 1, 1/17171 < ’l/Jnfg and AT, 1 7& 10,

B. Training Performance ATp = ATa-1 =1, Wn-1>¢n-2 @ndATn-1 #1,  (12)

. AT,—1, AT,_1=1o0rAT,_1 =10,
We first evaluate the performance of the asynchronous ! ! !

training of DRL-Observer. We set the batch size of the trajni where),, denotes the number of requests arriving in thth
samples asM = 4, i.e, each training sample contains theservice cycle. The main idea of this adaptive benchmark is to
information regarding four service cycles. We incorporate achieve load balancing among service cycles, preventing

4 and 16 threads in the asynchronous training, and plot thbe traffic load in each service cycle from becoming too
average long-term return from DRL-Observer (calculatetth wihigh or too low. To measure the performance of the adaptive
Eqg. (7)) in Fig. 8. We can see that for all the cases, thEnchmark accurately, we run it witl) different initial states
average long-term return has a sharp increase withjin00 (i.e., initializing the values ofAT}; and AT, randomly for10
training steps, while the multi-thread cases.(with 4 and16 times), and average the results as its performance metrics.
threads) provide much steeper slopes than the singleethreaFig. 9 shows the results on overall resource utilizatiorni t
one. This confirms the benefit of our asynchronous trainim@CI-EON at different workloads. Specifically, the simudats
scheme. Meanwhile, it is interesting to notice that the Thange the normalized arrival rate of VNF-SC requests over
thread and 4-thread cases have comparable performance diftee as that in Fig. 7, while the maximum number of new
100,000 training stepsj.e. both of their average long-termvNF-SC requests per hour gets increased frainto 200.
returns converge and oscillate withj6.5,6.8] approximate- We observe that DRL-Observer provides the second-highest
ly. Nevertheless, the average long-term return from the l1éverall resource utilization among the four schemes. The
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TABLE |
NETWORK PERFORMANCE UNDER DIFFERENT WEIGHT COEFFICIENTS

Blocking

Group Parameters Resource > Reconfigurations
Index  (a,B,7) Utilization F(’rx"fg?;";y (x10%)

1 (1,1,1) 43.6% 1.44 2.28

2 (10,1,1) 65.4% 6.15 2.38

3 (1,10,1) 34.9% 0.97 2.19

4 (1,1,10) 39.84% 1.29 2.21

5 (10,10,10) 35% 2.82 2.20

6 AT =1 99.9% 0.7 3.11

7 AT =10 35.3% 2.74 2.20

a new VNF or establishing a new lightpath. In Fig. 10, the
Deep-NFVOrch withAT,, = 1 hour invokes the most recon-
figurations, which are significantly more than those invoked
by the one with DRL-Observer. The performance of DRL-
Observer on total reconfigurations is also better than that
of the adaptive benchmark, and it is just worse than the
Deep-NFVOrch withAT,, = 10 hours, which is actually
expected. This is because the DCI-EON is reconfigured the
least frequently, if Deep-NFVOrch fixeATZ,, as 10 hours.
To this end, by combining the results in Figs. 9 and 10,
we can conclude that the Deep-NFVOrch with DRL-Observer
achieves the best tradeoff between resource utilizatiah an
reconfiguration overheads among the four schemes. Finally,
the request blocking probability in Fig. 11 also confirms the
superiority of DRL-Observet,e., its adaptivity to changes in
the DCI-EON is better than that of the adaptive benchmark.
Although our DRL-Observer based approach balances the
tradeoff among the performance metrics well, it can stitirisa
fice much on the blocking probability and resource utiliaati
when being compared to the Deep-NFVOrch witfT;,, = 1

reason why DRL-Observer can outperform the adaptive bendtour, especially when the request load is relatively lowe Th
mark is that the adaptive benchmark adjuAts, only based reason for this could be multi-fold, such as the used request
on the fluctuation of request arrival rate, while the decisidraces, the design of the request predictor, the designeof th
module in DRL-Observer determinesT,, based on both the DRL-Observer, and the offline and online training procedure
request fluctuation and the network status. As Deep-NFVOré¥e will further optimize the system design in our future
with AT, fixed as one hour reconfigures the DCI-EON mogtork to address these issues. Meanwhile, we hope to point

frequently, it achieves the highest overall resourcezatilon.

out that reducing the number of network reconfigurations is

However, this will actually cause tremendous overheadglwh actually very important in NC&M. This is because network

can be verified with the results in Fig. 10.
In the simulations, one reconfiguration means instangatielements but also cause most of the issues/errors/failuras

Fig. 11.
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Results on request blocking probability.

reconfigurations not only shorten the life time of network

network [44]. From this perspective, we can see that the DRL-
Observer based approach does have noticeable advantages.

D. Effects of Weight Coefficients

By designing the reward as that in Eq. (6), we enable DRL-
Observer to balance the importance of multiple performance
metrics of the DCI-EONi(e., the overall resource utilization,
the request blocking probability, and the number of recon-
figurations) with three weight coefficients, 5 and . The
simulations also investigate their effects, and the resuadh be
leveraged to determine their values empirically. Tabledveh
the simulation results. Here, we chodseypical settings of
the weight coefficients, and evaluate the performance opbee
NFVOrch after the training of DRL-Observer has converged.
Table | compares the network performance when the request
arrival rate is set a50 per hour. This is because the blocking



probability at this traffic load is arounth—2, which mimics
the situation in practical network operation. We also idelu
the results from the fixed benchmarks withi" = 1 and

AT = 10 as performance baselines.

The simulation results in Table | indicate that we can
successfully make Deep-NFVOrch more favorable to one df
the three performance metrics by increasing the correspgnd
weight coefficient. Meanwhile, since there are tradeoff agno [3]
the performance metrics, the action would also degrade t%
rest of the performance metrics. For instanGeoup 2 uses
a highera than that inGroup 1, to make Deep-NFVOrch
more favorable to the resource utilization. This resultshat
the resource utilization fronGroup 2 is significantly higher
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