
1

Proactive and Hitless vSDN Reconfiguration to
Balance Substrate TCAM Utilization: From

Algorithm Design to System Prototype
Sicheng Zhao, Deyun Li, Kai Han, and Zuqing Zhu,Senior Member, IEEE

Abstract—The combination of network virtualization and
software-defined networking (SDN) enables an infrastructure
provider (InP) to create software-defined virtual networks (vS-
DNs) over a shared substrate network (SNT), for supporting new
network services more timely and cost-effectively. Meanwhile,
as both the services and traffic in the Internet are becoming
more and more dynamic, how to properly maintain vSDNs in a
dynamic network environment exhibits increasing importance but
still has not been fully explored. In this work, we conduct a study
on how to realize proactive and hitless vSDN reconfigurationto
balance the utilization of ternary content-addressable memory (T-
CAM) in a dynamic SNT. Specifically, we consider both algorithm
design and system prototyping. From the algorithmic perspective,
we try to solve the problems of “what to reconfigure” and “how
to reconfigure”. A selection algorithm is designed to proactively
choose the virtual switches (vSWs) that should be migrated to
other substrate switches (S-SWs) for balancing TCAM utilization,
i.e., solving “what to reconfigure”. Then, for the problem of “how
to reconfigure”, i.e., where to re-map the selected vSWs and the
virtual links (VLs) connecting to them, we formulate a mixed
integer linear programming (MILP) model to solve it exactly,
and design two heuristics to improve time efficiency. Next, we
move to the system part, implement the proposed algorithms
in our protocol-oblivious forwarding (POF) enabled network
virtualization hypervisor (NVH) system, and conduct experiments
to demonstrate proactive and hitless vSDN reconfiguration.The
experimental results indicate that our proposal does make vSDN
reconfiguration transparent to the vSDNs’ virtual controll ers
(vCs) and proactive, and when reconfiguring a vSDN with live
traffic, it achieves hitless operations without traffic disruption.

Index Terms—Network virtualization, Software-defined net-
working (SDN), Virtual network migration, Protocol-obliv ious
forwarding (POF), Hitless reconfiguration.

I. I NTRODUCTION

OVER the past decade, network virtualization technolo-
gies have attracted intensive research interests [1–4]

and been considered as an effective solution to address the
ossification of current Internet infrastructure. Network virtu-
alization makes the conventional Internet service providers
(ISPs) evolve as infrastructure providers (InPs) and service
providers (SPs). Specifically, an InP owns a substrate network
(SNT), collects virtual network (VNT) requests from SPs,
build logically-isolated VNTs through virtualizing its substrate
resources accordingly, and leases the VNTs to SPs to satisfy
their requests [5]. Then, the SPs do not need to worry about the
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efforts of building and maintaining physical networks (e.g., the
tasks considered in [6, 7]), and thus can deliver new network
services in a short time-to-market and cost-effective manner
[8]. Meanwhile, the InP can effectively improve its resource
usage and get rid of the hassles of running various services
by itself. Hence, a “win-win” situation can be achieved.

In addition to network virtualization, software-defined net-
working (SDN) [9, 10] is another important innovation that
enables SPs to provision new services better and more timely.
SDN separates the control and data planes of a network
and implements centralized network control and manage-
ment (NC&M) to enhance programmability and application-
awareness [11–13]. As a famous SDN implementation, Open-
Flow [14] defines the communications between the control
and data planes, and by abstracting the behaviors of data plane
as protocol-dependent flow-entries, it facilitates programmable
packet processing based on the “match-and-action” principle.
Recently, the technical advances on programming protocol
independent processors (P4) [15] and protocol-oblivious for-
warding (POF) [16] decouple network protocols from packet
processing and realize protocol-independent data plane tofully
unleash its programmability for future-proof SDN. Therefore,
it would be desired to provision software-defined VNTs (i.e.,
virtual software-defined networks (vSDNs)) to SPs [17–19].

The rational combination of network virtualization and SDN
(i.e., efficiently creating vSDNs over an InP’s SNT) would
require both a virtual network embedding (VNE) algorithm
[20] and a network virtualization hypervisor (NVH) system
[21]. To build a vSDN, the VNE algorithm allocates the flow-
entry space on substrate switches (S-SWs) to virtual switches
(vSWs) (i.e., the node mapping) and assigns the bandwidth
capacity on substrate links (SLs) to virtual links (VLs) (i.e.,
the link mapping). Note that, the flow-entry space concernedin
the node mapping is essentially the ternary content-addressable
memory (TCAM), which is usually limited in each S-SW due
to its expense and power consumption [22], and the vSDN
consumes TCAM on the S-SWs along the paths that carry its
VLs [19, 23]. The VNE algorithm’s result is implemented by
the NVH, which also bridges the communication between the
used S-SWs and the virtual controller (vC) of the vSDN and
facilitates two-way translation of control messages [17].

Although both VNE algorithms and NVH systems have
already been studied intensively in literature [17, 24], the
problem of how to realize proactive vSDN reconfiguration
with a NVH system for addressing the dynamics in the SNT
has not been fully explored yet. Note that, both the principle
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of network virtualization (i.e., creating and leasing vSDNs
on demand) and the SPs’ application traffic can bring in
dynamics into the InP’s SNT and make the optimal VNE
results implemented by the NVH system sub-optimal. More
importantly, as the TCAM on each S-SW is limited and
vSWs’ requirements on flow-entry space are usually time-
varying and unpredictable, it would not be reasonable or
practical to allocate TCAM resources to vSDNs in the fixed
and isolated way. Specifically, as a type of scarce resources
in S-SWs, TCAM is generally400 times more expensive [25]
and 100 times more power-consuming [26] than the RAM-
based storage. A more reasonable approach is to let the vSDNs
share the TCAM on each S-SW for storing the flow-entries on
their vSWs in a statistical multiplexing manner [27]. Note that,
different from the TCAM allocation, dedicated bandwidth,
which is a different type of substrate resources on the SLs, is
assigned to each vSDN. Hence, the vSDN’s quality-of-service
(QoS) is ensured as long as there is enough TCAM on the
S-SWs that carry its vSWs. However, the dilemma is that the
vSWs mapped onto a same S-SW have to compete for flow-
entry space when TCAM becomes insufficient. This would let
the vSWs floodPacketInmessages to their vCs, and seriously
impact the operations of both the vSDNs and NVH system.

Apparently, in order to properly maintain vSDNs in a
dynamic network environment, an InP needs to consider vSDN
reconfiguration to balance the TCAM utilization in its SNT
from time to time [27]. Although this idea is straightforward,
realizing it effectively is still challenging from both algorith-
mic and systemic aspects. First of all, we need a time-efficient
algorithm that can intelligently solve the problems of when
and how to reconfigure vSDNs and can be integrated in an
NVH easily. Note that, the vSDN reconfiguration should be
triggered proactively,i.e., before a TCAM depletion actually
happens. Next, the system design and implementation should
properly address the following two challenges. Firstly, the
vSDN reconfiguration should be solely handled by the NVH
and made transparent to the vSDNs’ vCs, for simplifying
SPs’ NC&M tasks and minimizing reconfiguration latency.
Secondly, the vSDN reconfiguration should be “hitless”, which
means that each vSDN should be reconfigured with live traffic
flowing and the traffic should not be disrupted during and after
reconfiguration. Otherwise, the vSDN reconfiguration may
cause noticeable packet loss and degrade the vSDNs’ services
to its flows. However, to the best of our knowledge, these
algorithmic and systemic challenges have not been considered
jointly in previous studies on vSDN reconfiguration.

In this work, we conduct a relatively comprehensive study
on how to realize proactive and hitless vSDN reconfiguration
in dynamic network environment. We first design an algorithm
to proactively select the vSWs that should be migrated to
other S-SWs for balancing the TCAM utilization in an SNT.
Then, we try to tackle the problem of how to reconfigure,i.e.,
where to re-map the selected vSWs and the VLs connecting to
them. A mixed integer linear programming (MILP) model is
formulated to solve the problem exactly, and we also design
two heuristics to improve time efficiency. Next, we modify
the design of our POF-based NVH (PVX) [21] and imple-
ment the proposed algorithms in it to facilitate proactive and

hitless vSDN reconfiguration. Finally, the experimental results
demonstrate that our system prototype does make the vSDN
reconfiguration transparent to the vSDNs’ vCs and proactive,
and when reconfiguring a vSDN with live application traffic,
it achieves hitless operations without traffic disruption.

The rest of this paper is organized as follows. We survey
the related work briefly in Section II. The problem description
of vSDN reconfiguration in dynamic network environment is
presented in Section III. Section IV discusses the algorithm de-
sign, while the proposed algorithms’ performance is evaluated
in Section V with extensive numerical simulations. In Section
VI, we describe our system design and implementation and
perform experiments to demonstrate the effectiveness of our
system prototype. Finally, Section VII summarizes the paper.

II. RELATED WORK

Previously, the problem of VNE has already been studied
in [2–4, 28, 29] for various networks, and a comprehensive
survey on the existing VNE algorithms can be found in [24].
However, these studies did not discuss how to implement
the designed VNE algorithms in a practical NVH system.
NVH realizes the creation of vSDNs over a shared SNT,
and many investigations have been dedicated to developing an
effective NVH system [17]. In NVH’s early stage, FlowVisor
[30] was developed to build OpenFlow-enabled vSDNs with
the constraint that the vSDNs should take the same topology
as that of the SNT. Then, people designed OVX [31] as a
new version of NVH, which extended the functionalities of
FlowVisor and removed the restriction on vSDN topology.
More recently, we programmed our PVX [18, 21] based on
OVX to realize protocol-independent vSDNs, by leveraging
POF [10]. In our latest study [8], we design and implement
a physically distributed but logically centralized NVH system
based on ONOS [32] to realize highly-available and scalable
vSDN slicing. In addition to the studies on NVH itself, people
have also utilized NVH systems to realize various network
functions [33–36]. Nevertheless, none of these NVH systems
supports proactive and hitless vSDN reconfiguration.

Network reconfiguration schemes have been considered to
resolve various issues in dynamic network environments [37,
38]. However, vSDN reconfiguration is different from and
more complicated than the reconfiguration scenarios consid-
ered before. This is because remapping a vSW to a new S-
SW changes not only the node mapping of the vSW but also
the link mapping of all the VLs that connect to it, while
a VL consumes TCAM on both the S-SWs that two of its
vSWs are embedded on and the S-SWs that are intermediate
nodes on its substrate path. The study in [39] considered
how to reconfigure VNTs in a dynamic network environment,
but it was purely algorithmic and did not address vSDNs
or the TCAM utilization of them in the network model.
Although a system for realizing SDN migration has been
demonstrated in [40], network virtualization was not involved.
Based on a different network virtualization scenario from the
one considered in this work, the authors of [41, 42] have
implemented two systems to address vSDN reconfiguration.
Specifically, they virtualized the substrate resources used to
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build vSWs and created an independent software-based switch
to instantiate each vSW,i.e., vSWs of different vSDNs would
never share the same S-SWs. Pisaet al. [43] tried to realize
vSDN reconfiguration with the involvement of vSDNs’ vCs.
As a vC should only handle the NC&M tasks of its vSDN
and should not know the resource utilization in the SNT, it
can hardly determine when and how to reconfigure its vSDN.

In [27], we presented our system design to achieve hit-
less vSDN reconfiguration for avoiding TCAM depletion and
showed some preliminary results. Nevertheless, the algorithm
that can solve the problems of what and how to reconfigure
vSDNs is still absent, and the experimental demonstrations
were based on pre-coded scenarios. In this work, we extend
the NVH system developed in [27] by designing the algorithm
for determining what and how to reconfigure vSDNs and im-
plementing it for prototyping, and thus vSDN reconfiguration
is addressed in a more comprehensive manner.
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Fig. 1. Network architecture for realizing vSDN creation and reconfiguration.

III. PROBLEM DESCRIPTION

In this section, we define the network model and describe
the problem of vSDN reconfiguration. Since abbreviations are
frequently used in this paper, we list all the major but not well-
known abbreviations in Table I for the readers’ convenience.

TABLE I
MAJOR ABBREVIATIONS

Abbrev. Full Name Abbrev. Full Name
POF Protocol-oblivious forwarding SP Service provider

TCAM Ternary content-addressable memory SNT Substrate network
VNE Virtual network embedding S-SW Substrate switch
vSDN Virtual software-defined network SL Substrate link
NVH Network virtualization hypervisor VNT Virtual network
PVX POF-based NVH VL Virtual link

VNMgr Virtual network manager vC Virtual controller
NF-R Node-first remapping algorithm vSW Virtual switch
LF-R Link-first remapping algorithm

A. Network Model

Fig. 1 shows the network architecture considered in this
work for vSDN creation and reconfiguration. The SNT is
built with S-SWs, each of which contains a fixed volume
of TCAM. With network virtualization, the NVH system
can create multiple vSDNs over the SNT. Here, the NVH
system consists of an NVH and a virtual network manager

(VNMgr). To create a vSDN, the VNMgr first calculates its
VNE scheme based on the SNT’s status and then instructs the
NVH to implement the scheme. Next, the vC of the vSDN
gets connected to the S-SWs that carry its vSWs through the
NVH. During network operation, the vC can install, update
and remove flow-entries on the vSWs for managing the traffic
in its vSDN, and the related control messages get translated
by the NVH before reaching the S-SWs, according to the
mapping relation. Meanwhile, the VNMgr monitors the SNT’s
status (i.e., substrate TCAM utilization) proactively, and when
necessary, it would invoke a vSDN reconfiguration to balance
TCAM utilization1. Note that, in our design, the NVH system
handles the vSDN reconfiguration by itself and makes the
operation completely transparent to the vCs.

The topology of the SNT can be modeled as an undirected
graphGs(Vs, Es), whereVs andEs represent the sets of S-
SWs and SLs, respectively. There are two types of substrate
resources in the SNT, which are the TCAM resources on S-
SWs and bandwidth resources on SLs. Hence, we denote the
TCAM capacity of S-SWvs ∈ Vs as Tvs in terms of flow-
entries, while the bandwidth capacity of SL(us, vs) ∈ Es is
B(us,vs). Since a vSDN reconfiguration is triggered when the
SNT is operational, we denote the used TCAM and bandwidth
astvs andb(us,vs) for S-SWvs and SL(us, vs), respectively.

The topology of a vSDN can also be modeled as an
undirected graph,i.e., Gr(Vr , Er), whereVr andEr are the
sets of vSWs and VLs, respectively. The TCAM usage of vSW
vr ∈ Vr is denoted astvr , while the bandwidth usage of VL
(ur, vr) ∈ Er is b(ur,vr). Note that, in addition to the S-SWs
on which its vSWs are embedded, the vSDN also consumes
TCAM resources on the S-SWs that are the intermediate nodes
on the substrate paths carrying its VLs. For instance, in Fig. 1,
VL b-c gets embedded onSubstrate Path5-4-3, whereS-SWs5
and3 are two end nodes andS-SW4 is an intermediate node.
As the traffic going throughVL b-c needs to be forwarded
correctly onS-SW4, the vC has to install corresponding flow-
entries in it. Meanwhile, since all the packets that belong to a
vSDN get forwarded in the same way on such an intermediate
node, one of its VLs only consumes two flow-entries in each
intermediate node,i.e., for two-way communication in the VL.

B. vSDN Reconfiguration for Balancing TCAM Utilization

When the SNT is operational with multiple vSDNs, each
vSDN can have dynamic traffic, which will make the TCAM
utilization in each S-SW change over time. This will in turn
cause unbalanced TCAM utilization on the S-SWs,e.g., as
shown in Fig. 1. To avoid the unbalanced TCAM utilization
getting worse and eventually leading to TCAM depletion, we
introduce periodical SNT maintenance based on vSDN recon-
figuration. Specifically, the idea is to proactively monitorthe
SNT in a periodical manner and invoke vSDN reconfiguration
when necessary to balance the TCAM utilization in it. Fig. 2
provides an intuitive example on the vSDN reconfiguration. In

1Here, the vSDN reconfiguration would not try to balance the bandwidth
utilization in the SNT. This is because balancing bandwidthusage is related
to the operation of the vSDNs, and thus it should be handled and could be
more effectively achieved by the vCs performing traffic engineering.
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Fig. 1, before the vSDN reconfiguration, the TCAM utilization
on S-SW5 is significantly higher than that on other S-SWs,
which is becauseS-SW5 carries two busy vSWs,i.e., vSWs
b and c′ in vSDNs1 and 2, respectively. Then, we decide to
migratevSWb from S-SW5 toS-SW2 to balance the substrate
TCAM utilization. Hence, forvSDN1, both the node mapping
and the link mapping that are related tovSW b need to be
reconfigured (as shown in Fig. 2), and the TCAM utilization
gets more balanced after the vSDN reconfiguration.
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Fig. 2. Example on vSDN reconfiguration to balance TCAM utilization.

As explained above, a vSDN reconfiguration should first
select suitable vSWs to reconfigure and then find appropriate
new S-SWs to re-map them on. In other words, its algorithms
solve the problems of what and how to reconfigure vSDNs.

IV. A LGORITHM DESIGN

In this section, we design the algorithms for vSDN recon-
figuration. Specifically, we first describe the overall procedure
of vSDN reconfiguration, and then discuss how to select vSWs
to reconfigure and how to re-map the selected vSWs in details.

A. Overall Procedure

Algorithm 1 shows the overall procedure of periodical
SNT maintenance based on vSDN reconfiguration. When an
SNT maintenance starts, we choose the vSWs that should be
reconfigured to balance the TCAM utilization in the SNT with
a selection algorithm, and store the selected vSWs in setV s

R

(Lines2-3). Then,Line4 uses a remapping algorithm to get the
new node mapping schemes of the vSWs inV s

R, and the vSWs
are re-mapped inLine 5. Note that, the vSDN reconfiguration
not only re-maps the vSWs inV s

R onto their new S-SWs but
also migrates all the VLs that connect to them. Finally, the
algorithm waits for the next maintenance time (Line 6). Here,
the system decides when to perform maintenance (i.e., vSDN
reconfiguration) based on the TCAM utilization in the SNT.
Specifically, we define two thresholds,i.e., one sets an upper-
limit on the TCAM utilization in each S-SW and the other is
the maximum degree of TCAM unbalance in the SNT. Then, if
the system finds that either of these two thresholds has been
exceeded, it will trigger a vSDN reconfiguration. Note that,
the vSDN reconfiguration can only address the situations in
which the TCAM utilization in the SNT is highly unbalanced
while the SNT’s overall TCAM capacity is sufficient for the
vSDNs. Otherwise, if the whole SNT is heavily loaded and the
TCAM utilization on most of the S-SWs is about to exceed

the threshold, the vSDN reconfiguration would not be helpful.
Hence, for the heavily loaded situations, the NVH system
should try other options,e.g., blocking vSDN requests. The
detailed procedures of the selection and remapping algorithms
will be discussed in the following subsections.

Algorithm 1: Overall Procedure of SNT Maintenance

1 while the SNT is operationaldo
2 choose vSWs to reconfigure with a selection

algorithm;
3 store the selected vSWs in setV s

R;
4 determine new node mapping schemes of vSWs

in V s
R with a remapping algorithm;

5 re-map vSWs inV s
R accordingly and migrate all

the affected VLs;
6 wait for the next maintenance time;
7 end

B. Selection Algorithm

Before describing the procedure of our selection algorithm,
we define the average TCAM utilization in the SNT as

t̄ =
1

|Vs|
·
∑

vs∈Vs

tvs , (1)

where|Vs| means the number of S-SWs in the SNT andtvs
represents the TCAM utilization on S-SWvs ∈ Vs before
vSDN reconfiguration. Here, for simplicity, we assume that
all the S-SWs have the same TCAM capacity. Hence, our
algorithms will balance substrate TCAM utilization based on
actual values. However, this would not prevent our algorithms
from being applied to situations in which the S-SWs’ TCAM
capacities are different, since they can be generalized by
normalizing the TCAM utilization as a relative ratio. Then,
based on̄t, we design a two-step selection algorithm to find the
most “critical” vSWs to reconfigure for balancing the substrate
TCAM utilization, i.e., Algorithm 2.

In Algorithm 2, Lines 1-2 are for the initialization. The
for-loop that coversLines 3-17 is the first step that selects
all the vSWs, which can be re-mapped for balancing TCAM
utilization. Specifically, as shown inLine 4, we only check the
S-SWs whose TCAM utilizations are larger than the average
value t̄. We usettvs to store the TCAM utilization onS-SW
vs after the vSDN reconfiguration has been done, thus we
initialize it asttvs = tvs (Line 5). In Line 5, we also initialize
a temporary variable ast = tvs , and empty two vSW setsV vs

r

andV t
r . Line 6 usesV t

r to store the vSWs that are embedded
on S-SWvs, while V vs

r is used later to store the vSWs that
could be mitigated away fromvs. In the while-loop covering
Lines 7-14, each iteration tries to select a vSW to migrate
away fromvs such that the resulting TCAM utilization onvs
(i.e., t) would become closer to the average valuet̄, until we
havet ≤ t̄. Here, the countern is used to record the number
of vSWs that get selected in the first step (Line 13).

In Lines 18-24, we use another for-loop to accomplish the
second step of vSW selection. Here, to control the complexity
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of vSDN reconfiguration, we introduce a selection ratioγ ∈
(0, 1] to determine how many vSWs that will be eventually
chosen for reconfiguration. Specifically, we will choose the
⌈γ · n⌉ most critical vSWs to include in setV s

R. Line 19 finds
the S-SWvss whose TCAM utilizationttvs

s
is currently the

maximum. Then, inLines 20-23, we select the first vSW in
V

vs

s

r to insert in V s
R and updateV vs

s

r and ttvs
s

accordingly.
Lines19-23 are repeated until⌈γ ·n⌉ vSWs have been selected.
Finally, in Line 25, Algorithm2 outputs the selected vSWs for
reconfiguration inV s

R. The time complexity ofAlgorithm 2 is
O(|Vs| · |VR|2), whereVR is the set of vSWs in all the vSDNs.

Algorithm 2: Choose vSWs to Reconfigure

1 n = 0, V s
R = ∅;

2 calculate average TCAM utilization̄t with Eq. (1);
3 for each S-SWvs ∈ Vs do
4 if tvs > t̄ then
5 ttvs = tvs , t = tvs , V vs

r = ∅, V t
r = ∅;

6 store the vSWs embedded onvs in setV t
r ;

7 while t > t̄ do
8 vsr = argmin

vr∈V t
r

[|(t− tvr)− t̄|];

9 t = t− tvs
r
;

10 if t ≥ t̄ or |(t+ tvs)− t̄| > |t− t̄| then
11 insertvsr in setV vs

r ;
12 removevsr from setV t

r ;
13 n = n+ 1;
14 end
15 end
16 end
17 end
18 for i = 1 to ⌈γ · n⌉ do
19 vss = argmax

vs∈Vs

(ttvs);

20 select the first vSWvr in V
vs

s

r ;
21 insertvr in setV s

R;

22 removevr from setV vs

s

r ;
23 ttvs

s
= ttvs

s
− tvr ;

24 end
25 return (V s

R);

C. Remapping Algorithms

With the chosen vSWs from the selection algorithm, we
need a remapping algorithm to determine their new node
mapping schemes for balancing TCAM utilization. In the
following, we first formulate a mixed linear programming
(MILP) model to solve this problem exactly, and then design
two heuristics for high time efficiency.

1) MILP Model: The MILP model to find the remapping
schemes of vSWs inV s

R is formulated as follows.
Notations:
• Vs: set of S-SWs in the SNT.
• Es: set of SLs in the SNT.
• Gs(Vs, Es): topology of the SNT.
• Tvs : TCAM capacity of S-SWvs ∈ Vs.

• B(us,vs): bandwidth capacity of SL(us, vs) ∈ Es.
• tvs : TCAM utilization on S-SWvs ∈ Vs before vSDN

reconfiguration.
• b(us,vs): bandwidth utilization on SL(us, vs) ∈ Es before

vSDN reconfiguration.
• V s

R: set of the vSWs that are chosen for reconfiguration.
• R: set of vSDNs, each of which contains vSWs inV s

R.
• Vr: set of vSWs in a vSDNr ∈ R.
• Er: set of VLs in a vSDNr ∈ R.
• Gr(Vr, Er): topology of a vSDNr ∈ R.
• b(ur,vr): bandwidth usage of VL(ur, vr) ∈ Er.
• tvr : TCAM usage of vSWvr ∈ Vr.
• t̄: average TCAM utilization in the SNT before vSDN

reconfiguration (calculated with Eq. (1)).
• δ̃vrvs : boolean that equals 1 if vSWvr is embedded on

S-SWvs before vSDN reconfiguration, and 0 otherwise.
• ρ̃

(ur,vr)
(us,vs)

: boolean that equals 1 if VL(ur, vr) is embedded
on SL (us, vs) before reconfiguration, and 0 otherwise.

• ω̃
(ur,vr)
vs : boolean that equals 1 if S-SWvs is an interme-

diate node on the substrate path that carries VL(ur, vr)
before vSDN reconfiguration, and 0 otherwise.

• mvr : boolean that equals 1 if vSWvr is in V s
R for

reconfiguration, and 0 otherwise.
• m(ur,vr): boolean that equals 1 if VL(ur, vr) needs to

be reconfigured, and 0 otherwise.

Variables:
• δvrvs : boolean variable that equals 1 if vSWvr gets embed-

ded on S-SWvs after reconfiguration, and 0 otherwise.
• ρ

(ur,vr)
(us,vs)

: boolean variable that equals 1 if VL(ur, vr)

gets embedded on SL(us, vs) after reconfiguration, and
0 otherwise.

• ω
(ur,vr)
vs : boolean variable that equals 1 if S-SWvs is an

intermediate node on the substrate path that carries VL
(ur, vr) after reconfiguration, and 0 otherwise.

• cvs : TCAM utilization of vSWs on S-SWvs after recon-
figuration.

• cmax: the maximum TCAM utilization of vSWs on an
S-SW after reconfiguration.

• cmin: the minimum TCAM utilization of vSWs on an
S-SW after reconfiguration.

Objective:
The objective of vSDN reconfiguration is to balance TCAM

utilization in the SNT. Hence, we define a metric to measure
the balance degree of TCAM utilization in the SNT.

c̃ = cmax − cmin. (2)

Meanwhile, we hope to point out that vSDN reconfiguration
may result in more TCAM utilization in the SNT. This is
because in addition to the S-SWs on which its end vSWs
are embedded, a VL also consumes TCAM resources on the
S-SWs that are the intermediate nodes on its substrate path.
Therefore, if the vSDN reconfiguration re-maps a VL to a
substrate path with more hop-count, its TCAM consumption
will increase (i.e., two more flow-entries for each additional
intermediate S-SW). Note that, for each VL, the number of
flow-entries used on such an intermediate S-SW is independent
of the number of flows going through it. This is because the
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intermediate S-SW should forward all the flows on the VL to
the same output port regardless of their source and destination
addresses. In our system, this is achieved by installing two
flow-entries in each intermediate S-SW, which match to the
Tenant IDand Link ID fields that we insert in packet head-
ers for realizing network virtualization [27]. The remapping
algorithm should also try to avoid increasing substrate TCAM
utilization significantly, while the difference in total TCAM
utilization before and after vSDN reconfiguration is

t̃ =
∑

r∈R

∑

vr∈Vr

[
ω

(ur,vr)
vs − ω̃

(ur,vr)
vs

]
. (3)

Finally, we define the optimization objective as

Minimize (α · c̃+ β · t̃), (4)

whereα andβ are the weights to balance the importance of the
two terms. We setα ≫ β to ensure that the primary objective
is to minimizec̃ for balancing TCAM utilization in the SNT.

Constraints:
• Node Mapping Constraints:

∑

vs∈Vs

δ
vr
vs = 1, ∀vr ∈ Vr, ∀r ∈ R. (5)

Eq. (5) ensures that each vSW still gets mapped onto a
single S-SW after reconfiguration.

∑

vr∈Vr

δ
vr
vs ≤ 1, ∀vs ∈ Vs, ∀r ∈ R. (6)

Eq. (6) ensures that different vSWs in a vSDN still get
mapped onto different S-SWs after reconfiguration.

δ̃
vr
vs · (1−mvr )− δ

vr
vs · (1−mvr ) = 0,

∀vr ∈ Vr, ∀vs ∈ Vs, r ∈ R.
(7)

Eq. (7) ensures that in a reconfigured vSDN, each vSW
that does not need to be reconfigured still gets mapped
onto the same S-SW.

• Link Mapping Constraints:
∑

{vs:(vs,us)∈Es}

ρ
(ur,vr)
(us,vs)

−
∑

{vs:(vs,us)∈Es}

ρ
(ur,vr)
(vs,us)

= δ
ur

us
− δ

vr
us
, ∀us ∈ Vs, ∀(ur, vr) ∈ Er, ∀r ∈ R.

(8)

Eq. (8) ensures that in a reconfigured vSDN, each VL
still gets embedded on a single substrate path.

ρ
(ur,vr)
(us,vs)

= ρ
(ur,vr)
(vs,us)

, ∀(us, vs) ∈ Es,

∀(ur, vr) ∈ Er, ∀r ∈ R.
(9)

Eq. (9) ensures that the flows in both directions on the
same VL traverse only one substrate path.

[
ρ̃
(ur,vr)
(us,vs)

− ρ
(ur,vr)
(us,vs)

]
·
[
1−m(ur,vr)

]
= 0,

∀(ur, vr) ∈ Er, ∀(us, vs) ∈ Es, r ∈ R.
(10)

Eq. (10) ensures that in a reconfigured vSDN, each VL
that does not need to be reconfigured still gets embedded
on the same SL.

• Intermediate Node Constraints:
∑

{vs:(vs,us)∈Es}

ρ
(ur,vr)
(us,vs)

− ω
(ur,vr)
us

= δ
ur

us
, ∀us ∈ Vs,

∀(ur, vr) ∈ Er, ∀r ∈ R.

(11)

Eq. (11) ensures that the intermediate S-SWs on the sub-
strate path that carries VL(ur, vr) get marked correctly.

• Resource Constraints:

tvs +
∑

r∈R

∑

vr∈Vr

tvr · (δvrvs − δ̃
vr
vs )

+
∑

r∈R

∑

(ur ,vr)∈Er

[
ω

(ur,vr)
vs − ω̃

(ur,vr)
vs

]
≤ Tvs , ∀vs ∈ Vs.

(12)
Eq. (12) ensures that the TCAM utilization on each S-SW
does not exceed its TCAM capacity.

b(us,vs) +
∑

r∈R

∑

(ur,vr)∈Er

[
ρ
(ur,vr)
(us,vs)

− ρ̃
(ur,vr)
(us,vs)

]
· b(ur,vr) ≤ Bvs ,

∀vs ∈ Vs.
(13)

Eq. (13) ensures that the bandwidth utilization on each
SL does not exceed its bandwidth capacity.

cvs =
∑

r∈R

∑

vr∈Vr

tvr · δvrvs , ∀vs ∈ Vs. (14)

Eq. (14) calculates the TCAM utilization of vSWs on
each S-SW in the SNT after reconfiguration.

• Other Constraints:

cmax ≥ cvs , ∀vs ∈ Vs,

cmin ≤ cvs , ∀vs ∈ Vs.
(15)

Eq. (15) ensures thatcmax andcmin are got correctly.

2) Node-First Remapping Algorithm (NF-R):As the MILP
model is not scalable and can become intractable for a
relatively large SNT, we design two heuristics to improve the
time efficiency. Here, we first consider a remapping algorithm
that determines the remapping schemes of vSWs and VLs
in two steps, namely, node-first remapping algorithm (NF-R).
Algorithm 3 shows the detailed procedure of NF-R.

Here, Lines 1-5 are for the initialization. InLine 1, we
introduce two temporary variablesP and Ṽs, whereP will
be used to store certain vSWs for reconfiguration, andṼs is
initialized asṼs = Vs to store the S-SWs in the SNT.Line
2 determines the vSDNs that need to be reconfigured based
on V s

R and stores them inR. The for-loop that coversLines
3-5 calculates the TCAM utilizatioñtvs on each S-SWvs
when the vSWs inV s

R have been migrated away from it. Then,
the while-loop coveringLines6-22 determines the remapping
schemes of vSWs inV s

R one by one. InLine 7, we select an
S-SW vs from Ṽs such that its TCAM utilizatioñtvs is the
smallest. Then, for each vSDN that needs to be reconfigured,
the for-loop that coversLines8-13 selects a vSW that provides
the minimum value for|t̃vs + tvr − t̄| and inserts it in setP .
Note that, as shown inLine 9, we will skip to process a vSDN
if all of its vSWs for reconfiguration have been processed or
one of its vSWs has already been mapped onS-SWvs.

Next, in Line 14, we test whetherP is empty. If no, we
select the vSW inP , which provides the minimum value for
|t̃vs + tvr − t̄|, mark its new S-SW asvs (Lines15-16), update
the related variables (Lines17-18). Otherwise, ifP is empty,
we removevs from Ṽs since it cannot carry any vSW inV s

R.
Finally, we determine the new link mapping schemes for all
the VLs that need to be reconfigured based on shortest path
routing (Lines23-24) The time complexity ofAlgorithm 3 is
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O(|V s
R| · (|Vs|+ |V s

R|
2)+ |ER| · (|Es|+ |Vs| · log(|Vs|))), where

ER is the set of VLs in all the vSDNs.

Algorithm 3: Node-First Remapping Algorithm

1 P = ∅, Ṽs = Vs;
2 determine the vSDNs that need to be reconfigured

based onV s
R and store them inR;

3 for eachvs ∈ Ṽs do
4 calculate TCAM utilizatioñtvs on S-SWvs when

the vSWs inV s
R have been migrated away;

5 end
6 while V s

R 6= ∅ do
7 vs = argmin

vs∈Ṽs

(t̃vs);

8 for each vSDNr ∈ R do
9 if (V s

R ∩ Vr 6= ∅) and (vSDNr currently does
not have a vSW mapped onto S-SWvs) then

10 vr = argmin
vr∈(V s

R
∩Vr)

(|t̃vs + tvr − t̄|);

11 insertvr in setP ;
12 end
13 end
14 if P 6= ∅ then
15 vr = argmin

vr∈P

(|t̃vs + tvr − t̄|);

16 decide to re-map vSWvr onto S-SWvs;
17 t̃vs = t̃vs + tvr , P = ∅;
18 removevr from V s

R;
19 else
20 removevs from Ṽs;
21 end
22 end
23 for each VL that needs to be reconfigureddo
24 calculate its link mapping scheme as the shortest

substrate path with sufficient bandwidth/TCAM
resources;

25 end

3) Link-First Remapping Algorithm (LF-R):Note that, the
link mapping schemes can also affect the performance of
vSDN reconfiguration, since each additional intermediate S-
SW will cause more TCAM utilization in the SNT. Therefore,
we design another remapping algorithm that gives priority to
the link mapping,i.e., link-first remapping algorithm (LF-R).

To describe the procedure of LF-R inAlgorithm 4, we use
the example in Fig. 3 to explain its principle and several
concepts related to it.Lines1-7 are for the initialization. The
original state of the vSDN before reconfiguration is shown
in Fig. 3(a), where the red nodes (i.e., b, c and d) are for
the vSWs that need to be reconfigured. Hence, we define a
reconfiguration flagmvr for each vSWvr ∈ Vr. Specifically,
we havemvr = 0 if the reconfiguration scheme ofvr has been
determined, and 1 otherwise. Meanwhile, if a vSWvr does
not need to be reconfigured, itsmvr is set as 0 too. Therefore,
in Fig. 3(a), we set the reconfiguration flags ofvSWsb, c and
d as 1, and the remaining vSWs have their reconfiguration
flags as 0 (Lines5-7). Then, LF-R tries to re-map the selected

vSWs in each vSDN sequentially with the for-loop covering
Lines8-35. The while-loop that coversLines9-34 handles the
vSW remapping for a vSDN, while for the example in Fig. 3,
it determines the remapping schemes of{b, c, d} in sequence.

a

b c

f e

d a

b c

f

1

2

e

5

d
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b c

f e

da
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f e

d

(a) (b)

(c)(d)

1

2

3

=1

= 0

Fig. 3. Procedure of calculating remapping schemes in LF-R.

Here, for each vSDN, the order of vSW remapping is
determined by how many fixed adjacent vSWs that a vSW has
(Line 11). Note that, to remap a vSW onto a new S-SW, we
also need to remap all the VLs that connect to it accordingly.
Therefore, if a vSW has the maximum number of fixed adja-
cent vSWs (i.e., with reconfiguration flags as 0), determining
its remapping scheme first would help to finalize the maximum
number of VL remapping schemes. Hence, in Fig. 3(b), the
remapping scheme ofvSW b is determined first since it has
two fixed adjacent vSWs,i.e., a andf . After selecting a vSW
vr from V s

R∩Vr in Line 11, we calculatehvr as the hop-count
of the determined substrate paths connecting tovr in Line 12.
Here, the determined substrate paths connecting tovr refer
to those that are originally used by the VLs fromvr to its
fixed adjacent vSWs before the remapping. For example, in
Fig. 3(a), the determined substrate paths connecting tovSWb

are those that carryVLsa-b andb-f before the remapping. We
store the summation of the hop-counts of these substrate paths
in hvr , and will use it as a metric to avoid using over-length
substrate paths in the subsequent link remapping.

Next, the for-loop coveringLines 13-22 tries to use an
available S-SW to carry vSWvr. For an S-SWvs, Line 14 gets
hvs as the hop-count of determined substrate paths connecting
to it. Here, the determined substrate paths connecting tovs
refer to the shortest available substrate paths fromvs to where
the fixed adjacent vSWs ofvr are mapped onto. For instance,
in Fig. 3(b), they are the shortest available substrate paths from
vs to wherevSWsa andf are mapped onto. InLine 15, we
check whether remappingvr onto vs can balance the TCAM
utilization in the SNT. If yes,Lines 16-20 classifyvs based
on the relation betweenhvr and hvs and insert it inQ1 or
Q2, respectively. Next, inLines23-30, we select a proper S-
SW vs based onQ1, Q2 and the TCAM utilization of S-SWs,
and decide to re-map vSWvr onto it. Finally, we update both
the link mapping of VLs that connect tovr and the values
of related variables inLines 31-33. The time complexity of
Algorithm4 isO(|Vs|) ·(|V s

R|+ |ER| ·(|Es|+ |Vs| · log(|Vs|))).

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the proposed
vSDN reconfiguration algorithms with numerical simulations.
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Algorithm 4: Link-First Remapping Algorithm

1 determine the vSDNs that need to be reconfigured
based onV s

R and store them inR;
2 for eachvs ∈ Ṽs do
3 calculate TCAM utilizatioñtvs on S-SWvs when

the vSWs inV s
R have been migrated away;

4 end
5 for eachvr ∈ V s

R do
6 set its reconfiguration flagmvr as 1;
7 end
8 for each vSDNr ∈ R do
9 while V s

R ∩ Vr 6= ∅ do
10 Q1 = ∅, Q2 = ∅;
11 find the vSWvr ∈ V s

R ∩ Vr such that it has
the maximum number of adjacent vSWs
whose reconfiguration flags are 0;

12 gethvr as the hop-count of determined
substrate paths connecting tovr;

13 for each S-SWvs that can carryvr do
14 gethvs as the hop-count of determined

substrate paths connecting tovs;
15 if |t̃vs + tvr − t̄| ≤ |t̃vs − t̄| then
16 if hvs ≤ hvr then
17 insertvs in setQ1;
18 else
19 insertvs in setQ2;
20 end
21 end
22 end
23 if Q1 6= ∅ then
24 vs = argmin

vs∈Q1

(t̃vs);

25 else ifQ2 6= ∅ then
26 vs = argmin

vs∈Q2

(hvs);

27 else
28 select the S-SWvs that can carryvr and

has the smallest̃tvs ;
29 end
30 decide to re-map vSWvr onto S-SWvs;
31 update link mapping of VLs connecting tovr;
32 mvr = 0, t̃vs = t̃vs + tvr ;
33 removevr from V s

R;
34 end
35 end

Specifically, we combine the selection and remapping algo-
rithms according to the overall procedure inAlgorithm 1 and
obtain three algorithms. Since the algorithms use the same
overall procedure and selection algorithm, we refer to them
according to the names of their remapping algorithms,i.e.,
MILP, NF-R, and LF-R. In the simulations, we implement
the MILP model with GLPK 4.64 and program the heuristics
in MATLAB R2016. All the simulations run on a Windows
server with 3.3 GHz Intel CPU and 8 GB RAM.

We consider two topologies for the SNT,i.e., the 8-node

and NSFNET topologies [44] shown in Fig. 4. Considering
the time complexity of the MILP, we only simulate it in the 8-
node topology, while the time-efficient heuristics are evaluated
in both topologies. In each simulation, we first use a greedy
algorithm to embed vSDNs, and then serve traffic flows in
them to generate a network scenario with unbalanced TCAM
utilization. Then, the network scenario is treated as the input
of the vSDN reconfiguration algorithms. We consider two
performance metrics. The first one is the balanced degree of
TCAM utilization, i.e., c̃ defined in Eq. (2). The second one
is the difference in total TCAM utilization in the SNT before
and after vSDN reconfiguration,i.e., t̃ defined in Eq. (3). To
ensure sufficient statistical accuracy, we average the results
from 10 independent simulations to get each data point.
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(a) Eight-node topology
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14

(b) NSFNET topology

Fig. 4. SNT topologies used in simulations.

A. Results with 8-Node Topology

We first run simulations in the small-scale 8-node topology.
Here, we assume that the TCAM capacity of each S-SW is
2000 flow-entries and the bandwidth capacity of each SL
is 1000 units. Then, we generate20 vSDNs with random
topologies, each of which has its number of vSWs uniformly
distributed within[2, 6]. During network operation, the TCAM
utilization of each vSW ranges within[10, 110] flow-entries2

, while the bandwidth usage of each VL is also randomly
selected, within[1, 10] units. We pause the SNT when it has
unbalanced TCAM utilization, where there are at least three
S-SWs that are heavy loaded andc̃ is more than1100 flow-
entries. Then, we use the three proposed algorithms to balance
the TCAM utilization in the SNT, and adjust the selection ratio
γ from 0.2 to 1 to monitor the tradeoff between the complexity
and gain of vSDN reconfiguration. Note that, the parametersα

andβ in the MILP’s objective are set asα ≫ β to ensure that
the first term in Eq. (4) is the primary objective. And because
as long as these two parameters satisfy this condition, their
actual values do not affect the optimization in the MILP, we
will not discuss their impacts in the following simulations.

2In this work, both the simulations and experiments select the TCAM
capacity of each S-SW within the practical range reported for commercial
SDN switches [45], while the range of the TCAM utilization oneach vSW
depends on the actual network services running in its vSDN and we also
determine the used values according to the results in [45].
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Fig. 5. Results on balance degree of TCAM usage.

Fig. 5 shows the results on the balance degree of TCAM
utilization. It can be seen that the MILP model achieves
the best performance on balancing the TCAM usage in the
SNT, which is actually expected since minimizing̃c is its
primary objective. NF-R can balance the TCAM utilization
as well as the MILP model whenγ is less than0.6, while the
performance gap between them becomes slightly larger after
γ = 0.6. LF-R performs slightly worse than NF-R in terms
of c̃. For all the three algorithms,̃c decreases withγ, which
means that the TCAM utilization becomes more balanced for
a largerγ. This is because with a largerγ, the algorithms can
reconfigure more vSWs to balance the TCAM utilization,i.e.,
the optimization space is larger. In practical cases, how toset
γ depends on the actual needs of the InP that owns the SNT.
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Fig. 6. Results on reduction on total TCAM usage.

The algorithms’ results on reduction on total TCAM usage
are plotted in Fig. 6. It is promising to observe that all the
algorithms can reduce the total TCAM utilization in the SNT
with vSDN reconfiguration even whenγ is as small as0.2.
Therefore, for an SNT with unbalanced TCAM utilization, our
proposed algorithm can not only balance the TCAM utilization
but also reduce the absolute TCAM usage. Moreover, we can
see that LF-R achieves the largest reduction on TCAM usage,
and this phenomenon can be explained as follows. Since LF-R
always tries to use the shortest available substrate paths to re-
map VLs, it saves the most TCAM utilization on intermediate
S-SWs. NF-R reduces less TCAM usage than LF-R, while the
reduction on total TCAM usage from the MILP model is the
smallest among the three. This is because the MILP model
gives most of its optimization power to its primary objective,
i.e., minimizing c̃. Note that, even though the MILP model
gets the worst results on the reduction on TCAM usage, the
absolute difference between its results and those from LF-R
is actually small, which is only0.13% whenγ = 1.

The average running time of the algorithms is listed in Table

TABLE II
RUNNING T IME OF ALGORITHMS (SECONDS)

Selection Ratio (γ) MILP NF-R LF-R

0.2 0.1 0.0037 0.0043
0.4 0.6 0.0045 0.0049
0.6 2.5 0.0050 0.0060
0.8 5.8 0.0058 0.0070
1.0 45.8 0.0061 0.0081

II. All the algorithms generally take more running time when
γ increases, due to the fact that a largerγ means that more
vSWs are selected for reconfiguration. However, the running
time of the MILP increases much faster than that of NF-R
and LF-R, which makes it inappropriate for solving vSDN
reconfiguration problems whose scales are relatively large.
Both NF-R and LF-R are much more time-efficient than the
MILP, and NF-R runs slightly faster than LF-R.

B. Simulation Results with the NSFNET Topology

We then evaluate the performance of NF-R and LF-R in
the NSFNET topology. The TCAM capacity of each S-SW is
assumed to be5000 flow-entries, while the bandwidth capacity
of each SL is set as2000 units. We generate80 vSDNs
this time with random topologies whose numbers of vSWs
are randomly selected within[2, 8]. The TCAM utilization
of each vSW is uniformly distributed within[10, 110] flow-
entries, while the bandwidth usage of each VL is still randomly
selected from[1, 10] units. This time, we pause the SNT to
invoke vSDN reconfiguration, when there are at least five
heavy loaded S-SWs and̃c is more than2900 flow-entries.
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Fig. 7. Results on balance degree of TCAM usage.

Fig. 7 shows the results on the balance degree of TCAM
utilization, which indicate that NF-R still performs slightly
better than LF-R. This is because NF-R always tries to migrate
a vSW to the one with minimum TCAM usage during vSDN
reconfiguration. Nevertheless, the performance difference in
terms of c̃ is very small. The results on reduction on total
TCAM usage are illustrated in Fig. 8, and we can see that
when the SNT is larger, the advantage of LF-R on TCAM
saving over NF-R actually becomes larger. The results on the
reduction on the average hop-count of substrate paths used by
the reconfigured VLs are illustrated in Fig. 9, which indicates
that the vSDN reconfiguration actually helps to reduce the
hop-counts of the reconfigured VLs’ substrate paths. This
is because the vSDN reconfiguration organizes the vSDNs
better and thus make shorter substrate paths available for link
remapping. As their performance oñc is almost identical,
these results suggest that LF-R is a better algorithm to use
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for network scenarios with relatively larger SNT topologies,
for vSDN reconfiguration.
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Fig. 8. Results on reduction on total TCAM usage.

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
e
d
u
c
ti
o
n
 o

n
 A

v
e
ra

g
e
 H

o
p
-c

o
u
n
t

NF-R
LF-R

Fig. 9. Results on reduction on average hop-count of substrate paths.

VI. EXPERIMENT DEMONSTRATIONS

A. System Implementation and Experimental Setup

The proposed LF-R is implemented in the network virtu-
alization system that we developed in [27], and we conduct
experiments with it to operate on the six-node SNT shown
in Fig. 10. Note that, the scale of the network testbed is still
relatively small, and thus the setup can only be considered as a
preliminary prototype of our proposal. In our future work, we
will consider large-scale verifications with substrate topologies
taken from typical wide-area and datacenter networks. Here,
PVX is the protocol-oblivious forwarding (POF) based NVH
system that gets connected to all the S-SWs in the SNT and
bridges the communications between vSWs (i.e., embedded on
the S-SWs) and their vCs.

The relevant modules in the system work as follows.
• Flow-Table Database (FT-DB): It stores the flow-tables

for vSDNs, which include both the virtual and substrate
flow-tables and the mapping between them.

• VNE Database (VNE-DB): It stores the VNE schemes of
vSDNs, which help PVX translate the virtual flow-entries
from vCs to substrate ones.

• TCAM Monitor : It checks the TCAM utilizations in
S-SWs proactively, and when finding that the TCAM
utilization in the SNT is severely unbalanced, it will
generate a request to invoke a vSDN reconfiguration.

• Input/Output API (I/O API) : It coordinates the com-
munications within PVX and enables the communication
between VNMgr and PVX. Before reconfiguring a vSDN,
it parses the reconfiguration scheme sent from the virtual
network manager (VNMgr). Then, it updates the network
status in FT-DB and VNE-DB and configures the related
S-SWs to implement the reconfiguration.

• Virtual Network Manager (VNMgr) : It is a homemade
module that is programmed with Python, for calculating
vSDN reconfiguration schemes based on the requests
from PVX. It stores the reconfiguration schemes in JSON
files and sends them to I/O API through a Restful API.

Note that, with the reconfiguration scheme from VNMgr,
PVX schedules the vSDN reconfiguration with I/O API.
Firstly, I/O API updates the mapping relation in VNE-DB
according to the reconfiguration scheme. Secondly, I/O API
gets the related virtual and substrate flow-tables from FT-DB
and updates them. Then, it lets PVX implement the vSDN
reconfiguration by installing the updated flow-entries in the
related S-SWs. Finally, it deletes the outdated flow-entries in
the SNT. More details related to the implementation of our
system can be found in [27].
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Fig. 10. System design and operation procedure.

Fig. 10 illustrates an example on how to accomplish a vSDN
reconfiguration operation in the system. After having been
generated by the TCAM monitor (1 ), the request for vSDN
reconfiguration is forwarded to VNMgr by I/O API. VNMgr
then uses LF-R and the network status stored in VNE-DB and
FT-DB to calculate the vSDN reconfiguration scheme (2 ).
For instance, it decides to re-mapvSWb in vSDN1 from S-
SW 2 to S-SW6, and the VLs that connect tovSW b (i.e.,
VLsa-b andb-c) should also be re-mapped accordingly. Upon
receiving the remapping scheme (3 ), the I/O API parses it and
updates VNE-DB accordingly. Then, PVX checks FT-DB to
obtain the flow-entries that get installed invSWb and installs
them in S-SW6, and the flow-entries related toVL b-c also
gets installed on the new intermediate nodeS-SW5 ( 4 ).

By now, the new node and link mapping schemes have
been implemented in the SNT, but for the traffic flowing in
vSDN 1, it still takes the original substrate paths,i.e., we
incorporate the “make-before-break” scenario [37] to minimize
traffic disruption. Next, PVX updates the flow-entries onS-
SWs1 and 4 to reroute the traffic on new substrate paths (5 ).
Then, the traffic flowing invSDN1 gets switched to the new
substrate paths instantaneously. Note that, our previous results
in [27] showed that packet loss could occur during the path
switching. To minimize such packet loss, we modify PVX
to let it wait for a duration that is slightly longer than the
maximum transmission delay of the original substrate paths
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before proceeding to6 . Hence, we can avoid the situation in
which packets transmitted on the original substrate paths get
dropped during the path switching. Finally, the flow-entries on
the original substrate paths are removed fromS-SWs2 and 3,
and the vSDN reconfiguration has been accomplished (6 ).

Therefore, we can see that vSDN reconfiguration is handled
solely by the VNMgr and PVX and the vCs of the vSDNs
would not need to be involved. Our experimental demon-
strations are based on a real network system prototype, in
which PVX, VNMgr and the vCs are realized on commodity
Linux servers, and each S-SW is based on the software-based
POF switch [46] running on an independent high-performance
Linux server with multiple 1GbE linecards. The SNT consists
of six S-SWs whose topology is as that in Fig. 10.

B. Proactive and Hitless vSDN Reconfiguration

The experimental scenario for verifying the performance
of our system prototype is shown in Fig. 11. Here, the
SNT carries three vSDNs,i.e., vSDNs1-3. Except for those
used for pumping background traffic, the experiment concerns
four hosts connecting to the vSDNs. Since the S-SWs are
realized with software-based POF switches and they operate
on random-access memory (RAM) but not TCAM, we emulate
TCAM limitation in them by applying an upper-limit on the
number of flow-entries that can be installed in each of them.
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Fig. 11. Experimental scenario of hitless vSDN Reconfiguration.

The experiment then runs as follows. After the three vSDNs
have been built over the SNT (att = 0), two flows (Flows
1 and 2) start to run invSDNs1 and 2, respectively. Then,
the TCAM utilization in the SNT becomes unbalanced as
time goes on, and more specifically,S-SWs2 and 3 are
heavy loaded. Att = 20 seconds, the TCAM monitor in
PVX determines that the TCAM onS-SW2 is about to be
depleted, and thus send a vSDN reconfiguration request to
VNMgr. VNMgr uses LF-R withγ = 0.5 to get the vSDN
reconfiguration scheme as remappingvSWsb andc in vSDN1
ontoS-SWs6 and 5, respectively. Later on, att = 30 seconds,
Flow 3 tries to join in vSDN 2 and gets routed onVL b′-
a′. Following the principle of SDN, since the first packet of
Flow 3 does not match to any of the installed flow-entries in
the S-SWs that carryVL b′-a′, the vC ofvSDN2 will install
flow-entries inS-SWs2 and 3, for processing its packets. This,

however, will consume the TCAM resources onS-SWs2 and
3. Flows 2 and 3 are for the video streaming with around 3
Mbps throughput, whileFlow 1 is for the data transfer whose
throughput is fixed at 2 Mbps.

We first measure the bandwidth ofFlow 1 on S-SWs2 and
6 andHost 4 over time, and show the results in Fig. 12. The
curves in Fig. 12(a) indicate that the vSDN reconfiguration
to re-mapvSW b in vSDN 1 from S-SW2 to S-SW6 gets
implemented successfully att = 20 seconds, since all the
traffic in Flow 1 gets rerouted throughS-SW6 after t = 20
seconds. More importantly, Fig. 12(b) suggests that the end-
to-end data transfer ofFlow 1 has not been impacted by the
vSDN reconfiguration, since its bandwidth measurement on
Host4 does not show any dip. Therefore, the results in Fig. 12
confirm that our system realizes hitless vSDN reconfiguration.

(a) Flow 1 on S-SW  2 and 6

(b) Flow 1 on Host 2
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Fig. 12. Bandwidth ofFlow 1 with vSDN reconfiguration.

Then, we measure the receiving bandwidth ofFlows 2 and
3 on Hosts3 and 2, respectively. To show the advantage of
proactive vSDN reconfiguration, we also conduct an experi-
ment without the vSDN reconfiguration att = 20 seconds
and use its results as the benchmark. As shown in Fig.
13(a), with the proactive vSDN reconfiguration att = 20
seconds, the joining ofFlow 3 at t = 30 seconds would
not induce any performance degradation on both flows, since
the TCAM utilization has been balanced and the new flow
would not cause TCAM depletion. On the other hand, in Fig.
13(b), when the vSDN reconfiguration is absent, the receiving
bandwidth of both flows cannot reach around 3 Mbps after
t = 30 seconds. This is because sinceS-SWs2 and 3 stay
heavy loaded without the vSDN reconfiguration, the joining
of Flow 3 at t = 30 seconds will use up the TCAM on
them. Consequently,vSDNs1 and 2 will have to compete for
the TCAM space onS-SWs2 and 3 aftert = 30 seconds,
which makes their vSWs sendPackectInmessages to their
vCs repeatedly and severely degrades their packet processing
performance. Finally, to further confirm the advantage of the
proactive vSDN reconfiguration, we measure the luminance
components peak signal-to-noise-ratio (Y-PSNR) of the video
received onHost 3 for Flow 2 and plot the results in Fig. 14.
The results also indicate that with the vSDN reconfiguration,
the playback quality of the video would not degrade, while
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without the reconfiguration, there is significant degradation on
the playback quality aftert = 30 seconds.

Note that, our approach is still not completely hitless and
packet loss could occur in the following two rare cases. Firstly,
since PVX only waits for a duration that is slightly longer than
the maximum transmission delay of the original substrate paths
before deleting the old flow-entries, packets that are stuckin
the original substrate paths longer than the duration wouldbe
lost. Secondly, not deleting the old flow-entries right after the
path switching might lead to incorrect routing loop(s) when
the original and new substrate paths of a VL share one or
more S-SWs, and this would cause packet loss too. We will
try to address these two cases in our future work.
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Fig. 14. Y-PSNR of video received onHost 3 for Flow 2.

C. Reconfiguration Latency and System Scalability

Finally, we conduct an experiment to evaluate the recon-
figuration latency as well as system scalability of the system
prototype with LF-R as the vSDN reconfiguration algorithm.
Here, we define the reconfiguration latency as the time period
from when a vSDN reconfiguration request reaches VNMgr
to when all the selected vSWs together with all the VLs
connecting to them have been re-mapped successfully. The
experimental setup is shown in Fig 15, where we originally
embed10 vSDNs, each of which has four vSWs, in the SNT
and makeS-SWs2 and 3 heavy loaded. Then, our system will
select vSWs to reconfigure withγ ∈ [0.2, 1] and we measure
the reconfiguration latency for each case.

Table III explains the actual workload in each vSDN recon-
figuration operation with differentγ. It can be seen that in the
worst case whenγ = 1, we need to reconfigure10 vSWs in
7 vSDNs and migrate1164 flow-entries in total. The experi-
mental results on reconfiguration latency are illustrated in Fig.
16, which indicates that it only takes our system prototype
∼550 milliseconds to accomplish the vSDN reconfiguration
operation withγ = 1. Note that, it would be reasonable to
assume that in a practical network environment, the interval
between two adjacent vSDN reconfigurations would be at
least in tens of minutes. Hence, the reconfiguration latency
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Fig. 15. Experimental setup for reconfiguration latency evaluation.

is much shorter than the interval and would not cause signif-
icant performance degradation. Meanwhile, we observe that
the reconfiguration latency actually increases withγ almost
linearly. This is because our current implementation triesto
reconfigure vSWs in sequence. Note that, this scheme can
actually be improved if we consider reconfiguring vSWs in
the parallel way, and thus the reconfiguration latency couldbe
further reduced. Therefore, we will study how to reconfigure
the vSDNs in parallel in our future work.

TABLE III
WORKLOAD OF VSDN RECONFIGURATIONOPERATIONS

Selection Ratio (γ) 0.2 0.4 0.6 0.8 1.0

# of Selected vSDNs 2 4 6 7 7
# of Selected vSWs 2 4 6 8 10

Flow-entries to be Migrated 277 539 773 1005 1164
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Fig. 16. Results on reconfiguration latency.

VII. C ONCLUSION

In this paper, we performed a relatively comprehensive
study on how to realize proactive and hitless vSDN reconfig-
uration in dynamic network environment. We first solved the
problem of “what to reconfigure” by designing an algorithm
to proactively select the vSWs that should be migrated for
balancing the TCAM utilization in an SNT. Then, the problem
of “how to reconfigure”,i.e., where to re-map the selected
vSWs and the VLs connecting to them, was also studied.
Specifically, we formulated an MILP model to solve the
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Fig. 13. Receiving bandwidth ofFlows 2 and 3 onHosts3 and 2, respectively.

problem exactly, and designed two heuristics to improve time
efficiency. Next, the proposed algorithms were implementedin
our POF-enabled NVH system, and we conducted experiments
to demonstrate proactive and hitless vSDN reconfiguration.
The experimental results indicated that our system did make
vSDN reconfiguration transparent to the vSDNs’ vCs and
proactive, and when reconfiguring a vSDN with live traffic,
it achieved hitless operations without traffic disruption.More-
over, the scalability of the proposed system was also verified,
since the results showed that it only took∼550 milliseconds
to reconfigure7 vSDNs and migrate1164 flow-entries.
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