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Abstract—To better provision fast-emerging network applica-
tions with various quality-of-service (QoS) demands, datacenter
network (DCN) operators need an effective network orchestration
scheme that can timely coordinate IT and bandwidth resources
for differentiated services. In this work, we consider a hybrid
optical/electrical DCN (HOE-DCN), and study how to achieve
scalable knowledge-defined network orchestration (KD-NO) for
managing the delay-sensitive and delay-tolerant applications in
it. For delay-sensitive applications, we leverage a multi-agent
scheme to distribute the tasks of placing virtual machines (VMs)
in server racks and routing VM traffic in electrical/optical inter-
rack clouds to two cooperative deep reinforcement learning
(DRL) modules, respectively. Then, we utilize a classic algorithm
based module to provision delay-tolerant applications with the
residual resources in the HOE-DCN. We design the operation
and coordination procedure of the KD-NO system, and build
a small HOE-DCN testbed that consists of four server racks
to demonstrate its performance experimentally. Experimental
results indicate that our KD-NO system can make timely and
correct network orchestration decisions, and have better conver-
gence performance compared with the existing benchmark.

Index Terms—Knowledge-defined networking (KDN), Artifi-
cial intelligence (AI), Network orchestration, Predictive analytics,
Datacenter network (DCN), Deep reinforcement learning (DRL),
Store-and-forward

I. INTRODUCTION

OWADAYS, datacenter networks (DCNs) are facing
great challenges from architectural scalability, resource
utilization, and management agility [1, 2]. A recent analysis
on global cloud traffic has revealed that traffic related to
datacenters (DCs) has been increasing with an annual growth
rate of 25% since 2016, its total volume will reach 20.6
Zettabytes (ZB) (i.e., 1 ZB = 102! bytes), and ~71% of the
traffic is within DCs [3, 4]. Meanwhile, the average utilizations
of IT and network resources are still around 25% in many
DCNs, and the limited management agility results in relatively
long lead time (e.g., in weeks or even months) to deploy new
services [5—7]. These issues can be potentially addressed from
two perspectives, ie., architecting hybrid optical/electrical
DCNs (HOE-DCNs) [8] and developing artificial intelligence
(AI) assisted network orchestration schemes [1].
The idea of HOE-DCN is to add in an optical inter-rack
cloud to give the top-of-rack (ToR) switches another option
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to communicate with, for resolving the bandwidth crunch
and energy increase in a DCN. In other words, an HOE-
DCN leverages the symbiosis of electrical packet switching
(EPS) and optical circuit switching (OCS) to integrate their
benefits for handling different types of inter-rack traffic more
efficiently. For instance, the mice flows can be forwarded
by EPS-based Ethernet switches to ensure sufficient agility,
while the elephant flows can be routed through one or more
optical cross-connects (OXCs) to avoid causing congestions
in the electrical inter-rack cloud [8]. Note that, although the
advances on flexible-grid elastic optical networks (EONs) can
bring down the granularity of bandwidth allocation in an OCS
network to 12.5 GHz or even narrower [9-12], the electrical
inter-rack cloud is still needed. This is because even the
reduced bandwidth granularity in an EON is still too large
for mice flows and the reconfiguration latency of an optical
switch could be too long for delay-sensitive traffic.

The introduction of HOE-DCN can potentially address the
challenge from architectural scalability, but those from re-
source utilization and management agility can only be resolved
with an effective network orchestration scheme [13, 14]. Here,
the network orchestration refers to the mechanism that can
jointly optimize the allocations of IT and bandwidth resources
to guarantee various quality-of-service (QoS) requirements
for active applications [15-18]. Meanwhile, developed based
on software-defined networking (SDN) [19-21], knowledge-
defined networking (KDN) [22] introduces artificial intelli-
gence (Al) in control plane to realize automatic and agile net-
work control and management (NC&M) and satisfy stringent
QoS requirements. This inspires us to consider knowledge-
defined network orchestration (KD-NO) for HOE-DCNs [1].

We initially architected the KD-NO in [23], and demon-
strated that it could further optimize the well-known “delay-
energy” trade-off in an HOE-DCN to push down both sides
of the tussle. Then, we improved the KD-NO in [24, 25] by
adding a deep reinforcement learning (DRL) module, which
can extract high-level knowledge from the telemetry data and
the predictions of bandwidth and IT demands, to achieve
more effective network orchestration. Nevertheless, despite
its superior performance, the enhanced KD-NO in [24, 25]
still bears the scalability issues in two-fold. Firstly, it only
assigns one DRL module to coordinate both the placement of
virtual machines (VMs) in server racks and the routing of VM
traffic in electrical/optical inter-rack clouds. This, however,
can hardly be a scalable solution considering the volumes of



VMs and traffic in a typical HOE-DCN. Secondly, it only
considers the delay-sensitive applications whose bandwidth
and IT resource demands cannot be scheduled in the time
domain. Note that, there are also delay-tolerant applications
in DCNs, which can be put on hold temporarily to mitigate
the contention on traffic and/or IT resources [26-28].

In this work, we try to relieve the aforementioned scalability
issues for the KD-NO of HOE-DCNs. Specifically, we further
improve the KD-NO designed in [24, 25] from the following
two perspectives. We first leverage the multi-agent scheme
[29] to divide the centralized DRL module in [24, 25] into
two cooperative ones, which handle the placement of VMs in
server racks and the routing of VM traffic in electrical/optical
inter-rack clouds, respectively, for delay-sensitive applications.
Then, we incorporate a classic algorithm based module to
schedule the provisioning of delay-tolerant applications with
the residual resources in the next provision cycle. In other
words, we re-architect the centralized DRL module in [24,
25] as a hybrid integration of multi-agent DRL modules and a
classic algorithm based module. We design the operation and
coordination procedure of the new KD-NO, and build a small
HOE-DCN testbed that consists of four racks to demonstrate
its performance experimentally. Experimental results indicate
that our KD-NO can also make timely and correct network
orchestration decisions, and have better convergence perfor-
mance compared with the KD-NO in [24, 25].

The rest of the paper is organized as follows. We briefly
survey the related work in Section II. Section IIT describes the
design of our KD-NO system, including the system architec-
ture and functional modules. The operation and coordination
procedure of the KD-NO is discussed in Section IV. Then,
we present the experimental setup and results in Section V.
Finally, Section VI summarizes the paper.

II. RELATED WORK

Since the introduction of KDN, people have tried to incorpo-
rate various machine learning (ML) techniques in control plane
to make NC&M more effective and intelligent. For the current
state-of-the-art of ML’s applications in optical communications
and networks, one is suggested to refer to the surveys in
[30, 31]. It is known that ML can be roughly categorized as
supervised learning, unsupervised learning, and reinforcement
learning [32]. Here, both supervised and unsupervised learning
models need to be trained in the offline manner, i.e., they have
to be trained with sufficiently-large training data sets before
being put into operation. Therefore, the normal use-cases of
supervised/unsupervised learning in KDN are traffic/service
demand prediction [33-36] and network anomaly detection
[37-40]. Note that, our KD-NO needs to make reconfiguration
decisions to address the dynamic network environment in an
HOE-DCN, and this will rule out both supervised and unsu-
pervised learning because online training would be required.

Since reinforcement learning supports online training [32],
it fits perfectly with the design requirement of the KD-NO.
Specifically, the KD-NO is the agent, the dynamic HOE-
DCN is the environment, the reconfiguration decisions are the
actions of the agent, and the HOE-DCN’s service quality to

active applications is the agent’s reward from the environment.
To this end, the four basic elements of reinforcement learning,
i.e., the agent, environment, actions, and reward, all appear
naturally. Meanwhile, a reinforcement learning model can be
referred to as DRL, if it utilizes a “deep” neural network that
consists of many processing layers to learn the representations
of data with multiple levels of abstraction [32]. Hence, DRL
enables us to address complicated optimizations in dynamic
network environments effectively, especially when the state
data is high-dimensional [41, 42]. The advantages of DRL
motivate us to design the KD-NO based on it.

Although DRL is the right way to go, we, to the best of our
knowledge, have not found any existing studies that leveraged
it to optimize the network orchestration in an HOE-DCN.
Therefore, we designed our DRL-based KD-NO system in [24,
25], to make smart and timely decisions for improving the
matching degree between the HOE-DCN’s configuration and
the applications running in it. Even though the experimental
results in [25] indicated that the enhanced KD-NO could
make timely and correct decisions to effectively reduce the job
completion time of Hadoop applications, it still suffers from
limited scalability. This is because an HOE-DCN is actually a
complex system, and if we architect the KD-NO using single-
agent DRL, the dimensionality of its search space would grow
rapidly with the number and variety of active applications, the
number of VMs and servers involved, and the complexity of
the inter-rack topology. The enormous search space will make
it difficult to train the DRL model, since its convergence rate
would be extremely slow.

The aforementioned dilemma could be relieved by architect-
ing the KD-NO using the multi-agent DRL [29]. Specifically,
in a multi-agent DRL model, the online optimization is accom-
plished by multiple agents interacting with the environment
and learning simultaneously. Since the optimization is divided
into multiple sub-problems, each of which gets addressed
by an agent, the scalability would be better. Depending on
whether the agents mutually ignore each other, multi-agent
DRL can be categorized as independent learning and joint-
action learning [43]. Apparently, the KD-NO discussed in this
work belongs to the joint-action learning. The applications of
multi-agent DRL in communications and networks are recently
surveyed in [44], which suggests that the technique has not
been applied to solve the network orchestration in DCNs yet.

III. SYSTEM DESIGN

In this section, we introduce the design of our KD-NO
system, and discuss its functional modules in detail.

A. System Architecture of HOE-DCN with KD-NO

Fig. 1 shows the arrangement of the data plane of an HOE-
DCN with our KD-NO system. Here, the servers to deploy
VMs are organized in racks, each of which has a top-of-
rack (ToR) switch to bridge inter-rack communications. The
ToR switches are interconnected with electrical/optical inter-
rack clouds. Here, the electrical inter-rack cloud follows the
conventional hierarchical packet network architecture, while
the optical one is essentially based on an optical switch (e.g.,
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Fig. 1. Data plane of HOE-DCN with KD-NO, VM-TA: VM traffic agent,
VM-WA: VM workload agent.
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Fig. 2. Control plane of HOE-DCN with KD-NO.

an optical cross-connect (OXC)) that connects to all the optical
ports on the ToR switches. Similar to the systems discussed in
[24, 25], we embed a VM traffic agent (VM-TA) on each ToR
switch to collect the traffic matrix of related VMs, and insert
a VM workload agent (VM-WA) on each server to monitor
the IT resource consumption of the VMs deployed on it.
The system design of the control plane of our KD-NO
system is illustrated in Fig. 2, which includes four major
components, i.e., the network orchestrator (NOrch), the IT
controller (IT-C), the network controller (NET-C), and the
classic controller (Classic-C). Here, the I'T-C and NET-C are
the controllers to coordinate the IT and bandwidth resources
allocated to delay-sensitive applications, respectively, while
the Classic-C is the network orchestrator to provision delay-
tolerant applications. The design of the NOrch explains our
main idea of the “hybrid integration” of multi-agent DRL
modules and a classic algorithm based module. With such a
design, the NOrch can handle the resource orchestration in the
HOE-DCN in a more generic and scalable manner.

B. Functional Modules

We elaborate on the functional modules in Fig. 2 as follows.
1) IT-C: Tt manages the VMs for delay-sensitive applica-
tions, i.e., where to deploy the VMs and when to invoke a
VM migration to avoid the contention on IT resources. We
allocate a VM workload and traffic monitor (VM-W&T-M) in

it to interact with the VM-TAs and VM-WAs embedded in
the data plane (as shown in Fig. 1), for collecting telemetry
data regarding the HOE-DCN. The received telemetry data
gets stored in the IT resource and traffic database (R&TD),
which is then fed to the VM workload and traffic predictor
(VM-W&T-P) to obtain future workloads and traffic matrixes.

The VM-W&T-P is actually based on a set of long-short-
term memory (LSTM) structures [45], each of which is
responsible for forecasting the time series of specific workload
or traffic. Note that, one enhancement, which we implement
in this work over the design in [24, 25], is that two predictors
are assigned to each time series for realizing predictions in
coarse and fine time-granularities, respectively. Specifically,
the results from the coarse-grained predictors help the DR-
L modules in the NOrch make wise network orchestration
decisions for provisioning delay-sensitive applications, while
the fine-grained predictors are added in this work to get
the necessary future information for scheduling delay-tolerant
applications. Moreover, the coarse-grained predictors make the
DRL modules converge fast, after the KD-NO system starts
initially or loses its optimal state due to unexpected reasons,
but the fine-grained predictors only kick in when the KD-
NO system has converged to its optimal state. This is another
reason why we need the two sets of predictors.

The telemetry data in the R&TD and the predictions from
the VM-W&T-P are sent to the HOE-DCN status database in
the NOrch periodically. The VM management module in the
IT-C is in charge of invoking VM deployment and migration
based on the instructions from the NOrch.

2) NET-C: It coordinates the routing of traffic from delay-
sensitive applications over the electrical/optical inter-rack
clouds. Here, we have a network abstraction module (NAM)
to abstract the topology of inter-rack clouds, collect traffic
routing information, and monitor the volumes of traffic going
through switch ports. The telemetry data from the NAM gets
stored in the traffic engineering database (TED), which in turn
forwards the data to the HOE-DCN status database in the
NOrch periodically. At the southbound direction, the network
management module (NET management) routes the traffic
from delay-sensitive applications over the electrical/optical
inter-rack clouds according to the instructions from the NOrch.

3) Classic-C: It manages the service provisioning of delay-
tolerant applications according to the instructions from the
Classic Agent in the NOrch. As delay-tolerant applications
essentially utilize the residual resources left by the delay-
sensitive ones, we do not need to leverage DL/DRL to predict
and arrange them, and a straightforward classic algorithm will
be good enough to schedule them with deterministic informa-
tion. In this work, we simplify the delay-tolerant applications
and only consider those that involve delay-tolerant bulk data
transfers [46], i.e., the applications will not cause intensive IT
resource utilizations'. Hence, the DCN management module
will just regulate the applications’ data transfers, i.e., control-
ling their state time, durations, and data-rates.

'In principle, scheduling delay-tolerant applications to use deterministic
residual IT resources does not have fundamental difference from scheduling
them to use deterministic bandwidth resources. Therefore, the simplification
here would not restrict the generality of our approach.



4) NOrch: There are four major components in the NOrch.
Here, the DRL-based agent for VMs (DRL-VM Agent), expe-
rience database (E-DB), and the DRL-based substitute agent
for VMs (DRL-VM Sub-Agent) actually form a component to
make intelligent decisions on migrating the VMs for delay-
sensitive applications. Specifically, in operation, the DRL-
VM Agent periodically collects the latest network status from
the HOE-DCN status database, and utilizes its trained neural
network to wisely determine where and how to migrate the
VMs for delay-sensitive applications. To efficiently train the
DRL-VM Agent to do so, we add the E-DB and DRL-VM
Sub-Agent in. Here, the DRL-VM Agent and DRL-VM Sub-
Agent share the same neural network architecture, which
adopts deep deterministic policy gradient (DDPG) and the
Actor-Critic learning strategy [47].

In online training, the DRL-VM Agent makes decisions on
VM migration based on the latest network status from the
HOE-DCN status database, and records the current network
state, its action on VM migration, the action’s reward, and
the network state after the action (i.e., the next network state)
as an entry of experience in the E-DB, after each decision
making. When sufficient entries of experience get accumulated
in the E-DB, the DRL-VM Sub-Agent first uses them to train
its neural network, and then updates the neural network in
the DRL-VM Agent with the training results. In this way, the
DRL-VM Agent can make intelligent decisions at the front
end, while the burden of its online training gets offloaded to
the DRL-VM Sub-Agent that works in the background.

For the DRL-VM Agent and DRL-VM Sub-Agent, we
define the following variables

e« m,: the boolean variable that equals 1 if we need to
migrate VM v, and 0 otherwise.

e g,: the boolean variable that equals 1 if VM v has degrad-
ed performance due to IT contention, and 0 otherwise.

e grp: the boolean variable that equals 1 if port p in ToR
switch 7 is congested, and 0 otherwise.

Then, their reward is formulated as
Rvm:_a'zgv_ﬂ'zghp_'}“zmvu 1
v P v

where « , 8 and «y are positive weighting constants. In other
words, the reward in Eq. (1) pushes the DRL-VM Agent
to minimize the occurrences of IT and bandwidth resource
contentions with the smallest number of VM migrations.
Similarly, the DRL-based agent for network (DRL-NET
Agent), E-DB, and the DRL-based substitute agent for net-
work (DRL-NET Sub-Agent) form the component to make
intelligent decisions on routing the traffic from delay-sensitive
applications over the electrical/optical inter-rack clouds. The
multi-agent based scheme here results in modular designs for
DRL-VM Agent and DRL-NET Agent such that they can
arrange the VMs and traffic of delay-sensitive applications
in a separated but coordinated manner. Hence, it significantly
reduces the state-action space sizes of the DRL modules, eases
their online training, and effectively improves the scalability of
our KD-NO system. The design and operation principle of the
DRL-NET Agent and the DRL-NET Sub-Agent are the same
as those mentioned above, except for the reward formulation.

We add a new variable to indicate the reconfiguration of the
electrical/optical inter-rack clouds.

« m: the boolean variable that equals 1 if we need to
reconfigure the inter-rack topology, and O otherwise.

Then, the reward of the DRL-NET Agent and the DRL-NET
Sub-Agent is formulated as

Rnct = =B+ grp—0-m, @)
TP

where § is a positive weighting constant.

To come up with the optimal HOE-DCN configuration, the
coordination of the DRL-VM Agent and DRL-NET Agent is
as follows. In each service cycle, the DRL-VM Agent first
makes the decision on VM migration based on the latest net-
work status in the HOE-DCN status database, and instructs the
VM management module in the IT-C to implement it. Then,
based on the updated network status in the HOE-DCN status
database, the DRL-NET Agent determines the configuration
of the electrical/optical inter-rack clouds, and accomplishes
the traffic routing with the NET management module in the
NET-C. At this moment, the service provisioning of delay-
sensitive applications is done, and the agent based on classic
algorithm (Classic Agent) kicks in to arrange the data transfers
of delay-tolerant ones. Specifically, under the constraint that
the services of delay-sensitive applications should not be af-
fected, Classic Agent uses a straightforward classic algorithm
to determine the state time, duration, and data-rate of each
serverable data transfer based on the residual bandwidth in
the electrical/optical inter-rack clouds. The introduction of the
Classic Agent further improves the scalability of our KD-NO.

IV. OPERATION AND COORDINATION PROCEDURE
A. Operation Design

In this work, we run Hadoop applications [48] in our HOE-
DCN testbed as the delay-sensitive applications, while the
delay-tolerant applications are chosen as bulk data transfers.
The VMs for Hadoop applications are grouped into clusters,
each of which can run CPU- or/and I/O-bound jobs. To em-
ulate real Hadoop workloads, we generate the jobs according
to the cluster-usage traces released by Google [49-51]. We
reduce the timescale of Google job pattern for 120 times (i.e.,
mapping 24 hours to 12 minutes) to expedite the experiments.
The duration of each service cycle is set as 2 minutes. Based
on this settings, we use Fig. 3 to explain the operation and
coordination procedure of our KD-NO system.

It can be seen that our KD-NO system mainly involves six
threads, each of which covers different portion(s) of the three
operation phases. In Phase I, which is the initial state, we use
Thread 1 to generate Hadoop jobs in the HOE-DCN testbed
(i.e., Step 1), and Thread 1 will run through all the three
phases. Then, Thread 3 utilizes the VM-W&T-M to collect
enough telemetry data regarding the VMs’ workloads and
traffic without invoking any reconfiguration on the HOE-DCN
(i.e., Step 2). Next, we summarize the telemetry data samples
within each minute to obtain an aggregated data point, and
Thread 4 uses the aggregated data points as the training set to
train the coarse-grained predictors in the VM-W&T-P in the
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Fig. 3. Operation and coordination procedure of our KD-NO system.

offline manner (i.e., Step 3). The running of Threads 3 and 4
will also cover all the three phases. After the KD-NO system
has confirmed that the coarse-grained predictors in the VM-
W&T-P can achieve sufficient prediction accuracy, it proceeds
to Phase II. In summary, Phase I involves Threads 1, 3 and
4 and the events in it happen as Step 1—Step 2—Step 3.

Phase II is the non-steady network orchestration state.
Starting from this phase, we put the DRL-VM and DRL-NET
Agents into operation to orchestrate the IT and bandwidth
resources in the HOE-DCN for provisioning Hadoop appli-
cations, and train the DRL-VM and DRL-NET Sub-Agents
in the background. This is essentially Thread 2, which runs
through Phases II and III. The details regarding Phase II are
explained as follows. Firstly, at the beginning of each service
cycle, Thread 4 forecasts the workloads and traffic of Hadoop-
related VMs in this cycle and sends the results to the NOrch
(i.e., Step 4). Secondly, Thread 2 utilizes the DRL-VM and
DRL-NET Agents to make network orchestration decisions,
and then implement the decisions via the VM management
and NET management modules (i.e., Step 5). Finally, Thread
3 collects telemetry data regarding the VMs’ workloads and
traffic (i.e., Step 6), based on which Thread 4 updates the
coarse-grained predictors in the VM-W&T-P on-the-fly with
transfer learning (i.e., Step 7).

Therefore, the online training loop of the coarse-grained
predictors in the VM-W&T-P works as Step 4— Step 5—Step
6—Step 7— Step 4, in Phase II. Meanwhile, the DRL-VM and

®

®

DRL-NET Agents in Thread 2 collect network orchestration
experiences (i.e., Step 8), to train their Sub-Agents in the
background. Then, the updated parameters from the Sub-
Agents get implemented in the DRL-VM and DRL-NET
Agents periodically, for making them perform better (i.e., Step
9). Hence, the online training loop of the DRL-based modules
works as Step 5—Step 8—Step 9—Step 5, in Phase IIL.

Finally, when the operations of the DRL-based modules
in Thread 2 converge, the KD-NO system enters Phase III,
which is the steady network orchestration state. Here, the
online training loops of the coarse-grained predictors in the
VM-W&T-P and the DRL-based modules still work according
to their procedures in Phase II. Nevertheless, two new threads
(i.e., Threads 5 and 6) are put into operation in Phase
III. Thread 5 leverages the VM-W&T-M to collect enough
telemetry data regarding the VMs’ workloads and traffic (i.e.,
Step a), and first trains the fine-grained predictors in the VM-
W&T-P with it (i.e., Step D).

When the offline training has been done, the fine-grained
predictors in the VM-W&T-P can each time precisely forecast
the traffic fluctuation on inter-rack links within the next 20
seconds (i.e., Step c¢). This information is sent to Thread 6,
which then utilizes the Classic-C to schedule the data transfers
of delay-tolerant applications and implement the scheduling
results with the DCN management module (i.e., Step d). The
operation involving Steps ¢ and d can be repeated several
times in each service cycle. Meanwhile, since the network
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Fig. 4. Experimental setup of our HOE-DCN testbed.

orchestration for Hadoop applications may affect network
status from time to time, we insert Step g in the operation,
which updates the network status correctly before proceeding
to scheduling the data transfers of delay-tolerant applications.

Next, Thread 5 collects telemetry data regarding the VMs’
workloads and traffic (i.e., Step e), based on which it updates
the fine-grained predictors in the VM-W&T-P on-the-fly with
transfer learning (i.e., Step f). Therefore, the online training
loop of the fine-grained predictors in the VM-W&T-P works
as Step c—Step d—Step e—Step f—Step c, in Phase III.

B. Scalability Analysis

The scalability of a DRL model can usually be quantified
with the sizes of its state and action spaces. Hence, we analyze
the state and action spaces of single- and multi-agent based
KD-NO systems as follows.

Parameters:

e N,: the total number of active VMs in the HOE-DCN.

e N: the total number of servers in the HOE-DCN.

e NNV;: the total number of ToR switches in the HOE-DCN.

o L.: the number of quantified levels for the CPU workload
that a VM can take.

o L,: the number of quantified levels for the traffic that a
VM pair can have in between.

e M,: the maximal number of VM migrations that can be
invoked in each service cycle.

For the single-agent KD-NO in [24, 25], each state can
be represented by the locations and CPU workloads of all
the active VMs, and the traffic matrix of all the VM pairs.
Therefore, its state space size can be formulated as

Ny (Ny—1)

Ssa = (Ns . LC)NU . (Lt) 2 ; (3)

while its actions include both VM migration and inter-rack
cloud reconfiguration, and thus its action space size is

Nt (Ng—1)
2 .

Auw = () - (N -2

Ny
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Here, since an inter-rack reconfiguration can change the com-
munication between a ToR switch pair from the electrical
cloud to the oPtical one or vice versa, the space size of the
actions is 27 2.

For the multi-agent KD-NO, we first analyze the DRL-VM
Agent. Its state space size Sqq,, takes the expression in Eq.

(3), and its actions are only VM migrations with a size of

Adayw = (N¥) - (N)Mv. )

Ny

For the DRL-NET Agent, it does not need to consider the
CPU workloads of VMs, and thus its state space size is
Ny (Ny—1)
Sdat = (Ns)N'" - (Ly) 2 s (6)
and its actions only involve inter-rack reconfigurations with a
space size of

Nt (Ng—1)
2

Adap =2 )

Egs. (3)-(7) indicate that the state and action spaces of the
multi-agent KD-NO are much smaller than those of the single-
agent KD-NO, i.e., its scalability would be much better.

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we first briefly introduce our system imple-
mentation and experimental setup, and then we perform several
experiments to demonstrate the effectiveness of our KD-NO.

A. System Implementation and Experimental Setup

To demonstrate our proposed KD-NO system, we prototype
a small-scale HOE-DCN testbed that includes four server
racks. We develop the control plane based on the OpenStack
cloud platform, while the data plane is built with Linux server-
s, hardware-based OpenFlow switches, and a reconfigurable
OXC as the optical switch. The electrical inter-rack cloud is
based on the hardware-based OpenFlow switches, which work
as the ToR, aggregation and core switches and have ports
based on 1 GbE. On the other hand, the optical inter-rack
cloud is essentially the reconfigurable OXC that connects to



the 10 GbE optical ports on all the ToR switches. As shown
in Fig. 2, the control plane consists of the IT-C, NET-C,
Classic-C, and NOrch. For the IT-C, the VM management
module is realized with OpenStack APIs, while the VM-
W&T-M are implemented based on collectd [52] and sFlow
[53]. We program the NET-C based on ONOS [54], and all
the DL/DRL modules in the control plane are implemented
based on TensorFlow. Both the Classic Agent and Classic-
C are homemade to schedule and provision delay-tolerant
data transfers with a simple algorithm, while the actual data
transfers are realized with Pktgen-DPDK [55].

We conduct experiments in two scenarios to demonstrate the
effectiveness of our KD-NO system. Firstly, the experiments
compare the multi-agent based KD-NO with the single-agent
based one in [24, 25]. Secondly, we utilize the KD-NO system
to orchestrate IT and bandwidth resources in the HOE-DCN
testbed to provision delay-sensitive Hadoop applications and
delay-tolerant data transfers simultaneously.

B. Benchmarking over Single-agent DRL

In this experiment, we use the single-agent based KD-NO
system in [24, 25] as the benchmark to discuss the pros and
cons of the multi-agent based one that is proposed in this
work. The scalability of single- and multi-agent based KD-NO
systems in terms of state/action space sizes has been analyzed
in Section IV-B. Next, we will use experimental results to
further justify the scalability improvement achieved by multi-
agent KD-NO. We first restrict the number of training rounds
that the sub-agents in the two KD-NO systems can perform in
the initial state (i.e., Phase I in Fig. 3) as 1,000, and compare
the average rewards obtained by the two systems. Specifically,
we initialize the DRL-based modules with 6 different states,
and for each initial state, we run the experiment for 6 times to
average the results, for ensuring sufficient statistical accuracy.

Fig. 5(a) compares the average rewards from the single-
and multi-agent based KD-NO systems. We observe that the
number of training rounds is restricted, our multi-agent based
KD-NO system outperforms the single-agent based benchmark
for all the 6 cases. Moreover, we observe that the rewards from
the multi-agent based KD-NO system are the same no matter
which initial state is used. This suggests that the multi-agent
based KD-NO system has already converged to the optimal
state within 1,000 rounds of training. However, the rewards
from the single-agent based benchmark vary with the initial
states, and they are significantly lower than those from the
multi-agent based KD-NO system. Hence, the results in Fig.
5(a) confirm that our multi-agent based KD-NO system has
better scalability than the single-agent based benchmark.

On the other hand, if we remove the restriction on the
number of training rounds, Fig. 5(b) shows the average rewards
from the two KD-NO systems. This time, we can see that the
rewards from both systems have converged and the single-
agent based benchmark outperforms our multi-agent based
KD-NO system. This is actually expected, because the overall
optimization space becomes smaller after we dividing the
single DRL-based agent into two collaborative ones. There-
fore, although the multi-agent based KD-NO system can
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Fig. 5. Comparisons on rewards from single-/multi-agent based KD-NO.

converge to its optimal state quickly, the optimal state might
still be a local optimum in the overall optimization space of
the single-agent based benchmark. Fortunately, the results in
Fig. 5(b) also suggest that the performance gap between the
single- and multi-agent based KD-NO systems is relatively
small. Therefore, we can conclude that compared with the
single-agent based benchmark, the multi-agent based KD-NO
system proposed in this work achieves better tradeoff between
convergence speed and training performance. This conclusion
can be further verified with the results in Fig. 6, which shows
that the multi-agent based KD-NO system converges much
faster (4 minutes) than the single-agent based benchmark (10
minutes) in online training (i.e., Phases II and III in Fig. 3).
Here, the relative reward refers to the difference between the
reward of the action made by the NOrch in a network state
and the optimal reward in the same state.

C. Orchestrating Various Applications

In this experiment, we deploy 12 VMs in the four racks
and group them into four Hadoop clusters, each of which
has one name-node and two data-nodes to process Hadoop
jobs generated according to the description in Section IV. We
consider four different scenarios as follows to demonstrate the
effectiveness of our multi-agent based KD-NO system.

« No KD-NO: this scenario does not involve any KD-NO,
which means that it only runs delay-sensitive Hadoop
applications (i.e., including both CPU- and I/O-bound
jobs) and will not adjust their VM locations and inter-rack
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Fig. 6. Convergence performance in online training.

traffic routing schemes throughout each experiment. The
VMs are randomly deployed in the HOE-DCN testbed.

« Single-agent KD-NO: this scenario also only runs delay-
sensitive Hadoop applications, but it leverages the single-
agent based KD-NO system in [24, 25] to orchestrate the
IT and bandwidth resources in the HOE-DCN testbed for
the Hadoop jobs. Here, for fair comparison, we do not
apply any restriction on the number of training rounds.

« Multi-agent KD-NO: this scenario uses our multi-agent
based KD-NO to orchestrate the resources in the HOE-
DCN testbed for delay-sensitive Hadoop applications.

« Multi-agent KD-NO w/DT: this scenario uses our multi-
agent based KD-NO to provision both delay-sensitive
Hadoop applications and delay-tolerant data transfers.

We plot the average job completion time of the Hadoop
clusters in the four experimental scenarios in Fig. 7. It can
be seen that: 1) all the scenarios with KD-NO provide sig-
nificantly shorter job completion time than the one without
KD-NO, which confirms the effectiveness of KD-NO, 2) the
job completion time from the multi-agent based scenarios is
just slightly longer than that from the single-agent based one?,
which verifies the performance of the multi-agent based KD-
NO system, and 3) there is almost no noticeable difference
between the job completion time from Multi-agent KD-NO
and Multi-agent KD-NO w/DT, which suggests that the multi-
agent based KD-NO system can provision delay-sensitive
Hadoop applications and delay-tolerant data transfers accord-
ing to their priorities, i.e., the delay-tolerant data transfers
would not compete with the delay-sensitive Hadoop applica-
tions for inter-rack bandwidth. For Multi-agent KD-NO w/DT,
Fig. 8 shows the total volume of data transfers in the HOE-
DCN every 20 seconds, which indicates how the multi-agent
based KD-NO system adjusts data transfers adaptively to not
only avoid affecting the delay-sensitive Hadoop applications
but also utilize the residual inter-rack bandwidth effectively.

Note that, the reconfigurations invoked by KD-NO also
cause inevitable service interruptions. To minimize this neg-
ative effect, we incorporate live VM migration, which keeps
the applications running in a VM alive during migration, and

2In the experiments, we let the single-agent based KD-NO system train
sufficient rounds in Phase II.
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optimize the implementation of SDN-based network reconfig-
uration. In the HOE-DCN, a VM migration and an inter-rack
cloud reconfiguration cause 0.981 and 0.915 second service
interruption (averaged over 20 measurements), respectively.

VI. CONCLUSION

In this paper, we investigated how to achieve scalable
KD-NO for managing the delay-sensitive and delay-tolerant
applications running in an HOE-DCN. For delay-sensitive
applications, we leveraged a multi-agent scheme to distribute
the tasks of placing VMs in server racks and routing VM traffic
in inter-rack clouds to two cooperative DRL-based modules,
respectively. Then, we designed a classic algorithm based
module to provision delay-tolerant applications with the resid-
ual resources in the HOE-DCN. We described the operation
and coordination procedure of the multi-agent based KD-NO
system, and built a small HOE-DCN testbed that includes
four racks to compare our proposal with a few benchmarks
experimentally. Experimental results indicated that the multi-
agent based KD-NO system can make timely and correct
network orchestration decisions for managing delay-sensitive
Hadoop applications and delay-tolerant data transfers simul-
taneously. The results also confirmed that our multi-agent



based KD-NO system has better scalability than the single-
agent based benchmark, i.e., it achieves better tradeoff between
convergence speed and training performance.
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