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Abstract—Recently, with the development of IP and elastic
optical networks (EONs), the network control and management
(NC&M) scheme for IP-over-EONs, which can facilitate effective
cross-layer orchestration (XLyr-O), has become an interesting
but challenging research topic. In this paper, we consider
a software-defined IP-over-EON (SD-IPoEON), leverage deep
learning (DL) to analyze and predict the traffic fluctuation on
established lightpaths in it, and design a proactive DL-assisted
XLyr-O scheme. Specifically, we study the DL-assisted XLyr-
O scheme from algorithm design to system prototype. A DL
module based on the long/short-term memory based neural
network (LSTM-NN) is first designed and optimized for precise
IP traffic prediction. Then, we develop algorithms to explore
the traffic prediction for realizing proactive XLyr-O to dea l
with hard/soft failures constantly, i.e., making intelligent on-line
decisions to re-groom and reroute IP flows and to reconfigure
lightpaths such that the performance tradeoff among lightpath
utilization, congestion probability, and reconfiguration frequency
is balanced well. Finally, we implement our proposed algorithm
in a small-scale but real SD-IPoEON testbed to prototype theDL-
assisted XLyr-O, and conduct experiments with it. Experimental
results demonstrate that compared with the reactive benchmark
without DL-assistance, our proposal not only invokes less network
reconfigurations but also reduces packet losses significantly.

Index Terms—IP over Elastic optical networks (IP-over-
EONs), Multi-layer restoration (MLR), Cross-layer orchestration,
Software-defined networking (SDN), Artificial intelligence (AI).

I. I NTRODUCTION

OVER past decades, the raising of new network services
has pushed the traffic in backbone networks to not only

grow exponentially in volume but also become more and more
bursty and dynamic [1]. This has applied and would continue
to apply intensive pressure on the design and operation of
backbone networks [2]. To address this issue properly, we
first need an agile network architecture that can adaptively
allocate spectrum resources in the underlying optical network
to lightpaths, and then require an effective network control and
management (NC&M) scheme that can utilize the lightpaths
efficiently for grooming and routing IP flows, to achieve high
resource utilization as well as good quality-of-service (QoS).

The former requirement can be satisfied by leveraging
the technical advances on elastic optical networks (EONs)
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Fig. 1. A multi-layer IP-over-EON, BV-OXC: bandwidth-variable optical
cross-connect, BV-T: bandwidth-variable transponder.

[3, 4] and combining IP and EON technologies rationally
to realize IP-over-EONs [5, 6] (as shown in Fig. 1). This
is because EONs enable flexible spectrum allocation with
a granularity of12.5 GHz or even narrower in the optical
layer [7–9]. As for the second requirement, the effective
NC&M scheme can hardly be realized if we manage the
IP and EON layers separately. For example, without the
cooperation between the two layers, we cannot balance the
tradeoff between the spectrum utilization and packet losses
in the EON and IP layers, respectively. Hence, the NC&M
scheme has to facilitate cross-layer orchestration (XLyr-O),
which implies a centralized mechanism such as software-
defined networking (SDN) [10, 11]. Specifically, the XLyr-
O can be achieved by building a software-defined IP-over-
EON (SD-IPoEON) and using centralized SDN controller(s) to
manage the packet switches in the IP layer and the bandwidth-
variable transponders (BV-Ts) and optical cross-connects(BV-
OXCs) in the EON layer in a coordinated manner [12, 13].

In an SD-IPoEON, the centralized controller not only co-
ordinates lightpaths in the EON layer as the logic links to
interconnect packet switches in the IP layer, but also steers IP
traffic through the packet switches and logic links for traffic
grooming and IP routing [14]. Although previous studies
have already considered both the algorithms [6, 15, 16] and
systems [12] to realize XLyr-O in SD-IPoEONs, the XLyr-O
in SD-IPoEONs could still be improved. This is because these
existing algorithms and systems make XLyr-O decisions only
based on current network status. These reactive approaches,
however, would make the service provisioning scenarios and
traffic demands suffer from frequent mismatches, when the
IP traffic is highly dynamic and bursty. Note that, due to the
emerging of new services and the expansion of geographical
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coverage, the traffic fluctuation in backbone networks might
not simply follow the well-known daily patterns anymore [17,
18]. Specifically, the authors of [17] observed counter-intuitive
phenomena where the traffic flows in a backbone network
could have various daily patterns and experience different
peak/off-peak hours, while the study in [18] suggested that
if a backbone network covers multiple time-zones geograph-
ically, traffic flows between different source-destinationpairs
might also have different peak/off-peak hours. Therefore,the
operator would have the dilemma to either bear the increased
NC&M complexity due to frequent network reconfigurations
or suffer from IP route congestion/under-utilization constantly.

The dilemma could be resolved, if we leverage deep learn-
ing (DL) modules to analyze and predict the traffic fluctuation
on established lightpaths in the SD-IPoEON and develop a
proactive XLyr-O scheme. In this work, we study the DL-
assisted XLyr-O scheme from algorithm design to system pro-
totype. We first design a DL module based on the long/short-
term memory based neural network (LSTM-NN) [19], and
optimize its configuration to precisely capture the dynamics
and self-similarity of future traffic. Then, we consider multi-
layer restoration (MLR) in an SD-IPoEON as the usecase1, and
design algorithms to explore the traffic prediction resultsfor
realizing proactive XLyr-O,i.e., making intelligent decisions
to re-groom and reroute IP flows and to reconfigure lightpaths
such that the performance tradeoff among lightpath utilization,
congestion probability, and reconfiguration frequency canbe
balanced well. Finally, we extend our system design in [13],
prototype an SD-IPoEON system with DL-assisted XLyr-O,
and demonstrate our proposal experimentally.

The rest of paper is organized as follows. Section II provides
a brief survey on the related work. We describe the operation
principle of the DL-assisted XLyr-O and the design of the
traffic predictor in Section III. Then, the algorithms to explore
the traffic prediction results for realizing proactive XLyr-O
are designed in Section IV, including both an integer linear
programming (ILP) model and a heuristic, while they are
evaluated with extensive simulations in Section V. Next, we
lay out the system design and conduct experiments in a real
network testbed to demonstrate our proposal experimentally
in Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

In an SD-IPoEON, the EON provides the optical inter-
connections to carry the traffic generated in the IP layer.
The service provisioning in an EON involves the famous
routing and spectrum assignment (RSA) problem, which is
known to be NP-hard [20]. Hence, numerous studies have been
devoted to designing the heuristics that can find near-optimal
RSA solutions for building lightpaths [21, 22], light-trees [23,
24], light-forests [25, 26] and virtual optical networks [27].
Our XLyr-O scheme can leverage these algorithms to set up
lightpaths or more complex structures in the EON layer. As

1For the MLR, our proposed DL-assisted XLyr-O addresses boththe hard-
failure due to switch outages and the soft-failure because of traffic congestions.
Hence, the algorithms designed for the MLR can be easily generalized for
being used in normal service provisioning,i.e., treating new IP flows to be
served as the affected ones that need to be restored.

for ensuring survivability and availability of EONs, people
have considered both the path-based [28, 29] and link-based
[30, 31] protection/restoration schemes. Although an EON can
be protected well by these schemes, they cannot solve the
problem of MLR in an SD-IPoEON, as explained in [6].

Considering various IP-over-optical networks, the studies in
[32–34] have addressed multilayer protection,i.e., allocating
redundant backup resources in both IP and optical layers in
advance for failure recovery. However, the dedicated protection
schemes in [32, 33] would result in relatively low resource
utilization in both IP and optical layers. Although the resource
usage could be improved by introducing shared backup [34],
the idling of backup IP routers, optical ports and fiber links
would still affect the operator’s revenue. More importantly,
these multilayer protection schemes are all based on certain
assumptions regarding the failure pattern,e.g., the possibility
of simultaneous failures can be ignored. Nevertheless, a recent
analysis on the failure cases in Google’s B2 and B4 networks
suggested that failures in the IP layer could happen frequently
[35] and thus simultaneous failures should not be overlooked.
Meanwhile, as the backup resources have been reserved, the
advantages of protection over restoration are shorter recovery
time and guaranteed service recovery as long as the assump-
tion on failure pattern holds. Moreover, with new techniques
such as proactive protection [36], the service interruption time
can be further reduced or even avoided since flows can be
re-groomed onto a healthy lightpath in advance.

Hence, MLR should be considered since it does not reserve
backup resources but obtains recovery schemes when failures
actually happen. The studies in [6, 37] have discussed the
algorithm designs for MLR, while SDN-based systems have
been demonstrated in [12, 38]. However, they either assumed
that IP flows have fixed bandwidth demands or just got the
MLR schemes based on current network status. Hence, they
are reactive approaches and could not avoid the mismatches
between service provisioning scenario and traffic demands in
the future. For instance, if we re-groom a highly bursty IP flow
on a busy lightpath, congestions could happen in the future
even though the current status shows no bandwidth shortage.

DL-based traffic prediction has been studied for various
networks [39–42]. The work in [39] discussed how to realize
precise traffic prediction but did not try to utilize the forecast
for network optimization, while the authors of [40–42] consid-
ered DL-assisted network optimization. Nevertheless, none of
these studies was about the XLyr-O scheme for SD-IPoEONs.
Previously, we built a preliminary system to demonstrate
the DL-assisted MLR in an SD-IPoEON [13]. However, the
complete system design to realize DL-assisted XLyr-O has not
been presented and the algorithm design was absent. Hence,
this work extends our preliminary study in [13] by addressing
DL-assisted XLyr-O for SD-IPoEONs from algorithm design
to system prototype. To the best of our knowledge, this is the
first work to cover the topic with such a scope.

III. N ETWORK MODEL AND OPERATION PRINCIPLE

In this section, we describe the network model of our DL-
assisted XLyr-O system, explain its operation principle, and
elaborate on the design of the DL-based traffic predictor.
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Fig. 2. Control plane design for realizing DL-assisted XLyr-O, OF w/OTPE:
OpenFlow with optical transport protocol extensions, OF-C: OpenFlow con-
troller, MON: Monitor, NID: Network information database,T-DB: Traffic
database, PRD: Traffic predictor, NOrch: Network orchestrator.

A. Network Model

Fig. 1 shows the data plane of an SD-IPoEON, which
consists of two layers. The EON layer is built with a few
BV-OXCs interconnected by fiber links. The EON’s topology
is denoted asGo(Vo, Eo), where Vo and Eo represent the
sets of BV-OXCs and fiber links, respectively. Each BV-OXC
can transparently switch the optical spectrum of a lightpath
from an input port to the desired output port, according to the
instruction from the centralized controller in the controlplane.
Hence, the controller can set up, reconfigure, and tear down
lightpaths in the EON to adapt to IP traffic.

The switches in the IP layer is also managed by the control
plane. Each switch is co-located with an underlying BV-OXC
and connects to it with several BV-Ts, each of which can gen-
erate or terminate the optical signal of a lightpath. Therefore,
if there is a lightpath between the BV-Ts of two switches,
they are directly connected with a logic link in the IP layer.
Consequently, the IP layer can also be modeled as a graph
G(V,E), whereV is the switch set andE denotes the set of
the logic links that interconnect the switches inV . Specifically,
if there is a logic link(v, u) ∈ E and BV-OXCsvo anduo are
co-located with switchesv andu, respectively, there must be
a lightpath to takevo anduo as its end nodes. Note that, the
capacity of a lightpath depends on both the capability of itstwo
BV-Ts and the quality-of-transmission (QoT) [3]. Therefore,
in this work, we assume that each BV-T can support a set
of line-rates and each line-rate has a maximum transmission
reach under the QoT constraint. Meanwhile, since the BV-
Ts on each switch are usually limited and thus precious, we
also assume that when a new lightpath has to be established,
the XLyr-O system always uses the highest line-rate that the
lightpath’s transmission distance permits.

B. Operation Principle

As shown in Fig. 2, our DL-assisted XLyr-O system re-
sides in the control plane to coordinate the network elements
(NEs) in IP and EON layers for realizing intelligent service
provisioning in the SD-IPoEON. It uses the monitor (MON)
to collect the traffic matrix in the IP layer periodically. MON
sends the traffic matrix to the traffic database (T-DB), which

records it in entries, each of which corresponds to a flow. Note
that, as the SD-IPoEON is a backbone network, each flow here
is actually an aggregated one that grooms numerous IP flows
between a switch pair in the IP layer. Hence, the traffic on
each flow could be highly dynamic, fluctuate with a unique
pattern [17], and last for a reasonably long period (e.g., tens of
hours or even days). Meanwhile, since there might be multiple
access networks behind each edge switch in the IP layer, we
assume that there can be multiple flows between a switch pair.
With the multi-protocol label switching (MPLS), switches can
identify these flows by checking their labels.

Each entry in the traffic matrix models a flowr with the
estimated maximum value of its bandwidth demand (BW),
a vector for historical traffic samples (~H), and a vector for
predicted traffic samples (~P ). Here, the BW of a flow is
assumed to be knowna priori, its ~H gets updated by MON,
and its ~P is obtained by the traffic predictor (PRD), which is
based on an LSTM-NN. The network information database
(NID) collects the multilayer topology of the data plane
and the flow tables on the switches through the OpenFlow
controller (OF-C), to get the latest flow routing schemes.

We design the DL-assisted XLyr-O system to address two
issues with MLR, which are switch outages (i.e., hard failures)
and lightpath congestions (i.e., soft failures). Here, a switch
outage will take a switch offline to make all the flows, which
use the switch as an end-node, as unrecoverable and interrupt
all the flows using it as an intermediate node. A lightpath
congestion occurs when the total instant bandwidth demand of
the flows that are routed over a lightpath exceeds its capacity.
Note that, the lightpath congestion can only be avoided if
we groom flows to each lightpath according to their BWs.
This, however, might lead to significant over-provisioning,
since the flows can carry dynamic traffic with various patterns
[17]. Meanwhile, even though upper-layer protocols such as
TCP might have congestion-avoidance mechanisms, the flows
would still experience bandwidth-shrinking during the process,
which will degrade the QoS of their network services.

When MON detects an aforementioned issue in the data
plane, it would invoke MLR to recover the affected flows
and/or to avoid future lightpath congestions, as follows. MON
first informs NID to update the flow routing schemes, and
then tells T-DB to refresh the traffic prediction. Next, NID
sends a request to the network orchestrator (NOrch) and lets
it calculate the MLR scheme. NOrch obtains the MLR scheme
based on the up-to-date multilayer topology, flow routing
schemes stored in NID and the traffic prediction stored in T-
DB, and feeds the scheme back to NID, which will in turn
send it to OF-C for being implemented in the SD-IPoEON.

C. Generation of Traffic Data Set

The design of the DL-assisted XLyr-O system needs to
consider realistic data sets to emulate the traffic generated in
the IP layer of a backbone network. Specifically, to generate
the dynamic traffic on a flow, we leverage the realistic traffic
traces collected on an edge router, which aggregates the traffic
from the access networks behind it. Here, the access networks
are those for research institutions, enterprises, or even Internet
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Fig. 3. DFT analysis of traffic samples in the training set.

service providers (ISPs). We survey the related data on the
Internet, and find14 reasonable sources for the traces, each of
which records real-time traffic and gets updated every a few
minutes. Then, based on the realistic traces, we generate the
data set to emulate dynamic traffic on the flows considered in
this work. The data set includes10 series of traffic samples,
each of which consists of59, 000 samples whose sampling
interval is5 minutes,i.e., there are590, 000 traffic samples in
total. To save space, we publish the sources for realistic traffic
traces, their characteristics, the procedure to generate traffic
data set with them, and the generated data set on GitHub [43].

D. DL-based Traffic Prediction

We define the period of traffic collection as a time slot
(TS) whose value isT = 5 minutes2, since the SD-IPoEON
is a backbone network and our DL-assisted XLyr-O system
should care about long-term traffic fluctuations. To provide
NOrch with sufficient traffic information for obtaining the
cost-efficient MLR scheme, PRD forecasts a series ofLo

traffic samples in the future. This means that the size of the
vector for predicted samples (i.e., ~P ) is Lo, i.e., ~P covers a
flow’s traffic fluctuation over a period ofLo · T .

Then, to design the DL-based traffic predictor, we first need
to determineLo since it is the number of outputs in the LSTM-
NN. Here, we have a tradeoff to worry about,i.e., if we use
a largerLo, NOrch calculates the MLR scheme with more
information regarding future traffic fluctuation and thus can
potentially avoid the mismatch between routing schemes and
traffic demands for a longer time, but a largerLo means a
more complex LSTM-NN and lower prediction accuracy, and
vice versa. Therefore, we come up with a simple method based
on the Fourier analysis. Specifically, we generate a time series
with the traffic samples in the training set, perform discrete
Fourier transform (DFT) on it to get the frequency domain
information regarding the traffic fluctuation, and determineLo

based on the DFT result. In the following, we will use an
illustrative example to explain how to determineLo.

The DFT provides us the cumulative distribution function
(CDF) of the frequency components’ power as in Fig. 3. It
can be seen that the CDF increases sharply at around the
frequency of0.00348 · 1

T
, which implies that there is a sig-

nificant component at the frequency in the traffic fluctuation.

2According to our survey on the real traffic traces in backbonenetworks, a
commonly-used traffic sampling interval is5 minutes. This interval is only for
traffic sampling while a switch outage is detected and handled immediately.
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Fig. 4. DL-based traffic predictor with a three-layer model.

Therefore, to record such a frequency component in traffic
prediction, we need to setLo > T

0.00348
= 287.3 · T , which

makesLo = 288 · T . Specifically, for the traffic data in [43],
if we setLo = 288 · T , the corresponding CDF result can be
around62% as shown in Fig. 3. Meanwhile, the DFT analysis
also helps us determine the size of the inputs to the LSTM-
NN. Specifically, to optimize the prediction accuracy, the input
series should include the major low frequency components. For
the traffic data in [43], the DFT analysis in Fig. 3 suggests
that the low frequency component will not reach noticeable
total power until0.001 · 1

T
. This makes the LSTM-NN’s input

length asLi = 1008 · T . After determining the lengths of its
inputs and outputs, we design a three-layer model for the DL-
based traffic predictor, which includes two LSTM-NN layers
to record and analyze the characteristics of traffic fluctuation,
and one layer of artificial neural network (ANN) to buffer the
prediction results (as shown in Fig. 4). The input historical
traffic vector is denoted as~H = [h1, h2, · · · , hLi

]⊤.
To train and evaluate the DL-based traffic predictor, we

divide the 10 traffic traces in [43] into training and testing
sets with 540, 000 and 50, 000 samples, respectively. The
predictor’s output over a randomly-selected trace (i.e., with
5, 000 samples) in the testing set is shown in Fig. 5, which
indicates that the predicted and actual traces match with each
other well. The trained traffic predictor provides prediction
accuracies of95.77% and95.33% on the training and testing
sets, respectively, and its training takes us39.6 minutes.

IV. A LGORITHM DESIGN FORCROSS-LAYER

ORCHESTRATION

In this section, we design the algorithms with which the
NOrch in our XLyr-O system can calculate the MLR schemes
based on traffic prediction.

A. Integer Linear Programming Model

As we have explained in Section III-A, our XLyr-O system
needs to monitor the data plane of the SD-IPoEON constant-
ly and implement the proper MLR scheme timely when a
soft/hard-failure is detected. Specifically, the MLR scheme
reconfigures the network elements in the data plane to restore
the flows that have been interrupted by a switch outage or
will be affected by future congestions. Here, the optimization
objective is to restore all the affected but recoverable flows by
reconfiguring the smallest number of flows and setting up the
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fewest new lightpaths. Note that, we assume that the spectrum
resources in the EON are more than sufficient to carry the
traffic generated in the IP layer, which is usually the case
in practical backbone networks. In other words, if needed, a
direct lightpath can be established to connect any two nodes
in the EON. Therefore, the RSA problem becomes trivial and
we ignore it in our algorithm design.

Notations:

• G(V,E): the IP layer topology, whereV andE are the
sets of switches and logical links, respectively.

• V f : the set of failed switches.
• e = (u, v, j), e ∈ E: the j-th logical link between

switchesu andv.
• K: a large number to denote the upper-bound on the

lightpaths that can be set up between two switches.
• ku,v: the number of active logical links between switches
u andv.

• Cu,v: the bandwidth capacity (in Gbps) of the lightpath
that can be set up between switchesu andv.

• R = R
c + R

f : the affected traffic matrix, whereRc

denotes the set of flows that will be affected by future
congestions, andRf is the set of flows that have been
interrupted by a switch outage but are recoverable3.

• r: a flow in R, i.e., r = (sr, dr) ∈ R, wheresr anddr
are its source and destination switches.

• Lo: the length of the predicted traffic samples.
• T r

t : the t-th predicted traffic sample for flowr ∈ R.
• x′r

e: the indicator that equals 1 if flowr ∈ R originally
uses logical linke ∈ E.

• bet : the sample of unaffected background traffic on logical
link e ∈ E at thet-th TS in the future.

• M : a large number,i.e., M = max(Cu,v) ·K · |R| · |V |2,
where| · | returns the number of elements in a set.

Variables:

• xr
e: the boolean variable that equals 1 if flowr ∈ R is

routed on logical linke ∈ E.
• zr: the boolean variable that equals 1 if flowr ∈ R is

reconfigured.
• ye: the boolean variable that equals 1 if a new lightpath
e is established.

Objective:

3Here, an interrupted flow is recoverable if and only if the failed switch is
not one of its end-nodes [6].

The optimization objective is to first minimize the number
of reconfigured flows and then minimize the total bandwidth
of newly-established lightpaths.

Minimize M ·
∑

r∈R

z
r +

∑

u,v∈V

K
∑

j=ku,v+1

y(u,v,j) · Cu,v. (1)

Constraints:

∑

v∈V

K
∑

j=1

x
r
(u,v,j) −

∑

v∈V

K
∑

j=1

x
r
(v,u,j) =











1, u = sr,

− 1, u = dr,

0, others,

∀r ∈ R,

(2)

∑

v∈V

K
∑

j=1

x
r
(u,v,j) ≤ 1, ∀r ∈ R, u ∈ V, (3)

∑

u∈V

K
∑

j=1

x
r
(u,v,j) ≤ 1, ∀r ∈ R, v ∈ V. (4)

Eqs. (2)-(4) are the flow conservation constraints to guarantee
that flow r ∈ R is routed fromsr to dr over a single path.
More specifically, Eq. (2) makes sure thatr is correctly routed
from sr to dr, while Eqs. (3) and (4) ensures thatr only takes
one routing path. Note that, Eqs. (3) and (4) also allowr to
be routed on a newly-established logical link.

M · zr ≥
∑

u,v∈V

K
∑

j=1

x
′r
(u,v,j) ·

(

1− x
r
(u,v,j)

)

≥ z
r
, ∀r ∈ R. (5)

Eq. (5) ensures that the value ofzr is correctly set. Specifically,
if the routing scheme found by the ILP forr is different from
its original one,zr will be set as1, andvice versa.

ye ≥ x
r
e, {e = (u, v, j), r ∈ R : ∀e ∈ E, j > ku,v}. (6)

Eq. (6) ensures that flowr ∈ R can only be routed on existing
logical links.

b
(u,v,j)
t +

∑

r∈R

x
r
(u,v,j) · T

r
t ≤ Cu,v, ∀u, v ∈ V, t ≤ Lo, j ≤ K.

(7)
Eq. (7) ensures that the traffic on any logic link will not exceed
its capacity at any time within the prediction period.

y(u,v,j) = 0, ∀u ∈ V
f
, ∀v ∈ V

f
. (8)

x
r
(u,v,j) = 0, ∀u ∈ V

f
, ∀v ∈ V

f
. (9)

Eqs. (8)-(9) ensures that none of the failed switches is used.

B. Heuristic Algorithm

Although the ILP model can obtain the optimal MLR
solution to manage the SD-IPoEON well over a future period
of Lo ·T , it would become intractable for large scale problems
and thus cannot be used in dynamic service provisioning.
Hence, we try to develop a heuristic to make sure NOrch
can obtain MLR schemes time-efficiently. Note that, the MLR
scheme needs to recover two kinds of flows inR

f andR
c,



6

respectively. For the flows inRf , they need to be reconfigured
anyway and thus we should just try to restore them with
the least bandwidth from the newly-established lightpaths. In
other words, we should try to re-groom the flows inRf onto
the existing lightpaths as many as possible. However, since
the traffic demands of all the flows in the SD-IPoEON are
time-variant, how to determine the re-grooming scheme is
more complex than the traditional re-grooming problem that
addresses fixed-bandwidth flows. For instance, if a few flows
whose peak time overlaps with each other are groomed on
the same lightpath, congestions can happen frequently on the
lightpath in the future even though its bandwidth utilization is
not very high in most of the time.

On the other hand, it would be more complicated to restore
the flows inRc, since we need to minimize the number of re-
configured flows and the total bandwidth of newly-established
lightpaths simultaneously. Therefore, selecting which flows to
reconfigure would be an interesting and tricky problem. Based
on these considerations, we divide the MLR problem into two
subproblems,i.e., 1) selecting the flows for reconfiguration,
and 2) determining their reconfiguration schemes. To solve
the first subproblem, we define a metric, namely, “congestion-
relieving value (CRV)”, for quantifying the relief on conges-
tion if a flow r gets reconfigured.

∆r =
∑

e∈Er

T
r
tce
, (10)

where∆r is the CRV of flowr, Er is the set of logical links
that r traverses,tce is the most congested time on logical link
e in the predictable future, andT r

tce
is the traffic demand ofr

at timetce. Note that, if a logical linke will not congest in the
predictable future,T r

tce
= 0. Then,Algorithm 1 is designed to

solve the first subproblem.

Algorithm 1: Selecting Flows for Reconfiguration
Input : Affected flow setRc, congested link setEc, and

traffic prediction of all the flows{~T r}.
Output : R′ as the set of flows for reconfiguration

1 R
′ = ∅;

2 while Ec 6= ∅ do
3 updateRc based onEc;
4 for each flowr in R

c do
5 calculate∆r with Eq. (10);
6 end
7 r∗ = argmax

r∈Rc

(∆r);

8 insertr∗ into R
′;

9 remover∗ hypothetically and updateEc;
10 end
11 return R

′;

Here, Line 1 is for the initialization. The while-loop that
coversLines 2-10 selects flows to insert intoR′ iteratively,
based on their CRVs. We updateRc by removing the flows
whose logic links will not be congested inLine 3, according
to the link setEc. Then, Lines 4-6 calculate the CRVs of
all the flows inRc. Note that, when calculating∆r, we also
consider the scenario in which flowr goes through multiple
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Fig. 6. Examples on peak time overlapping measurement with CS.

congested logic links. Next, inLines7 and 8, we select the flow
whose CRV is the maximum and insert it intoR′. Finally,Line
9 remove the selected flow from the network hypothetically
and updateEc accordingly. For each while loop,Algorithm
1 takes out one request or at least one lightpath inEc.
Hence, the while-loop will run for at mostmax(|Ec|, |Rc|)
times. In each iteration, the complexity of calculating∆r is
O(|Ec| · |Rc| · |~T r|). Thus, the time complexity ofAlgorithm
1 is O(max(|Ec|, |Rc|) · |Ec| · |Rc| · |~T r|).

Next, we consider how to re-groom/reroute the flows select-
ed by Algorithm 1 together with the interrupted ones inRf .
To achieve this, we first need to design a method to evaluate
the peak time overlapping among flows. Suppose we have the
traffic prediction of two flows,i.e., ~P 1 = [T 1

1
, T 1

2
, · · · , T 1

Lo
]

and ~P 2 = [T 2
1 , T

2
2 , · · · , T

2

Lo
], their fluctuation trends can be

highlighted with the following preprocessing

~P = ~P −min(~P ). (11)

Then, the peak time overlapping between two flows can be
measured by calculating the cosine similarity (CS) of their
preprocessed traffic prediction samples.

δ~P1, ~P2 =
~P 1 ⊙ ~P 2

√

√

√

√

Lo
∑

i=1

(

T
1
i

)2
·

√

√

√

√

Lo
∑

i=1

(

T
2
i

)2

. (12)

For any two series of predicted traffic samples, the more peak
time overlapping they have, the larger their CS is. Fig. 6 shows
two examples, which indicate that the CS of the two traces in
Fig. 6(a) is larger than that of those in Fig. 6(b). Apparently,
the two traces in Fig. 6(a) oscillate with each other in the time
domain, while those in Fig. 6(b) fluctuates almost oppositely.
Note that, grooming two flows on a lightpath, which fluctuate
oppositely, helps to set apart their peak time, and thus the
lightpath’s bandwidth can be utilized more efficiently. With
this idea, we designAlgorithm 2 based on CS.

Algorithm 2 is designed to determine the reconfiguration
schemes,i.e., solving the second subproblem. The for-loop
coveringLines1-16 reconfigures the flows in the descending
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Algorithm 2: Determining Reconfiguration Schemes

Input : Set of flows to be reconfiguredRa = R
′ ∪R

f ,
up-to-date IP layer topologyG(V,E), and traffic
prediction of all the flows{~T r}.

1 for eachr ∈ R
a in descending order of peak bit-ratedo

2 get the logic links that can accommodater without
causing congestions and store them inE′;

3 for eache ∈ E′ do
4 get the predicted traffic samples ofr ande, and

calculate their CSδr,e with Eqs. (11) and (12);
5 calculate the NRCηe of e with Eq. (13);
6 set the weight ofe aswe = δr,e · ηe ;
7 end
8 if the least weighted path can be found forr then
9 store the path inpr;

10 reconfigurer to usepr and updateG(V,E);
11 else
12 set up a direct lightpath fromsr to dr for r;
13 store the newly-established lightpath inpr;
14 reconfigurer to usepr and updateG(V,E);
15 end
16 end
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Fig. 7. EON topologies with fiber lengths in km marked on links.

order of their peak bit-rates, since a flow with a larger peak bit-
rate may potentially cause more future congestions and thus
is harder to be re-groomed. In each iteration,Line 2 is for
the initialization. Then, we useLines3-7 to obtain the weight
of each feasible linke ∈ E′. Specifically, we get the traffic
predictions ofr ande and use Eqs. (11) and (12) to calculate
their CSδr,e (Line 4), and the normalized remaining capacity
(NRC) of e is obtained as (Line 5)

ηe =
Ce − T e

max
e′∈E

(

Ce′ − T e′

) , (13)

whereCe is the capacity of linke, andT e returns the average
value of the predicted traffic samples on linke. Then,Line 6
calculates the weight of linke aswe = δr,e ·ηe. Note that, the
smallerδr,e is, the less peak time overlapping betweenr and
e, while the smallerηe is, the less available will be on linke

in the foreseeable future. Hence, if we use the least weighted
path to carryr (Lines8-10), it can be re-groomed in the way
that can not only improve the utilization of existing lightpaths
but also leave more available bandwidth for the subsequent
flows. However, if such a feasible path cannot be found,Lines
12-14 sets up a new direct lightpath to carryr from sr to
dr. In Algorithm 2, the complexity of sortingRa is O(|Ra| ·
log2 |R

a|) . The for-loop runs for|Ra| times. In each iteration,
the complexity of calculating the weight of each link isO(|E|·
|~T r|) and the complexity of finding the least weighted path is
O(|E|+ |V | · log |V |). Thus, the complexity ofAlgorithm2 is
O(|Ra| ·max(log2 |R

a|, |E| · |~T r|, |V | · log |V |))

V. NUMERICAL SIMULATIONS

A. Simulation Setup

The numerical simulations consider two topologies for the
EON layer of the SD-IPoEON,i.e., the six-node and NSFNET
topologies in Figs. 7(a) and 7(b), respectively. We assume that
each BV-T can support line-rates in{10, 25, 40, 50, 75, 100}
Gbps and the maximum transmission reaches of the line-
rates are{3732, 2995, 2671, 2438, 2112, 1880} km, respective-
ly [44]. To save the BV-Ts on each switch, the XLyr-O system
always uses the highest feasible line-rate when setting up
a new lightpath. In each simulation, the initial logic links
in the IP layer (i.e., lightpaths) are first established. Here,
the number of initial lightpaths between each switch pair is
randomly selected within[0, 2], while the total numbers of
initial lightpaths in the six-node and NSFNET topologies are
distributed within[17, 21] and[44, 50], respectively. Then, the
SD-IPoEON starts to accept dynamic flow requests generated
according to the Poisson model, and the traffic samples of the
flows follow the data set that we generated with realistic traffic
traces [43]. Since there is no historical information aboutthe
flows when they first come in, we provision them with a simple
auxiliary graph based algorithm [6] that routes the flows over
the shortest feasible path in the SD-IPoEON.

Next, we run the SD-IPoEON for a random period, stop to
invoke one or more switch outages in the IP layer, and use the
XLyr-O system to handle both the hard failure due to switch
outage and the potential soft failure due to future congestions
on the lightpaths. In addition to the ILP and the heuristic
(CRV) discussed in the previous section, the simulations also
consider two benchmark algorithms.

• Expand: With traffic prediction, it first selects the largest
flow at the most congested time of a to-be-congested
lightpath, and then tries to reroute the selected flow using
a lightpath that shares the sames-d pair of the to-be-
congested one and has the smallest CS from Eq. (12).
If such a lightpath does not exist, it sets up a new one
between thes-d pair to reroute the flow. The procedure
is repeated until there is no lightpath congestion.

• Mean: It follows the similar procedure of CRV, but
in Algorithm 1, it selects the flows that use the to-
be-congested lightpaths and have the predicted traffic
samples whose average values are the largest, and puts
them inRf for reconfiguration.
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TABLE I
AVERAGE RUNNING T IME PER FLOW (SECONDS)

Traffic Volume
1.25 1.5 1.75 2.25 2.5

before Outage (Tb/s)

ILP 32.647 48.215 51.146 53.545 73.107

CRV 0.072 0.059 0.047 0.041 0.064

Expand 0.059 0.042 0.036 0.042 0.034

Mean 0.090 0.053 0.055 0.043 0.039

In the simulations, we average the results from10 independent
runs to get one data point for sufficient statistical accuracy.

B. Small-Scale Simulations with Six-Node Topology

We first conduct small-scale simulations with the six-node
topology to compare the heuristics with the ILP. Here, we only
randomly generate one switch outage in each simulation, and
select the peak rate of each flow within[20, 80] Gbps, since
each lightpath in the six-node topology provides a capacity
of 100 Gbps. The simulation results are shown in Fig. 8. It
can be seen that the algorithms’ performance on the number of
reconfigured flows (in Fig. 8(a)) is comparable. This is because
for all the to-be-configured flows inRa = R

′ ∪ R
f , the

flows in R
f (interrupted by the switch outage) are generally

many more than those inR′ (selected ones to relieve future
congestions), while the size ofRf is determined by the switch
outage and cannot be optimized by the algorithms.

As expected, the ILP invokes the least reconfigurations
in Fig. 8(a) to accomplish the XLry-O. CRV performs only
slightly worst than the ILP but better than the two benchmarks,
which suggests that CRV can fully explore traffic predictionto
avoid unnecessary flow reconfigurations. Expand performs the
worst among the algorithms on the number of reconfigured
flows. In Fig. 8(b), the ILP also establishes the smallest
amount of bandwidth for reconfiguring the flows. Among the
four algorithms, Expand sets up the most new bandwidth,
which is because it does not consider the relation among
the congestions occurring on lightpaths between different
switch pairs, and thus cannot achieve global optimization,
i.e., the newly established bandwidth from Expand can hardly
be shared by the flows. CRV performs slightly worse than
Mean, and both of them establish more bandwidth than the
ILP. However, the results on average running time in Table I
indicate that the heuristics are much more time efficient than
the ILP, and CRV runs as fast as the two benchmarks.

C. Large-Scale Simulations with NSFNET Topology

We then perform large-scale dynamic simulations with the
NSFNET topology to further evaluate the heuristics. We in-
voke4 switch outages in each simulation. The interval between
two consecutive outages is set as1, 000 TS’ (i.e., each TS is5
minutes), each simulation runs for4, 500 TS’. The peak rate
of each flow is randomly selected within[4, 10] Gbps.

In the dynamic simulations, we first verify the effectiveness
of our method to determine the number of the predicted sam-
ples in the DL-based traffic predictor (i.e., Lo). Specifically,
we simulate CRV by changingLo from 72 to 360. The results
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Fig. 8. Results from simulations with six-node topology.

in Fig. 9(a) indicate that for all the traffic loads (i.e., average
traffic volume before each outage), increasingLo can reduce
the number of reconfigured flows and the reduction tends to
converge whenLo ≥ 288. This is because with a largerLo, the
XLyr-O system has more information regarding future traffic
and thus can reconfigure the flows better to reduce overall
reconfigurations. Meanwhile, the convergence of the reduction
in Fig. 9(a) suggests thatLo = 288 (i.e., a look-ahead period
of 24 hours) is the proper choice, and thus the method designed
in Section IV-B is effective. On the other hand,Lo does not
significantly impact the newly established bandwidth in Fig.
9(b). This confirms the robustness of CRV,i.e., no matter how
many future samples are provided by the traffic predictor, it
can fully utilize the bandwidth in the SD-IPoEON.

Note that, as100% prediction accuracy is impossible, future
congestions can still happen due to prediction errors. Hence,
we plot the results on the congested traffic volume, which is
the total volume of the traffic that cannot be delivered due to
congestions, in Fig. 9(c). It is interesting to notice that the
congested traffic volume generally increases withLo before
Lo = 288. This confirms our analysis in Section IV-B,i.e.,
choosingLo to cover the major frequency components in
traffic fluctuation would help to balance the tradeoff between
the length of look-ahead period and prediction error.

Next, we fixLo = 288 and compare the performance of the
heuristics. The results in Fig. 10(a) show that CRV invokes
the least flow reconfigurations among the three algorithms,
while Expand reconfigures comparable numbers of flows as
Mean at low traffic loads but its number of reconfigured
flows is the most when the traffic load is larger than2.5
Tbps. This is because Expand can hardly achieve global
optimization. Fig. 10(b) shows that Expand establishes the
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Fig. 9. Simulation results with NSFNET topology (CRV with different Lo).
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Fig. 10. Simulation results with NSFNET topology (different heuristics withLo = 288).
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most bandwidth to accommodate the flows inR. As CRV
and Mean use the same method to provision the flows, the
newly established bandwidth from them is similar. However,
Mean reconfigures many more flows than CRV in Fig. 10(a),
which is because when Mean selects the flows to reconfigure,
it chooses those with the most average predicted traffic but
does not consider the actual traffic fluctuation. The resultsin
Fig. 10(c) on the congested traffic volume also confirm the
superior performance of CRV, since for all the traffic loads,
its congested traffic volumes are the smallest. In all, since
CRV considers future traffic fluctuation when selecting and

provisioning the flows inR, it reconfigures the least number
of flows, induces the least congested traffic volume, with
comparable newly established bandwidth as that from Mean.

VI. SYSTEM PROTOTYPE ANDEXPERIMENTAL

DEMONSTRATIONS

In this section, we implement CRV to prototype an SD-
IPoEON system with DL-assisted XLyr-O, and demonstrate
that it can utilize closed-loop operations to constantly deal
with switch outages and lightpath congestions.
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Fig. 12. Results on sending and receiving bandwidth.

A. System Prototype

For the control plane, we realize CRV together with the
DL-assisted XLyr-O in the open network operating system
platform (ONOS). The extended ONOS, which follows our
design in Fig. 2, runs on a Linux server and manages both
the IP and EON layers. For simplicity, our experiments use
a UDP-based IP flow to emulate an aggregated flow in a
backbone SD-IPoEON. Specifically, we generate each UDP
flow according to a series of traffic samples in the traffic
data set in [43], where the flow’s instant bandwidth demands
are scaled within[39, 910] Mbps and the sampling interval
between two traffic samples (i.e., T ) is reduced to2 seconds
to shorten the time used for each experiment. Hence, MON
also collects traffic statistics with a period of2 seconds. It
extracts real-time traffic statistics of each flow from OpenFlow
statistics messages (OFPC FLOW STATS), and passes the
information to PRD through T-DB. The traffic statistics of each
flow is collected at its ingress switch to the SD-IPoEON. For
instance, in Fig. 11(b), the ingress switch ofF1 is SwitchA.
We implement NOrch as an ONOS application to get the XLyr-
O schemes when hard/soft failures occur. Fig. 11(c) shows the
interactions to realize the DL-assisted XLyr-O.

The data plane of the SD-IPoEON testbed has the topology
in Fig. 11(a), where there are5 nodes in the IP and EON
layers, respectively. Each optical node in the EON layer is built
with Finisar1×9 BV-WSS’, which can set up lightpaths within
the wavelength range of[1528.43, 1566.88] nm, by allocating
the spectra on fiber links with a granularity of12.5 GHz.
Specifically, each BV-WSS is equipped with an OpenFlow
agent (OF-AG) [11], which can communicate with OF-C using
the OpenFlow protocol including optical transport protocol
extensions (OF w/OTPE), parse the receivedFlowMod mes-
sages for lightpath management instructions, and configurethe
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Fig. 13. Optical spectrum measurements.

BV-WSS accordingly. The switches in the IP layer are Pica-8
switches that have 10GbE optical ports. Hence, a connection
between the optical ports on two switches is essentially a
lightpath. Our experiments limit the capacity of each lightpath
as1 Gbps, for emulating lightpath congestions.

B. Experimental Demonstrations

Fig. 11(b) shows the initial experimental scenario before the
switch outage in the IP layer. Here, we have6 UDP flows (i.e.,
{F1, · · · , F6}) routed by5 switches (i.e., {A,B,C,D,E})
that are interconnected by7 lightpaths (i.e.,{LP1, · · · , LP7}).
In the experiment, a switch outage is first emulated by discon-
nectingSwitchD. After the outage,LightpathsLP4, LP5 and
LP7 are disrupted to affect the packet transmission ofFlows
F1, F2 andF3. Then, the DL-assisted XLyr-O kicks in.

Fig. 12 shows the results on sending and receiving band-
width of FlowsF2 andF3. We can see that at the first time
line (i.e., whenSwitchD fails), bothF2 andF3 experience
packet loss since they go through the failed switch. Here, the
packet loss ofF2 is severer than that ofF3. This is because
F2 is recovered by setting up a new lightpath in the EON
layer. Specifically, after it has detected the switch outage, the
ONOS controller checks the predicted traffic provided by PRD
and finds out that, ifF2 is groomed ontoLP3→LP2, there
would be severe congestion onLP3. Therefore, our XLyr-
O decides to establish a new direct lightpath to recoverF2.
As F2 cannot be restored until the new lightpath has been
established and optical reconfiguration takes much longer time
than IP reconfiguration, the packet loss ofF2 is severer.
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As for F1 andF3, our XLyr-O finds that there would be
enough capacity on existing lightpaths in foreseeable future,
to re-groom them for restoration. Hence, they are rerouted
asF1: LP1→LP2 andF3: LP6→LP3→LP2. Meanwhile,
since updating flow tables in switches takes much shorter time
than reconfiguring the BV-WSS’, the packet loss ofF3 in Fig.
12(b) is much lighter than that ofF2 in Fig. 12(a). Specifically,
the recovery ofF2 with a new direct lightpath takes2.31
seconds and causes an instant packet loss rate4 of 67.38%,
while the recovery ofF1 andF3 with electrical re-grooming
only needs0.26 second and the instant packet loss rate is
6.57%. Note that, the bandwidth results forF1 are similar to
those forF3, and thus they are omitted to save space. Fig. 13
shows the optical spectrum measurements, which confirm that
the outage brings downLightpathsLP4, LP5 andLP7 while
our XLyr-O sets up a new lightpath to restoreF2 end-to-end.

Note that, the network reconfiguration at the first time line
can only make sure that there is no traffic congestion before the
second time line, when the traffic prediction provided by PRD
will expire. Therefore, the DL-assisted XLyr-O kicks in again
at the second and third time lines to check network status, and
it finds out that the current configuration will lead to traffic
congestion onLP3 after the third time line (in Fig. 14). This
makes our system reroute flows proactively. Specifically, since
there is no enough capacity on other existing lightpaths to re-
groom any of the flows onLP3, our XLyr-O decides to set
up a new lightpath for handling the bandwidth crunch. As
the lightpath establishment is proactive and before the actual
congestion onLP3 (i.e., it is done with the “make-before-
break” scheme [45]), we do not observe any noticeable packet
loss onF2 andF3 in Fig. 12 during the reconfiguration.

For comparison, we conduct a benchmark experiment to
evaluate the XLyr-O scheme without DL-assistance. Specifi-
cally, the difference between the benchmark and our proposal
is that the benchmark does not leverage DL-based modules
for traffic prediction and makes XLyr-O decisions only based
on current network status. In other words, the benchmark is a
reactive scheme that only reconfigures the SD-IPoEON testbed
upon hard/soft failures. Fig. 15 shows the results on sending
and receiving bandwidth of the flows. It can be seen that
after the router outage,F1, F2 and F3 are recovered with
IP reconfigurations. Based on the current network status, the

4Each instant packet loss rate is measured over4 seconds (i.e., 2T ).

benchmark decides to re-groomF1, F2 andF3 on the shortest
available paths asF1: LP1→LP2, F2: LP3→LP2 andF3:
LP1→LP2. This, unfortunately, will lead to traffic congestion
onLP2 (i.e., carryingF1-F4) soon, which explains the packet
losses in Fig. 15 onF1-F3 shortly after they have been
recovered from the outage. To address the congestion, the
benchmark establishes a new direct lightpath to rerouteF2,
since it uses the most capacity ofLP2 during the congestion.
Later on, there will be another congestion onLP1 (i.e.,
carryingF1, F3 andF6), and the benchmark sets up another
direct lightpath to rerouteF1. This is the reason why we
observe severe packet losses onF1 in Fig. 15. The second
congestion does not induce noticeable packet losses onF3
(i.e., the severe packet losses onF1 is mainly due to the optical
reconfiguration), and this is because the actual congestionis
not severe and the throughput ofF3 is much smaller than
those ofF1 and F6. To this end, we can see that without
DL-assistance, the reactive benchmark not only invokes more
reconfigurations but also suffers from severer packet losses.

VII. C ONCLUSION

In this paper, we studied the DL-assisted XLyr-O scheme
from algorithm design to system prototype. A DL module
based on LSTM-NN was first designed to capture the dy-
namics and self-similarity of end-to-end IP traffic for precise
traffic prediction. Then, we considered the MLR in an SD-
IPoEON as the usecase, and designed algorithms to explore the
traffic prediction for realizing proactive XLyr-O. Finally, we
implemented our proposed algorithm CRV in a small-scale but
real SD-IPoEON testbed to prototype the DL-assisted XLyr-O,
and demonstrated our proposal experimentally. Experimental
results verified that compared with the reactive benchmark
without DL-assistance, our proposal not only invoked less
reconfigurations but also reduced packet losses significantly.
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