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Abstract—Recently, with the development of IP and elastic
optical networks (EONSs), the network control and managemen
(NC&M) scheme for IP-over-EONSs, which can facilitate effetive
cross-layer orchestration (XLyr-O), has become an interging
but challenging research topic. In this paper, we consider

a software-defined IP-over-EON (SD-IPOEON), leverage deep EON
learning (DL) to analyze and predict the traffic fluctuation on Layer
established lightpaths in it, and design a proactive DL-assted

XLyr-O scheme. Specifically, we study the DL-assisted XLyr- Packet Switch €23 BV-OXC I Bvr
O scheme from algorithm design to system prototype. A DL <—> IP Route <> Lightpath  ——  Fiber Link

module based on the long/short-term memory based neural

network (LSTM-NN) is first designed and optimized for precie  Fig. 1. A multi-layer IP-over-EON, BV-OXC: bandwidth-vatile optical
IP traffic prediction. Then, we develop algorithms to exploe cross-connect, BV-T: bandwidth-variable transponder.

the traffic prediction for realizing proactive XLyr-O to deal

with hard/soft failures constantly, i.e,, making intelligent on-line

decisions to re-groom and reroute IP flows and to reconfigure - . .
lightpaths such that the performance tradeoff among lightgath [3, 4] and combining IP and EON technologies rationally

utilization, congestion probability, and reconfiguration frequency {0 realize |P-over-EONs [5, 6]_ (as shown in Fig. 1_)- Thi_s
is balanced well. Finally, we implement our proposed algothm is because EONs enable flexible spectrum allocation with
in a small-scale but real SD-IPOEON testbed to prototype th®L-  a granularity of12.5 GHz or even narrower in the optical

assisted XLyr-O, and conduct experiments with it. Experimatal layer [7-9]. As for the second requirement, the effective

results demonstrate that compared with the reactive benchrark NC&M scheme can hardly be realized if we manage the
without DL-assistance, our proposal not only invokes lessatwork y 9

reconfigurations but also reduces packet losses significdnt IP-and EON layers separately. For example, without the
. . cooperation between the two layers, we cannot balance the
Index Terms—IP over Elastic optical networks (IP-over-

EONSs), Multi-layer restoration (MLR), Cross-layer orchestration, Fradeoff between the spectrum utlll.zatlon and packet sse
Software-defined networking (SDN), Artificial intelligence (Al).  in the EON and IP layers, respectively. Hence, the NC&M
scheme has to facilitate cross-layer orchestration (OQyr-
which implies a centralized mechanism such as software-
|. INTRODUCTION defined networking (SDN) [10, 11]. Specifically, the XLyr-

VER past decades, the raising of new network servicEs can be achieved by building a software-defined IP-over-
O has pushed the traffic in backbone networks to not onfPN (SD-IPOEON) and using centralized SDN controller(s) to
grow exponentially in volume but also become more and mofanage the packet switches in the IP layer and the bandwidth-
bursty and dynamic [1]. This has applied and would continl@riable transponders (BV-Ts) and optical cross-conn@s
to apply intensive pressure on the design and operation @KCs) in the EON layer in a coordinated manner [12, 13].
backbone networks [2] To address this issue prope”y, Weln an SD-IPoEON, the centralized controller not Only CO-
first need an agile network architecture that can adaptivéljdinates lightpaths in the EON layer as the logic links to
allocate spectrum resources in the underlying optical oetw interconnect packet switches in the IP layer, but also stéer
to lightpaths, and then require an effective network cdrnal traffic through the packet switches and logic links for taffi
management (NC&M) scheme that can utilize the lightpat{@§ooming and IP routing [14]. Although previous studies
efficiently for grooming and routing IP flows, to achieve higthave already considered both the algorithms [6, 15, 16] and
resource utilization as well as good quality-of-service@p Systems [12] to realize XLyr-O in SD-IPOEONSs, the XLyr-O

The former requirement can be satisfied by Ieveragirﬁ@ SD-IPoEONSs could still be improved. This is because these

the technical advances on elastic optical networks (EONYisting algorithms and systems make XLyr-O decisions only
based on current network status. These reactive apprqaches
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coverage, the traffic fluctuation in backbone networks mighir ensuring survivability and availability of EONs, peepl
not simply follow the well-known daily patterns anymore [17have considered both the path-based [28, 29] and link-based
18]. Specifically, the authors of [17] observed counteuiiite  [30, 31] protection/restoration schemes. Although an E@N ¢
phenomena where the traffic flows in a backbone netwoble protected well by these schemes, they cannot solve the
could have various daily patterns and experience differgmtoblem of MLR in an SD-IPOEON, as explained in [6].
peak/off-peak hours, while the study in [18] suggested thatConsidering various IP-over-optical networks, the stsidie
if a backbone network covers multiple time-zones geograpl32—34] have addressed multilayer protection,, allocating
ically, traffic flows between different source-destinatigairs redundant backup resources in both IP and optical layers in
might also have different peak/off-peak hours. Therefthie, advance for failure recovery. However, the dedicated ptiute
operator would have the dilemma to either bear the increasshemes in [32, 33] would result in relatively low resource
NC&M complexity due to frequent network reconfigurationsitilization in both IP and optical layers. Although the resme
or suffer from IP route congestion/under-utilization ciamély. usage could be improved by introducing shared backup [34],
The dilemma could be resolved, if we leverage deep leartire idling of backup IP routers, optical ports and fiber links
ing (DL) modules to analyze and predict the traffic fluctuatiowould still affect the operator's revenue. More importgntl
on established lightpaths in the SD-IPOEON and developtlzese multilayer protection schemes are all based on pertai
proactive XLyr-O scheme. In this work, we study the DLassumptions regarding the failure pattegrg, the possibility
assisted XLyr-O scheme from algorithm design to system prof simultaneous failures can be ignored. Nevertheless;ente
totype. We first design a DL module based on the long/shoaralysis on the failure cases in Google’s B2 and B4 networks
term memory based neural network (LSTM-NN) [19], anduggested that failures in the IP layer could happen fretiyuen
optimize its configuration to precisely capture the dynami¢35] and thus simultaneous failures should not be overldoke
and self-similarity of future traffic. Then, we consider tiul Meanwhile, as the backup resources have been reserved, the
layer restoration (MLR) in an SD-IPOEON as the usetamed advantages of protection over restoration are shortewvesgo
design algorithms to explore the traffic prediction resfits time and guaranteed service recovery as long as the assump-
realizing proactive XLyr-Oj.e.,, making intelligent decisions tion on failure pattern holds. Moreover, with new technigjue
to re-groom and reroute IP flows and to reconfigure lightpatBech as proactive protection [36], the service interruptime
such that the performance tradeoff among lightpath utibre can be further reduced or even avoided since flows can be
congestion probability, and reconfiguration frequency ban re-groomed onto a healthy lightpath in advance.
balanced well. Finally, we extend our system design in [13], Hence, MLR should be considered since it does not reserve
prototype an SD-IPOEON system with DL-assisted XLyr-Ghackup resources but obtains recovery schemes when failure
and demonstrate our proposal experimentally. actually happen. The studies in [6, 37] have discussed the
The rest of paper is organized as follows. Section Il prowidalgorithm designs for MLR, while SDN-based systems have
a brief survey on the related work. We describe the operatibaren demonstrated in [12, 38]. However, they either assumed
principle of the DL-assisted XLyr-O and the design of théhat IP flows have fixed bandwidth demands or just got the
traffic predictor in Section Ill. Then, the algorithms to éq@  MLR schemes based on current network status. Hence, they
the traffic prediction results for realizing proactive Xt§r are reactive approaches and could not avoid the mismatches
are designed in Section 1V, including both an integer linedretween service provisioning scenario and traffic demamds i
programming (ILP) model and a heuristic, while they arthe future. For instance, if we re-groom a highly bursty IRvflo
evaluated with extensive simulations in Section V. Next, wen a busy lightpath, congestions could happen in the future
lay out the system design and conduct experiments in a resken though the current status shows no bandwidth shortage.
network testbed to demonstrate our proposal experimgntall DL-based traffic prediction has been studied for various
in Section VI. Finally, Section VII summarizes the paper. networks [39-42]. The work in [39] discussed how to realize
precise traffic prediction but did not try to utilize the foeest
[I. RELATED WORK for network optimization, while the authors of [40-42] cihs
In an SD-IPOEON, the EON provides the optical inter‘?red DL—agsisted network optimization. Neverthelessenain
épese studies was about the XLyr-O scheme for SD-IPOEONS.

connections to carry the traffic generated in the IP layel.~>" | buil imi q
The service provisioning in an EON involves the famou%revIOLIS y, we built a preliminary system to demonstrate

routing and spectrum assignment (RSA) problem, which 18€ DL-assisted MLR in an SD-IPOEON [13]. However, the

known to be NP-hard [20]. Hence, numerous studies have b&@inPIEte system design to realize DL-assisted XLyr-O has no
devoted to designing the heuristics that can find near-gptin?c€n Presented and the algorithm design was absent. Hence,

RSA solutions for building lightpaths [21, 22], light-tef23, this Wo_rk extends oufr preliminary study in [13] b)_/ addreg§in
24], light-forests [25, 26] and virtual optical networks7]2 DL-assisted XLyr-O for SD-IPOEONS from algorithm design

Our XLyr-O scheme can leverage these algorithms to set Epsystem prototype. To the best of our knowledge, this is the
lightpaths or more complex structures in the EON layer. A4St Work to cover the topic with such a scope.

1For the MLR, our proposed DL-assisted XLyr-O addresses trathard- l1l. NETWORK MODEL AND OPERATION PRINCIPLE

failure due to switch outages and the soft-failure becatitraffic congestions. In this section. we describe the network model of our DL-
Hence, the algorithms designed for the MLR can be easily rgéined for ’

being used in normal service provisionirige, treating new IP flows to be assisted XLyr-O system, explain its operatior_l princi_pled a
served as the affected ones that need to be restored. elaborate on the design of the DL-based traffic predictor.



Contiellilans records it in entries, each of which corresponds to a floweNot
that, as the SD-IPOEON is a backbone network, each flow here

NOrch PRD g
1t is actually an aggregated one that grooms numerous IP flows
NID: MON: between a switch pair in the IP layer. Hence, the traffic on
ForTans || TefeMan | | each flow could be highly dynamic, fluctuate with a unique
! pattern [17], and last for a reasonably long peried( tens of
— hours or even days). Meanwhile, since there might be maltipl
=22 TSI el orworeE access networks behind each edge switch in the IP layer, we
T e assume that there can be multiple flows between a switch pair.
( P Layer ) With the multi-protocol label switching (MPLS), switchearc
( EON Layer ) identify these flows by checking their labels.

Each entry in the traffic matrix models a flowwith the
Fig. 2. Control plane design for realizing DL-assisted X3y OF w/OTPE: estimated ma)_(lmu,m Value, of its ban-»dWIdth demand (BW),
OpenFlow with optical transport protocol extensions, OFapenFlow con- & Vector for historical trafﬂc samplegi(, and a vector for
troller, MON: Monitor, NID: Network information databasd:DB: Traffic predicted traffic samplesP). Here, the BW of a flow is
database, PRD: Traffic predictor, NOrch: Network orchéstra assumed to be knowa priori, its H gets updated by MON
and its P is obtained by the traffic predictor (PRD), which is
A. Network Model based on an LSTM—NN: The network information database
Fia. 1 sh he d | ¢ SD-IPOEON. whi NID) collects the multilayer topology of the data plane
'9. Sf ows It € a?hpzél‘(l)eNol an - b 'IO 'h, Wf 'C&nhd the flow tables on the switches through the OpenFlow
consists o two layers. The : layer IS uilt th a "% ontroller (OF-C), to get the latest flow routing schemes.
BV—OXCS interconnected by fiber links. The EON's topology We design the DL-assisted XLyr-O system to address two
IS tdenfo;;d Oaxf:()(%b%g, V\Ilh ire Vo andt_E OI regreiegi/tgi issues with MLR, which are switch outage®( hard failures)
Sets o - S and Tiber 1inks, respectively. Each By nd lightpath congestions.€., soft failures). Here, a switch
can transparently switch the optical spectrum of a lightpay, ;. .o will take a switch offline to make all the flows, which

from an input port to the dgsired output p_ort, according ts trbse the switch as an end-node, as unrecoverable and iriterrup
instruction from the centralized controller in the contotdne. all the flows using it as an intermediate node. A lightpath

Hence, the controller can set up, reconfigure, and tear do%hgestion occurs when the total instant bandwidth deménd o

lightpaths in the EON to adapt to IP traffic. - ; ;
) . . the flows that are routed over a lightpath exceeds its capacit
The switches in the IP layer is also managed by the contr, te that, the lightpath congestigonpcan only be avoia(!fed if

plane. Each SWit.Ch i_s co-located with an underlyi_ng BV-OX e groom flows to each lightpath according to their BWSs.
and connects to it with several BV-Ts, each of which can ge’?his, however, might lead to significant over-provisioning

_(ir';t]e or _termlll_"nar;c(ta thtﬁ %ptt'\fval S'gt?]al %K/a_rllghtfp?th. Thﬁmﬁ since the flows can carry dynamic traffic with various pasern
Ith ere 'Z.a It? pa ? deeTh el - I'Slf' Vtvr? SIVF\)" IC e 17]. Meanwhile, even though upper-layer protocols such as
€y are directly connected with a logic fink in the ayehrcp might have congestion-avoidance mechanisms, the flows

Consequently, the IP layer can also be modeled as a gr Id sti . : L .
. _ still experience bandwidth-shrinking during the gees,
G(V, E), whereV’ is the switch set and denotes the set of which will degrade the QoS of their network services.

the logic links that interconnect the switchedin Specifically, When MON detects an aforementioned issue in the data

if there is a logic link(v, u) € E and BV-OXCsu, andu, are plane, it would invoke MLR to recover the affected flows

golglok::tataet(r:i1 \t/\gt?aignc:r?g an: :}tgezggc:(‘)’ggs’ trll\leortee rtr;]l;stt ?heand/or to avoid future lightpath congestions, as follow©N
gntp o o ' ' irst informs NID to update the flow routing schemes, and

capacity of a lightpath depends on both the capability aits then tells T-DB to refresh the traffic prediction. Next, NID

BV;.S and kthe quaI|ty—of—tt[;1nfm|ssr|10rl13\(/QToT) [3]- Ther;sfor sc?nds a request to the network orchestrator (NOrch) and lets
n . IS WOrk, we assum_e at eac A _can suppor ‘? SJ‘tacalculate the MLR scheme. NOrch obtains the MLR scheme
of line-rates and each line-rate has a maximum transmiss

; . . fsed on the up-to-date multilayer topology, flow routing
reach under th_e QoT constram.t. .Meanwhne, since _the Bgéhemes stored in NID and the traffic prediction stored in T-
Ts on each switch are usually limited and thus precious,

also assume that when a new lightpath has to be establis%’ and feeds the scheme back to NID, which will in turn

the XLyr-O system always uses the highest line-rate that {Rgnd it to OF-C for being implemented in the SD-IPOEON.
lightpath’s transmission distance permits.
C. Generation of Traffic Data Set

B. Operation Principle The design of the DL-assisted XLyr-O system needs to
As shown in Fig. 2, our DL-assisted XLyr-O system reeonsider realistic data sets to emulate the traffic gergiiate
sides in the control plane to coordinate the network elemerthe IP layer of a backbone network. Specifically, to generate
(NEs) in IP and EON layers for realizing intelligent servicghe dynamic traffic on a flow, we leverage the realistic traffic
provisioning in the SD-IPOEON. It uses the monitor (MONjraces collected on an edge router, which aggregates fifie tra
to collect the traffic matrix in the IP layer periodically. MMD from the access networks behind it. Here, the access network
sends the traffic matrix to the traffic database (T-DB), whictire those for research institutions, enterprises, or eviemriet
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Fig. 3. DFT analysis of traffic samples in the training set. Fig. 4. DL-based traffic predictor with a three-layer model.

service providers (ISPs). We survey the related data on tfigerefore, to record such a frequency component in traffic
Internet, and find 4 reasonable sources for the traces, each Qfediction, we need to set, > m — 287.3 - T, which
which records real-time traffic and gets updated every a fewakesL, = 288 - T. Specifically, for the traffic data in [43],
minutes. Then, based on the realistic traces, we generateitfive set L, = 288 - T, the corresponding CDF result can be
data set to emulate dynamic traffic on the flows considereddfound62% as shown in Fig. 3. Meanwhile, the DFT analysis
this work. The data set include$) series of traffic samples, also helps us determine the size of the inputs to the LSTM-
each of which consists 09,000 samples whose samplingNN. Specifically, to optimize the prediction accuracy, thtit
interval is5 minutes,i.e., there are’)90, 000 traffic Samples in series should include the major low frequency Components_ F
total. To save space, we publish the sources for realistffidr the traffic data in [43], the DFT analysis in Fig. 3 suggests
traces, their characteristics, the procedure to generatfict that the low frequency component will not reach noticeable
data set with them, and the generated data set on GitHub [48}al power until0.001 - L. This makes the LSTM-NN’s input
length asL; = 1008 - T'. After determining the lengths of its
D. DL-based Traffic Prediction inputs and outputs, we design a three-layer model for the DL-
We define the period of traffic collection as a time sldvased traffic predictor, which includes two LSTM-NN layers
(TS) whose value i§" = 5 minuteg, since the SD-IPOEON to record and analyze the characteristics of traffic fluctnat
is a backbone network and our DL-assisted XLyr-O systeand one layer of artificial neural network (ANN) to buffer the
should care about long-term traffic fluctuations. To providerediction results (as shown in Fig. 4). The input histdrica
NOrch with sufficient traffic information for obtaining thetraffic vector is denoted afl = [h1, ho,--- ,hz,]".
cost-efficient MLR scheme, PRD forecasts a seriesLgf  To train and evaluate the DL-based traffic predictor, we
traffic samples in the future. This means that the size of thivide the 10 traffic traces in [43] into training and testing
vector for predicted samplesd., P) is L,, i.e, P covers a sets with 540,000 and 50,000 samples, respectively. The
flow’s traffic fluctuation over a period of,, - T'. predictor’'s output over a randomly-selected trate.,(with
Then, to design the DL-based traffic predictor, we first neeéd000 samples) in the testing set is shown in Fig. 5, which
to determinel, since it is the number of outputs in the LSTM-indicates that the predicted and actual traces match with ea
NN. Here, we have a tradeoff to worry aboug,., if we use other well. The trained traffic predictor provides prediati
a larger L,, NOrch calculates the MLR scheme with mor@ccuracies 095.77% and95.33% on the training and testing
information regarding future traffic fluctuation and thushcasets, respectively, and its training takes39s5 minutes.
potentially avoid the mismatch between routing schemes and
traffic demands for a longer time, but a larges means a IV. ALGORITHM DESIGN FORCROSSLAYER
more complex LSTM-NN and lower prediction accuracy, and ORCHESTRATION
vice versaT_herefore, we come_,-.upwith asimple methpo! b""SEOIIn this section, we design the algorithms with which the
on the Fourlgr analysis. S_pecmcall_y, we generate a tlmlQeg"”erNOrch in our XLyr-O system can calculate the MLR schemes
with the traffic samples in the training set, perform dlseretoased on traffic prediction
Fourier transform (DFT) on it to get the frequency domain '
information regarding the traffic fluctuation, and deterenin,
based on the DFT result. In the following, we will use aft- Integer Linear Programming Model
illustrative example to explain how to determing. As we have explained in Section IlI-A, our XLyr-O system
The DFT provides us the cumulative distribution functiomeeds to monitor the data plane of the SD-IPOEON constant-
(CDF) of the frequency components’ power as in Fig. 3. Iy and implement the proper MLR scheme timely when a
can be seen that the CDF increases sharply at around $bét/hard-failure is detected. Specifically, the MLR scleem
frequency 0f0.00348 - £, which implies that there is a sig- reconfigures the network elements in the data plane to eestor
nificant component at the frequency in the traffic fluctuatioshe flows that have been interrupted by a switch outage or
) _ _ _ will be affected by future congestions. Here, the optinmarat
According to our survey on the real traffic traces in backboesvorks, a L
commonly-used traffic sampling intervaldsminutes. This interval is only for OPjective is to restore all the affected but recoverable Sloy
traffic sampling while a switch outage is detected and hahiffenediately. reconfiguring the smallest number of flows and setting up the
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The optimization objective is to first minimize the number

o of reconfigured flows and then minimize the total bandwidth
¢ 08 of newly-established lightpaths
o y ghtpatns.
Sos6 K
Bos Minimize M-> 2"+ > > Yuws  Cup. (1)
© reR u, €V j=kqy v+1
£
g 02 —Actual Traffic Constraints:
0 - - -Predicted Traffic
0 3 6 9 12 15
Time (Days) K K L, U= Sr,
| — | 3 s = 2 Dt = § ~L w=de
Fig. 5. Comparison of predicted and actual traffic. veV j=1 veV j=1 0 others
vr € R,

fewest new lightpaths. Note that, we assume that the spectru K

resources in the EON are more than sufficient to carry the DD w1, VreR, ueV, ®3)

traffic generated in the IP layer, which is usually the case vev =t

in practical backbone networks. In other words, if needed, a K

direct lightpath can be established to connect any two nodes DD ey S, VreER, veV. (4)

in the EON. Therefore, the RSA problem becomes trivial and uev =t

we ignore it in our algorithm design. Egs. (2)-(4) are the flow conservation constraints to guamn
Notations: that flow r € R is routed froms, to d, over a single path.

« G(V, E): the IP layer topology, wher& and E are the More specifically., Eq. (2) makes sure thais correctly routed
sets of switches and logical links, respectively. from s, to d,., while Egs. (3) and (4) ensures thaonly takes
V7- the set of failed switches. one routing path. Note that, Egs. (3) and (4) also alloto

e e = (u,0,), e € E: the j-th logical link between be routed on a newly-established logical link.

switchesu andw.
o K: a large number to denote the upper-bound on the Ko , ,

lightpaths that can be set up between two switches. M-z 2 szlm (o) (L= @) 227 Vr€R. (5)
o k.. the number of active logical links between switches wera=

w ando. Eq. (5) ensures that the valuezdfis correctly set. Specifically,
« C,.: the bandwidth capacity (in Gbps) of the lightpatff the routing scheme found by the ILP feris different from
thét can be set up between switcheandv. its Original one,z” will be set asl, andvice versa

« R = R° + Rf: the affected traffic matrix, wher®°
denotes the set of flows that will be affected by future >~ ;7 1c= (4 0,5), reR:Ve€ E, j>kio}. (6)
congestions, an®f is the set of flows that have been
interrupted by a switch outage but are recoverable  Ed. (6) ensures that flow € R can only be routed on existing
« raflowinR,ie, r = (s;d,) € R, wheres, andd, logical links.
are its source and destination switches.

o L,: the length of_ the pred_icted traffic samples. p{vd) Z Tluwg) T < Cup, Yu,v €V, t < Lo, j< K.

« T the t-th predicted traffic sample for flow € R. FeR

« 2/7: the indicator that equals 1 if flow € R. originally . - @)
uses logical linke € E. Eq. (7) ensures that the traffic on any logic link will not eede

« b¢: the sample of unaffected background traffic on logicdfS capacity at any time within the prediction period.
link e € E at thet-th TS in the future.

- f f
« M: alarge numbei,e., M = max(C,,)- K - |R|-|V|?, Yeuwg) =0, Vu €V, Vo e Vi ®)

where| - | returns the number of elements in a set. Tiwwyy =0, YueV’, vvev? (9)
Variables:

Egs. (8)-(9) ensures that none of the failed switches is.used
 z: the boolean variable that equals 1 if flowe R is

routed on logical linke € E.

« z": the boolean variable that equals 1 if flawe R is B. Heurisiic Algorithm

reconfigured. Although the ILP model can obtain the optimal MLR
« y.: the boolean variable that equals 1 if a new lightpatolution to manage the SD-IPOEON well over a future period
e is established. of L,-T, it would become intractable for large scale problems
Objective: and thus cannot be used in dynamic service provisioning.

Hence, we try to develop a heuristic to make sure NOrch
3Here, an interrupted flow is recoverable if and only if thde@iswitch is Can obtain MLR schemes t'me'emC'em')’- Note that, the MLR
not one of its end-nodes [6]. scheme needs to recover two kinds of flowsR# and Re,



w

respectively. For the flows iRf, they need to be reconfigured (@) 5=091
anyway and thus we should just try to restore them with
the least bandwidth from the newly-established lightpalths
other words, we should try to re-groom the flowsRA{ onto
the existing lightpaths as many as possible. However, since
the traffic demands of all the flows in the SD-IPOEON are
time-variant, how to determine the re-grooming scheme is
more complex than the traditional re-grooming problem that
addresses fixed-bandwidth flows. For instance, if a few flows
whose peak time overlaps with each other are groomed on
the same lightpath, congestions can happen frequentlyen th
lightpath in the future even though its bandwidth utilipatiis
not very high in most of the time.

On the other hand, it would be more complicated to restore 10 15 20 25
the flows inR¢, since we need to minimize the number of re- Time Slots
configured flows and the total bandwidth of newly-estabtit;hqr_ig. 6.
lightpaths simultaneously. Therefore, selecting whiclw$édo
reconfigure would be an interesting and tricky problem. Base

on these considerations, we divide the MLR problem into Weyngested logic links. Next, inines7 and 8, we select the flow
subproblemsj.e., 1) selecting the flows for reconfigurationyhose CRV is the maximum and insert it irfts. Finally, Line
and 2) determining their reconfiguration schemes. To solgeremove the selected flow from the network hypothetically
the_ flr_st subproblem, we define a metric, nam_ely, congestiogng updateE° accordingly. For each while loogAlgorithm
relieving value (CRV)”, for quantifying the relief on congle 1 takes out one request or at least one lightpathZin
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tion if a flow r gets reconfigured. Hence, the while-loop will run for at moshax(|E¢|,|R®|)
A, = Z T, (10) times. In each iteration, the complexity of calculatidg is
cem, O(|E¢| - |R®| - |T"]). Thus, the time complexity oAlgorithm

whereA, is the CRV of flowr, E, is the set of logical links 1 18 O(max(|E°, [R°[) - [E[ - [R®[ - |T"]).

thatr traversest( is the most congested time on logical link N€Xt, we consider how to re-groom/reroute the flows select-
¢ in the predictable future, an@l’; is the traffic demand of ~€d by Algorithm 1 together with the interrupted ones Rr'.

at timet<. Note that, if a logical finke will not congest in the To achieve this, we first need to design a method to evaluate

predictable future7}. = 0. Then,Algorithm 1 is designed to the peak time overlapping among flows. Suppose we have the

solve the first subproblem. traffic prediction of two flowsj.e, P' = [T}, T4, - T} ]
and P2 = [T2, 72, ,T7 ], their fluctuation trends can be
Algorithm 1: Selecting Flows for Reconfiguration highlighted with the following preprocessing
Input: Affected flow setR®, congested link set, and P =P —min(P). (11)
traffic prediction of all the flowg7T"}.
Output: R’ as the set of flows for reconfiguration Then, the peak time overlapping between two flows can be
1 R =0 measured by calculating the cosine similarity (CS) of their
2 while E° # () do preprocessed traffic prediction samples.
3 updateR* based onFk<; S o
4 | for each flowr in R¢ do Sp1 pr = For . (12)
5 calculateA, with Eq. (10); Lo Lo
. e|nd q ( ) \j Z (Ti1)2 . \j Z (Ti2)2
7 r* = argmax(A,.); = =t
. rere For any two series of predicted traffic samples, the more peak
8 insertr* into R/, . : . A
o remover* hypothetically and updat&®; time overlapping they _ha\_/e, the larger their CS is. Fig. 6rsho _
10 end tvyo exam_ples, which indicate that thg CS_ of the two traces in
11 return R': Fig. 6(a) is larger than that of those in Fig. 6(b). Apparngntl

the two traces in Fig. 6(a) oscillate with each other in theeti
domain, while those in Fig. 6(b) fluctuates almost opposgitel
Here, Line 1 is for the initialization. The while-loop that Note that, grooming two flows on a lightpath, which fluctuate
coversLines 2-10 selects flows to insert intR’ iteratively, oppositely, helps to set apart their peak time, and thus the
based on their CRVs. We updaRe® by removing the flows lightpath's bandwidth can be utilized more efficiently. Wit
whose logic links will not be congested line 3, according this idea, we desigilgorithm 2 based on CS.
to the link setE<. Then, Lines 4-6 calculate the CRVs of Algorithm 2 is designed to determine the reconfiguration
all the flows inR°. Note that, when calculating.,., we also schemesj.e. solving the second subproblem. The for-loop
consider the scenario in which flow goes through multiple coveringLines1-16 reconfigures the flows in the descending




Algorithm 2: Determining Reconfiguration Schemes

Input: Set of flows to be reconfigurelt® = R’ U R,
up-to-date IP layer topolog¢(V, E), and traffic
prediction of all the flows{7"}.

1 for eachr € R? in descending order of peak bit-rat®o
2 get the logic links that can accommodatevithout
causing congestions and store them¥if

for eache € E’ do

get the predicted traffic samples ofande, and
calculate their C9, . with Egs. (11) and (12);
calculate the NRG, of e with Eq. (13);

set the weight ok asw, = 0y - 7e ;

end

if the least weighted path can be found fothen
store the path ip,;

reconfigurer to usep, and update=(V, E);
else

set up a direct lightpath from, to d,. for r;
store the newly-established lightpathp;
reconfigurer to usep, and update7(V, E);
end

end

EE )

(b) NSFNET topology

Fig. 7. EON topologies with fiber lengths in km marked on links

in the foreseeable future. Hence, if we use the least weighte
path to carryr (Lines8-10), it can be re-groomed in the way
that can not only improve the utilization of existing lightps
but also leave more available bandwidth for the subsequent
flows. However, if such a feasible path cannot be fourides
12-14 sets up a new direct lightpath to carryffrom s, to

d,. In Algorithm 2, the complexity of sortinR? is O(|R?| -
log, |R?|) . The for-loop runs fofR?| times. In each iteration,
the complexity of calculating the weight of each link0%|E |-
|T"|) and the complexity of finding the least weighted path is
O(|E|+|V|-log|V]). Thus, the complexity oAlgorithm2 is
O(IR?| - max(log, [R?|, |E| - |T7|, |V - log|V]))

V. NUMERICAL SIMULATIONS

A. Simulation Setup

The numerical simulations consider two topologies for the
EON layer of the SD-IPOEON,e,, the six-node and NSFNET
topologies in Figs. 7(a) and 7(b), respectively. We assurat t
each BV-T can support line-rates {10, 25,40, 50, 75, 100}
Gbps and the maximum transmission reaches of the line-
rates arg[3732,2995,2671,2438,2112, 1880} km, respective-
ly [44]. To save the BV-Ts on each switch, the XLyr-O system
always uses the highest feasible line-rate when setting up
a new lightpath. In each simulation, the initial logic links
in the IP layer (e, lightpaths) are first established. Here,
the number of initial lightpaths between each switch pair is
randomly selected withir0, 2], while the total numbers of
initial lightpaths in the six-node and NSFNET topologies ar
distributed within[17, 21] and[44, 50], respectively. Then, the
SD-IPOEON starts to accept dynamic flow requests generated
according to the Poisson model, and the traffic samples of the
flows follow the data set that we generated with realistiffitra
traces [43]. Since there is no historical information abtbet
flows when they first come in, we provision them with a simple
auxiliary graph based algorithm [6] that routes the flowsrove
the shortest feasible path in the SD-IPOEON.

Next, we run the SD-IPOEON for a random period, stop to
invoke one or more switch outages in the IP layer, and use the
XLyr-O system to handle both the hard failure due to switch
outage and the potential soft failure due to future congasti

order of their peak bit-rates, since a flow with a larger pagk by, the Jightpaths. In addition to the ILP and the heuristic
rate may potentially cause more future congestions and thisRyy discussed in the previous section, the simulatioss al

is harder to be re-groomed. In each iteratibime 2 is for
the initialization. Then, we uskines3-7 to obtain the weight
of each feasible linke € E’. Specifically, we get the traffic

predictions ofr ande and use Egs. (11) and (12) to calculate
their CS4, . (Line 4), and the normalized remaining capacity

(NRC) of e is obtained asl({ne 5)

Ce—T.
max (C’e/ - Te/)

e'cE

Ne = , (13)

whereC, is the capacity of linke, andT. returns the average
value of the predicted traffic samples on linkThen,Line 6
calculates the weight of link asw, = 4, - n.. Note that, the
smallerd, . is, the less peak time overlapping betweeand
e, while the smallen is, the less available will be on link

consider two benchmark algorithms.

« Expand: With traffic prediction, it first selects the largest
flow at the most congested time of a to-be-congested
lightpath, and then tries to reroute the selected flow using
a lightpath that shares the samel pair of the to-be-
congested one and has the smallest CS from Eqg. (12).
If such a lightpath does not exist, it sets up a new one
between thes-d pair to reroute the flow. The procedure
is repeated until there is no lightpath congestion.

Mean: It follows the similar procedure of CRV, but
in Algorithm 1, it selects the flows that use the to-
be-congested lightpaths and have the predicted traffic
samples whose average values are the largest, and puts
them inRFf for reconfiguration.
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B. Small-Scale Simulations with Six-Node Topology

We first conduct small-scale simulations with the six-node
topology to compare the heuristics with the ILP. Here, weyonl
randomly generate one switch outage in each simulation, and
select the peak rate of each flow withi20, 80] Gbps, since
each lightpath in the six-node topology provides a capacity

=
N

o
o)

o

-B8-ILP
—©—Mean
CRV

Newly Established Bandwidth (Tbhps)

of 100 Gbps. The simulation results are shown in Fig. 8. It 0 —Expand

. y 1.25 1.5 1.75 2 2.25
can be seen that the algorithms’ performance on the number of Traffic Volume before Outage (Tbps)
reconfigured flows (in Fig. 8(a)) is comparable. This is beeau (b) Newly established bandwidth

for all the to-be-configured flows ilR® = R’ U Rf, the _ ' _ o
flows in Rf (interrupted by the switch outage) are generalli9- 8 Results from simulations with six-node topology.
many more than those iR’ (selected ones to relieve future

congestions), while the size &' is determined by the switch o , .
outage and cannot be optimized by the algorithms. in Fig. 9(a) indicate that for all the traffic loadsg(, average

As expected, the ILP invokes the least reconfiguratioff@ffic volume before each outage), increasingcan reduce

in Fig. 8(a) to accomplish the XLry-O. CRV performs onI;}he number of reconfigured flows and the reduction tends to
slightly worst than the ILP but better than the two benchraarkCCnVerge wheit, > 288. This is because with a largég, the
which suggests that CRV can fully explore traffic prediction XLyr-O system has more information regarding future traffic

avoid unnecessary flow reconfigurations. Expand performs @nd thus can reconfigure the flows better to reduce overall

worst among the algorithms on the number of reconfigurégconfigurations. Meanwhile, the convergence of the reduct
flows. In Fig. 8(b), the ILP also establishes the smallell Fi9- 9(a) suggests thdl, = 288 (i.e. a look-ahead period
amount of bandwidth for reconfiguring the flows. Among th8' 24 hours) is the proper choice, and thus the method designed

four algorithms, Expand sets up the most new bandwidtf, Section IV-B is effective. On the other hand, does not
which is because it does not consider the relation amopignificantly impact the newly established bandwidth in.Fig
the congestions occurring on lightpaths between differerk?)- This confirms the robustness of CR¥,, no matter how
switch pairs, and thus cannot achieve global optimizatiofiany future samples are provided by the traffic predictor, it
i.e., the newly established bandwidth from Expand can hardf? fully utilize the bandwidth in the SD-IPOEON.

be shared by the flows. CRV performs slightly worse than Note t_hat, aleO%_ prediction accuracy |s_|m_p035|ble, future
Mean, and both of them establish more bandwidth than th@ngestions can still happen due to prediction errors. Eienc
ILP. However, the results on average running time in Table/§f¢ Plot the results on the congested traffic volume, which is
indicate that the heuristics are much more time efficienn th4'€ total volume of the traffic that cannot be delivered due to

the ILP, and CRV runs as fast as the two benchmarks. ~ congestions, in Fig. 9(c). It is interesting to notice thag t
congested traffic volume generally increases with before

_ _ ) L, = 288. This confirms our analysis in Section IV-Be,
C. Large-Scale Simulations with NSFNET Topology choosing L, to cover the major frequency components in
We then perform large-scale dynamic simulations with theaffic fluctuation would help to balance the tradeoff betwee
NSFNET topology to further evaluate the heuristics. We inthe length of look-ahead period and prediction error.
voke4 switch outages in each simulation. The interval betweenNext, we fix L, = 288 and compare the performance of the
two consecutive outages is setla®00 TS’ (i.e, each TS i$ heuristics. The results in Fig. 10(a) show that CRV invokes
minutes), each simulation runs fdr500 TS'. The peak rate the least flow reconfigurations among the three algorithms,
of each flow is randomly selected withji, 10] Gbps. while Expand reconfigures comparable numbers of flows as
In the dynamic simulations, we first verify the effectivemesMean at low traffic loads but its number of reconfigured
of our method to determine the number of the predicted safftews is the most when the traffic load is larger tharm
ples in the DL-based traffic predictord., L,). Specifically, Tbps. This is because Expand can hardly achieve global
we simulate CRV by changingj, from 72 to 360. The results optimization. Fig. 10(b) shows that Expand establishes the
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Fig. 11. Experimental setup and scenario, (a) topology o B&EON data plane, (b) initial flow routing schemes, andofegration procedure of DL-assisted
XLyr-O, DP: Data plane.

most bandwidth to accommodate the flows®R As CRV provisioning the flows inR, it reconfigures the least number
and Mean use the same method to provision the flows, tbe flows, induces the least congested traffic volume, with
newly established bandwidth from them is similar. Howevecpomparable newly established bandwidth as that from Mean.
Mean reconfigures many more flows than CRV in Fig. 10(a),
which is because when Mean selects the flows to reconfigure,
it chooses those with the most average predicted traffic but
does not consider the actual traffic fluctuation. The resaolts
Fig. 10(c) on the congested traffic volume also confirm the In this section, we implement CRV to prototype an SD-
superior performance of CRV, since for all the traffic load$PoEON system with DL-assisted XLyr-O, and demonstrate
its congested traffic volumes are the smallest. In all, singgat it can utilize closed-loop operations to constanthalde
CRV considers future traffic fluctuation when selecting angith switch outages and lightpath congestions.

VI. SYSTEM PROTOTYPE AND EXPERIMENTAL
DEMONSTRATIONS
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A. System Prototype (b) on Optical Node3

For the control plane, we realize CRV tOgether with thﬁg 13. Optical spectrum measurements.
DL-assisted XLyr-O in the open network operating system
platform (ONOS). The extended ONOS, which follows our
design in Fig. 2, runs on a Linux server and manages bdY-WSS accordingly. The switc_:hes in the IP layer are Pica78
the IP and EON layers. For simplicity, our experiments uswitches that have 10GbE optical ports. Hence, a connection
a UDP-based IP flow to emulate an aggregated flow in bgtween the optical ports on two switches is essentially a
backbone SD-IPOEON. Specifically, we generate each utightpath. Our experiments limit the capacity of each ljgth
flow according to a series of traffic samples in the traffi@S1 Gbps, for emulating lightpath congestions.
data set in [43], where the flow’s instant bandwidth demands
are scaled within39,910] Mbps and the sampling interval B. Experimental Demonstrations
between two traffic samples€., T') is reduced t® seconds  Fig. 11(b) shows the initial experimental scenario befbee t
to shorten the time used for each experiment. Hence, MGMitch outage in the IP layer. Here, we hav&DP flows {.e.,
also collects traffic statistics with a period 2fseconds. It {F1,---, F6}) routed by5 switches ie, {4, B,C,D, E})
extracts real-time traffic statistics of each flow from OplemF that are interconnected tiylightpaths {.e.,{LP1,---, LP7}).
statistics messageOFPC_FLOW_STAT$, and passes theIn the experiment, a switch outage is first emulated by discon
information to PRD through T-DB. The traffic statistics otba nectingSwitchD. After the outagel.ightpathsL P4, L P5 and
flow is collected at its ingress switch to the SD-IPOEON. Fat P7 are disrupted to affect the packet transmissiorlofvs
instance, in Fig. 11(b), the ingress switchf is Switch A. F1, F2 and F'3. Then, the DL-assisted XLyr-O kicks in.
We implement NOrch as an ONOS application to get the XLyr- Fig. 12 shows the results on sending and receiving band-
O schemes when hard/soft failures occur. Fig. 11(c) shows thidth of Flows £'2 and F3. We can see that at the first time
interactions to realize the DL-assisted XLyr-O. line (i.e, whenSwitch D fails), both F2 and F'3 experience

The data plane of the SD-IPOEON testbed has the topologgcket loss since they go through the failed switch. Here, th
in Fig. 11(a), where there arg nodes in the IP and EON packet loss off'2 is severer than that of'3. This is because
layers, respectively. Each optical node in the EON layeuik b F'2 is recovered by setting up a new lightpath in the EON
with Finisarl x9 BV-WSS’, which can set up lightpaths withinlayer. Specifically, after it has detected the switch outélge
the wavelength range ¢1528.43, 1566.88] nm, by allocating ONOS controller checks the predicted traffic provided by PRD
the spectra on fiber links with a granularity @2.5 GHz. and finds out that, ifF"2 is groomed ontd.P3— L P2, there
Specifically, each BV-WSS is equipped with an OpenFlowould be severe congestion dnP3. Therefore, our XLyr-
agent (OF-AG) [11], which can communicate with OF-C usin® decides to establish a new direct lightpath to recaver
the OpenFlow protocol including optical transport profocdAs F'2 cannot be restored until the new lightpath has been
extensions (OF w/OTPE), parse the receivdowMod mes- established and optical reconfiguration takes much loniger t
sages for lightpath management instructions, and confitpere than IP reconfiguration, the packet lossic? is severer.
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benchmark decides to re-grodii, F'2 andF'3 on the shortest

Congeéstion

1000 ’ A available paths a§'l: LP1—LP2, F2: LP3—LP2 andF'3:
- LP1—LP2. This, unfortunately, will lead to traffic congestion
§ 900 on LP2 (i.e, carryingF'1-F'4) soon, which explains the packet
3 800 ] losses in Fig. 15 onF'1-F'3 shortly after they have been

g recovered from the outage. To address the congestion, the

g benchmark establishes a new direct lightpath to rerdie
600 1 since it uses the most capacity b2 during the congestion.

500 ‘ ‘ ‘ ‘ Later on, there will be another congestion drP1 (i.e.,

0 400 Timsoé econﬁo 1600 carrying F'1, F3 and F'6), and the benchmark sets up another

direct lightpath to rerouteF'l. This is the reason why we
Fig. 14. Predicted total traffic ohP3 observe severe packet losses B in Fig. 15. The second

congestion does not induce noticeable packet losse$'®n
(i.e. the severe packet losses Bih is mainly due to the optical
As for F1 and F'3, our XLyr-O finds that there would be reconfiguration), and this is because the actual congegtion

enough capacity on existing lightpaths in foreseeablerfytunot severe and the throughput &3 is much smaller than
to re-groom them for restoration. Hence, they are reroutéftbse of F'1 and F'6. To this end, we can see that without
asF1: LP1—LP2 and F3: LP6—LP3—LP2. Meanwhile, DL-assistance, the reactive benchmark not only invokessmor
since updating flow tables in switches takes much shortex tirreconfigurations but also suffers from severer packet fosse
than reconfiguring the BV-WSS’, the packet lossieif in Fig.
12(b) is much lighter than that @2 in Fig. 12(a). Specifically, VIl. CONCLUSION

the recovery of ’2 with a new direct lightpath take$.31 In this paper, we studied the DL-assisted XLyr-O scheme
seconds and causes an instant packet los$ oit€7.38%, from algorithm design to system prototype. A DL module
while the recovery off'1 and F'3 with electrical re-grooming pased on LSTM-NN was first designed to capture the dy-
only needs0.26 second and the instant packet loss rate [§ymics and self-similarity of end-to-end IP traffic for pisec
6.57%. Note that, the bandwidth results férl are similar to {affic prediction. Then, we considered the MLR in an SD-
those forf'3, and thus they are omitted to save space. Fig. 185EON as the usecase, and designed algorithms to expere th
shows the optical spectrum measurements, which confirm thafic prediction for realizing proactive XLyr-O. Finallyve
the outage brings dowiightpaths P4, LP5 and LP7 while - jmplemented our proposed algorithm CRV in a small-scale but
our XLyr-O sets up a new lightpath to restafe end-to-end. e SD-IPOEON testbed to prototype the DL-assisted XLyr-O
Note that, the network reconfiguration at the first time lingnd demonstrated our proposal experimentally. Experiatent
can only make sure that there is no traffic congestion befare tesyits verified that compared with the reactive benchmark
second time line, when the traffic prediction provided by PRRjithout DL-assistance, our proposal not only invoked less

will expire. Therefore, the DL-assisted XLyr-O kicks in &a reconfigurations but also reduced packet losses significant
at the second and third time lines to check network status, an

it finds out that the current configuration will lead to traffic ACKNOWLEDGMENTS

congestion oL P3 after the third time line (in Fig. 14). This . .
makes our system reroute flows proactively. Specificalhgcesi This work was supported _by the NSFC projects 61871357
there is no enough capacity on other existing lightpath€to ﬁg@t{ﬂ%ﬁ? CAS_ kety 22)0{(;?)(((?3{)%23_1%8(\)/&]8(3003), and
groom any of the flows o P3, our XLyr-O decides to set ey project ( -004).

up a new lightpath for handling the bandwidth crunch. As
the lightpath establishment is proactive and before theahct
congestion onLP3 (i.e, it is done with the “make-before- [1] Cisco visual networking index: Forecast and methodgl@p17-2022.

» ; [Online]. Available: https://www.cisco.com/c/en/udistions/collateral/
break” scheme [45])' we do not observe any noticeable paCket service-provider/visual-networking-index-vni/whipaper-c11-741490.

loss onF2 and F'3 in Fig. 12 during the reconfiguration. html# Toc529314186
For Comparison, we conduct a benchmark experiment t3] P. Lu et al, “Highly-efficient data migration and backup for Big Data

_ ; _ ; . applications in elastic optical inter-datacenter netsgrkEEE Netw,
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. .. .. s12-s20, Feb. 2012.
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reactive scheme that only reconfigures the SD-IPOEON tdstbe  Lightw. Technol.vol. 31, pp. 15-22, Jan. 2013.
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