
1

Predictive Analytics based Knowledge-Defined
Orchestration in a Hybrid Optical/Electrical

Datacenter Network Testbed
Hongqiang Fang, Wei Lu, Qinhezi Li, Jiawei Kong, Lipei Liang, Bingxin Kong,

and Zuqing Zhu,Senior Member, IEEE

Abstract—For datacenter networks (DCNs), it is always impor-
tant to have an effective network orchestration scheme thatcan
coordinate the usages of IT and bandwidth resources timely.In
this work, we consider the hybrid optical/electrical DCNs (HOE-
DCNs) and propose a knowledge-defined network orchestration
(KD-NO) system for them. The KD-NO system follows the pre-
dictive analytics in human behaviors, which includes forecasting
based on memory and decision making based on knowledge. To
explain the design of our KD-NO system, we first discuss how
to fetch low-level knowledge from the telemetry data about the
resource utilization in an HOE-DCN. Then, we describe how
to optimize the HOE-DCN’s configuration for network orches-
tration. Specifically, we design an online scheme based on deep
reinforcement learning (DRL), and make sure that it can extract
high-level knowledge from the low-level input and come up with
optimal HOE-DCN configurations on-the-fly. We prototype the
proposed KD-NO system and demonstrate it in an HOE-DCN
testbed. The experiments run Hadoop applications in the testbed
and show that our KD-NO system can make timely and correct
decisions in different experimental schemes by leveragingthe
two-level knowledge, maintain a high matching degree between
the HOE-DCN’s configuration and the applications running in
it, and thus effectively reduce the job completion time.

Index Terms—Datacenter networks (DCNs), Network orches-
tration, Knowledge-defined networking (KDN), Deep learning,
Deep reinforcement learning, Artificial intelligence (AI).

I. I NTRODUCTION

RECENTLY, due to the rapid development of cloud
computing and Big Data analytics [1, 2], cloud traffic

has been increasing exponentially, the majority of which is
within datacenters (DCs) [3, 4]. Hence, DC networks (DCNs)
are facing challenges to accommodate such enormous traffic
cost-efficiently with sustainable technologies. Comparedwith
electrical packet switching (EPS), optical circuit switching
(OCS) provides larger bandwidth capacity and consumes less
power [5–8]. To this end, the hybrid optical/electrical DCN
(HOE-DCN) architecture that can seamlessly integrate the
benefits of EPS and OCS has attracted intensive interests from
both academia and industry [9, 10].

The top-of-rack (ToR) switches in an HOE-DCN are in-
terconnected by two inter-rack networks based on EPS and
OCS, respectively. Although HOE-DCNs are promising, they

H. Fang, W. Lu, Q. Li, J. Kong, L. Liang, B. Kong, and Z. Zhu are
with the School of Information Science and Technology, University of
Science and Technology of China, Hefei, Anhui 230027, P. R. China (email:
zqzhu@ieee.org).

Manuscript received on May 16, 2019.

cannot work around one of the most challenging demands for
DCNs, i.e., an effective network orchestration scheme that
can coordinate the usages of IT and bandwidth resources
proactively and timely for ensuring various quality-of-service
(QoS) requirements [11–14]. This demand actually becomes
even more challenging in an HOE-DCN, since the addition
of the OCS-based inter-rack network complicates its network
control and management (NC&M) [15, 16]. In other words, an
HOE-DCN operator has more heterogeneous network elements
(NEs) to coordinate for maintaining a high matching degree
between the HOE-DCN’s configuration and the huge volume
of network applications running in it.

With software-defined networking (SDN) [17–19], peo-
ple can architect more programmable, effective and reliable
NC&M for DCNs. However, the NC&M is still reactive, which
means that the controller always makes decisions based on
the current network status. This would limit a DCN operator’s
capability of guaranteeing various and stringent QoS demands.
Therefore, we expect the automation and agility of the NC&M
in HOE-DCNs to involve knowledge-defined networking (KD-
N) [20, 21]. KDN is essentially the symbiosis of SDN and
artificial intelligence (AI). Specifically, with the centralized
control in SDN, the operator visualizes its HOE-DCN by
collecting rich telemetry data proactively, and then, it leverages
AI-assisted data analytics to abstract knowledge from the data
through deep learning (DL) or deep reinforcement learning
(DRL) and uses the knowledge to reach smart decisions for
automatic and agile NC&M.

The actual implementation of KDN in HOE-DCNs still
faces a few open and challenging problems. First of all, to
satisfy the QoS requirements of applications, the KDN-based
scheme needs to orchestrate the IT and bandwidth resources
in an HOE-DCN, i.e., managing not only the NEs in the
EPS/OCS-based inter-rack networks but also the virtual ma-
chines (VMs) and the servers. This escalates the KDN-based
NC&M to knowledge-defined network orchestration (KD-
NO). Secondly, the amount of telemetry data could be large,
while the useful information buried in it is usually sparse.
How to extract knowledge from it would be an interesting but
challenging problem. Finally, the knowledge extracted from
telemetry data,i.e., the future trends of IT and bandwidth
utilizations in the HOE-DCN, is still fragmented and in the
low-level, and thus it cannot be directly used for network
orchestration. In other words, the KD-NO needs to further
abstract high-level knowledge regarding the matching degree

2

between the HOE-DCN’s configuration and the network ap-
plications running in it, to make wise decisions.

In this work, we develop a KD-NO system for HOE-
DCNs by extending our preliminary study in [16], to address
the aforementioned problems. The KD-NO system follows
the predictive analytics in human behaviors. Specifically,it
first forecasts VMs’ future demands on IT and bandwidth
resources (i.e., forecasting based on memory) and then finds
the optimal HOE-DCN configuration based on the predictions
(i.e., decision making based on knowledge). Here, the HOE-
DCN configuration refers to how to place the VMs in server
racks and how to route the VM traffic through the EPS/OCS-
based inter-rack networks. To accomplish the predictive an-
alytics, our KD-NO system collects telemetry data regarding
the resource utilizations in the HOE-DCN, analyzes the spatial
and temporal correlations of the data, and predicts future
workloads and traffic matrix of VMs with several DL modules
(i.e., fetching the low-level knowledge). Then, it leverages the
low-level knowledge for network orchestration, which is for-
mulated as a mixed integer linear programming (MILP) model
and is proven as anNP-hard problem. Hence, we design a
DRL-based online scheme to solve it, which extracts high-
level knowledge from the low-level input and gets optimal
HOE-DCN configurations on-the-fly.

We prototype the proposed KD-NO system and experi-
mentally demonstrate it in a small-scale but real HOE-DCN
testbed. The experiments run Hadoop applications [22] in
the testbed to evaluate our proposal. The results show that:
1) the KD-NO system can accurately predict the workloads
and traffic matrix of the VMs running Hadoop applications,
i.e., fetching the low-level knowledge successfully, 2) it can
coordinate the IT and bandwidth resources in the HOE-
DCN timely without disturbing the active applications, and
3) taking the low-level knowledge as inputs, the DRL-based
online scheme can extract and learn the high-level knowledge
quickly, and make wise decisions proactively to maintain a
high matching degree between the HOE-DCN’s configuration
and the applications running in it.

The rest of the paper is organized as follows. Section II
reviews the related work. In Section III, we introduce the
architecture of our KD-NO system. The designs for fetching
the low-level knowledge about an HOE-DCN are discussed
in Section IV, while how to extract the high-level knowledge
and use it for proactive network orchestration are presented
in Section V. We show the experimental demonstrations in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK

The architectures of HOE-DCNs were proposed in [9, 23,
24] to seamlessly integrate the advantages of both EPS and
OCS. These proposals can potentially address the bandwidth
crunch and ever-increasing energy consumption in DCNs,
and the transition from the traditional DCNs to them can
be conducted smoothly. Meanwhile, to fully explore the ad-
vantages of HOE-DCNs, an effective network orchestration
scheme would be required to coordinate the IT and bandwidth
resources in them [11, 25–27], which generally needs to worry

about three problems,i.e., routing the inter-rack traffic among
VMs, configuring the OCS and EPS inter-rack networks, and
placing VMs in the server racks.

The studies in [9, 23, 24] considered how to configure the
OCS and EPS inter-rack networks in an HOE-DCN, for satis-
fying VM traffic demands. However, they still have limitations.
Firstly, they either configured an HOE-DCN reactively based
on current network status, or just predicted future traffic rough-
ly without considering its temporal and spatial correlations,
which is known to be harmful for maintaining the prediction
accuracy [28, 29]. Secondly, they did not discuss how to
reconfigure the inter-rack networks to address dynamic traffic
demands. Lastly but most importantly, they did not tackle the
VM placement problem [30] and thus the IT resource usages
in the HOE-DCNs might not be well coordinated.

The joint optimization of VM placement and inter-rack traf-
fic routing in traditional EPS-based DCNs has been addressed
in [31–33]. Nevertheless, due to the absence of the OCS-based
inter-rack network, their solutions cannot be directly applied
to HOE-DCNs, and more importantly, they did not tried
to leverage DL/DRL to realize proactive and agile network
orchestration. More recently, people try to incorporate DL
or DRL in the network orchestration of DCNs [34, 35].
However, these studies neither covered the full spectrum of
KD-NO nor introduced multiple AI modules to optimize the
network orchestration collaboratively. In terms of the system
architecture of KD-NO, the open network automation platform
(ONAP) [36] laid out the modular design to coordinate the
IT and bandwidth resources in a DCN to follow the loop of
collection, analysis, and decision making. This provides us
the blueprint to architect our KD-NO system. But as ONAP
put its emphasis on orchestrating virtual network functions, we
extend it to consider general DCN applications and to leverage
multiple AI modules and multi-level knowledge, for making
smart decisions to configure an HOE-DCN.

III. SYSTEM ARCHITECTURE

In this section, we explain the system architecture of the
HOE-DCN with KD-NO, which is illustrated in Fig. 1.

A. Hybrid Optical/Electrical DCN (HOE-DCN)

Fig. 1(a) shows the data plane of the HOE-DCN, where
the VMs in server racks can have inter-rack communications
through either a hierarchical EPS-based inter-rack network
built with ToR, aggregation, and core switches, or a flat OCS-
based inter-rack network that interconnects ToR switches with
an optical switch. Hence, for the inter-rack traffic betweena
VM pair, we have the flexibility to route it through one of the
two inter-rack networks, depending on its characteristicsand
the current and foreseeable status of the inter-rack networks.

In addition to the network part, the data plane also contains
servers organized in racks, where VMs can be deployed to
run applications. The VMs consume IT resources, such as
CPU cycles, memory, and disk space. Where to place the VMs
is an interesting problem in the network orchestration, since
its solution affects not only the IT and bandwidth resource
usages in the HOE-DCN but also the QoS metrics of the VMs’

3

Rack

1

Rack

2
Rack

3

Rack

4
Rack

5

Rack

6

Rack

7

Rack

8

Optical Switch

VM-TA

VM-WA

1

VM-WA

n

…

Server

Core

Switch
Aggregation

Switch
ToR

Switch

(a) Data plane of HOE-DCN

Learn
NET-C

VM-W&T-M

VM-W&T-PR&TD

Collect

IT-C
TED

NAM

DRL-based NOA

Update Parameters

ED
Collect

(State, Action, Reward, Next State)

DRL-based NOSA
Learning & Train

Collect

Issue

Instructions

Report

State
Report

State

Report

State

NOrch

H
ig

h
-le

v
e
l K

n
o
w

le
d
g
e
:

•
M

a
tc

h
in

g
 b

e
tw

e
e
n

D
C

N
 &

 A
p
p
s

L
o
w

-le
v
e
l K

n
o
w

le
d
g
e
:

•
V

M
 w

o
rk

lo
a
d
s

•
V

M
 tra

ffic
 m

a
trix

e
s

VM Management Network Management

(b) Knowledge-defined control plane

Fig. 1. System architecture of HOE-DCN with KD-NO, VM-TA: VMtraffic agent, VM-WA: VM workload agent, IT-C: IT controller, R&TD: IT resource
and traffic database, VM-W&T-M: VM workload and traffic monitor, VM-W&T-P: VM workload and traffic predictor, NET-C: network controller, TED:
traffic engineering database, NAM: network abstraction module, NOrch: network orchestrator, NOA: network orchestration agent, ED: experience database,
NOSA: network orchestration substitute agent.

applications [37, 38]. For example, if we place two VMs with
a huge bandwidth demand in between in two racks whose
inter-rack bandwidth capacity is very limited, they would
have difficulty to run their service while the communication
bottleneck caused by them would also disturb other VMs in
the two racks. Therefore, a high matching degree between the
HOE-DCN’s configuration (i.e., the VM placement and traffic
routing scheme) and the applications running in VMs is vital
for achieving effective network orchestration. This essentially
motivates us to propose the predictive analytics based KD-
NO. The KD-NO requires us to collect and predict the VMs’
workloads and the traffic matrix among them. Hence, we
deploy a VM traffic agent (VM-TA) on each server to collect
the matrix of the traffic going in/out the local VMs, while
for each VM on the server, we assign a VM workload agent
(VM-WA) to monitor its workload.

B. Knowledge-Defined Control Plane

We design the knowledge-defined control plane to include
three modules,i.e., the IT controller (IT-C), network con-
troller (NET-C), and network orchestrator (NOrch) in Fig.
1(b). Here, the IT-C manages the VMs deployed in servers,
while the NET-C configures the inter-rack networks to route
traffic through them. Meanwhile, the IT-C and NET-C collect
telemetry data regarding the data plane,i.e., the IT and band-
width usages and information about VM traffic, and extract
knowledge from the data. This step of knowledge extraction
is necessary because the amount of telemetry data is usually
large while the useful information buried in it is sparse.

However, as the IT-C and NET-C cover different parts of
the data plane, the extracted knowledge from them is still frag-
mented and thus cannot be directly utilized for making wise
decisions on configuring the HOE-DCN. Therefore, we place
the NOrch on top of them for coordination, which analyzes the
low-level knowledge from the IT-C and NET-C to obtain the
high-level knowledge about the matching between the HOE-
DCN’s configuration and active applications. Then, the NOrch
instructs the IT-C and NET-T to coordinate the IT and band-
width resources in the HOE-DCN. Here, the low/high-level
knowledge provides us with not only historical information

but also forecasts. Specifically, the IT-C incorporates twoDL-
based AI modules to predict future VM workloads and traffic
matrix, based on historical telemetry data, while the NOrch
takes the predictions and current network state as inputs and
leverages two DRL-based AI modules to determine the optimal
HOE-DCN configurations on-the-fly.

The details regarding the three modules are as follows.
1) IT-C: The VM workload and traffic monitor (VM-W&T-

M) in it receives the telemetry data collected by the VM-
TAs and VM-WAs in Fig. 1(a), and stores the data in the IT
resource and traffic database (R&TD). Then, based on the his-
torical data in R&TD, the VM workload and traffic predictor
(VM-W&T-P) forecasts future workloads and traffic matrixes
for the VMs. The IT-C then reports the current and predicted
VM resource demands to the NOrch for it to orchestrate the
HOE-DCN, and will implement the corresponding instructions
with the VM management module.

2) NET-C: The network abstraction module (NAM) in it
abstracts the topology of the inter-rack networks, monitors the
bandwidth usages on switch ports, and stores the results in
the traffic engineering database (TED). Meanwhile, the TED
also collects the information about traffic routing throughthe
network management module. Then, the NET-C sends the
network status in TED to the NOrch for it to make network
orchestration decisions, and will implement the corresponding
instructions with the network management module.

3) NOrch: The DRL-based network orchestration agent
(NOA) in it periodically receives the low-level knowledge
about the data plane from the IT-C and NET-C, and puts
it in a trained neural network for abstracting the high-level
knowledge, which can be utilized to make wise decisions on
configuring the HOE-DCN,i.e., reconfiguring the inter-rack
networks, migrating VMs, and rerouting the inter-rack traffic.
To train the DRL-based NOA for intelligent decision making,
we incorporate both an experience database (ED) and a DRL-
based network orchestration substitute agent (NOSA) in the
NOrch. Here, the NOA and NOSA use the same architecture
for their neural networks. During operation, the NOA stores
the network state, action, reward and next state as an entry
of experience in the ED, after each decision making. When
a batch of enough experience entries has been stored in the

4

ED, the NOSA trains itself with them, and then updates the
neural network in the NOA with the training result. By doing
so, the NOrch utilizes the NOA for making decisions in an
online manner, while the NOSA works in the background to
train its neural network simultaneously.

IV. FETCHING LOW-LEVEL KNOWLEDGE ABOUT

HOE-DCN

In this section, we elaborate on how the NET-C and IT-
C collect telemetry data in the HOE-DCN and extract useful
information (i.e., the low-level knowledge) from it.

A. Collection of Network Status in NET-C

As traffic collection is handled by the VM-TAs deployed
on the servers (i.e., in Fig. 1(b)), the NET-C needs to abstract
the feasible inter-rack topologies, each of which represents a
configuration of the EPS/OCS-based inter-rack networks to
interconnect the ToR switches, collect the set of available
ToR switch ports in each inter-rack topology, and monitor the
bandwidth usages on the currently-used ports (i.e., electrical or
optical). These three items compose the low-level knowledge
from the NET-C to the NOrch. Among them, the first two
are the static configurations that help the NOrch model the
HOE-DCN, while the third one is dynamic and reflects the
current network status. Here, we consider a congested port as
a “hot-spot” in the HOE-DCN, and its total number should
be minimized in the KD-NO. Hence, we define a few discrete
levels to quantify the bandwidth usage of a port, such that the
usage is represented by a much more abstracted information
model to restrict the optimization space for the NOrch.

B. Collection and Prediction of VM Workloads in IT-C

We allocate a VM-WA on each VM to monitor its workloads
in terms of CPU and I/O usages. The collected telemetry data
is analyzed by the IT-C for predicting future VM workloads
and extracting low-level knowledge. Note that, there might
be numerous VMs in the HOE-DCN, and thus analyzing and
predicting the workloads of all the VMs would not be a
scalable solution. We have to admit that this scalability issue
is still an interesting and open question in the KD-NO, but it
can be relieved by the following considerations and procedure.

It is obvious that the VMs on a server would not contribute
equally to its IT workloads. Actually, the contributions could
have difference in magnitude scale. Therefore, we propose a
simple “screening” process to only select the major contribu-
tors for analysis and prediction. Taking the Hadoop application
[22] as an example, the VM that runs its name-node usually
has much less CPU and I/O usages than those running its
data-nodes. Hence, the screening process would just ignore
the name-node VM. Secondly, even for the major contributors,
we might not need to train specific DL modules to analyze
and predict their IT workloads, considering their correlations.
For instance, in the Hadoop application, the data-node VMs
can have highly-correlated CPU and I/O usages over time.
To this end, for highly-correlated IT workloads, we just train
one DL model for all their predictors, apply the predictors in

the IT-C, and leverage transfer learning [39] to adjust them
for maintaining high forecast accuracy during operation. This
further reduces our efforts on developing the IT-C.

We conduct a simple experiment involving Hadoop appli-
cations to further explain the aforementioned procedure in
details. We have a Hadoop cluster with three VMs, which
processes CPU-bound and I/O-bound jobs generated according
to the job arrival distributions in the cluster data traces released
by Google [40, 41]. In the experiment, the original diurnal
pattern of the jobs (i.e., for 24 hours) gets scaled down to
12 minutes. The VM-WAs report the VMs’ CPU and I/O
workloads every5 seconds. One VM is the name-node and
the other two are the data-nodes.

Figs. 2(a) and 2(b) show the collected CPU and I/O work-
loads of the VMs in an hour (experiment time). We observe
that both the CPU and I/O workloads of the name-node are
much lower than those of the two data-nodes, respectively.
Therefore, the screening process should only treat the two
data-nodes as the major contributors of IT workloads. Mean-
while, by comparing the CPU and I/O workloads of the two
data-nodes, we can see that they are highly correlated over
time. Specifically, the cross-correlation of the two data-nodes’
CPU workloads is64.60%, while that of their I/O workloads
is 99.12%. Hence, the VM-W&T-P’s complexity in predicting
the IT workloads of the VMs can be reduced by considering
the VMs as a correlated VM group,i.e., the DL models trained
for predicting the IT workloads ofData-node1 can be reused
to forecast those ofData-node2.

Next, before proceeding to IT workload prediction, we need
to confirm that the workloads follow certain patterns and
thus are actually predictable. Hence, we calculate the auto-
correlations [42] of the IT workloads, and Figs. 3(a) and 3(b)
show the results forData-node1, where the light blue area
in each plot denotes the region whose confidence level is
below 95%. The auto-correlation results forData-node2 are
similar since the two data-nodes are highly correlated over
time, and thus we omit its results here. We observe that the
auto-correlations of both CPU and I/O workloads fluctuate
with certain pattern, which indicates that the IT workloads
of Data-node1 repeat themselves approximately after certain
durations and thus are predictable.

As the IT workloads are predictable and the prediction
technique for a time series is quite mature [42], we design
the VM-W&T-P in the IT-C with long short-term memory
based neural networks (LSTM-NNs). To adapt to the dynamic
IT workloads in an HOE-DCN, we also implement transfer
learning in the VM-W&T-P. Specifically, for each IT workload
predictor, we have offline and online training phases. In
the offline training, we train the predictor with historical
data regarding the corresponding IT workload. To effectively
reduce the predictor’s complexity and the optimization space
in the NOrch, we do not just use the collected time series of
the IT workload as its input, but summarize the samples over
a certain period (e.g., 1 minute in our experiments) to obtain
an aggregated time series and input the aggregated data to the
predictor. And in the process,95% of the aggregated data is
used as the training set while the remaining5% is the testing
set. After that, the predictor is put in the VM-W&T-P and it

5

0 6 12 18 24 30 36 42 48 54 60
0

50

100

C
P

U
 (

%
)

0 6 12 18 24 30 36 42 48 54 60
0

50

100

C
P

U
 (

%
)

0 6 12 18 24 30 36 42 48 54 60
Time (minutes)

0

50

100

C
P

U
 (

%
)

Data-node 2

Name-node

Data-node 1

(a) CPU usages of VMs

0 6 12 18 24 30 36 42 48 54 60
0

2

4

I/O
 (

M
B

/s
)

0 6 12 18 24 30 36 42 48 54 60
0

0.1

0.2

I/O
 (

G
B

/s
)

0 6 12 18 24 30 36 42 48 54 60
Time (minutes)

0

0.1

0.2

I/O
 (

G
B

/s
)

Data-node 2

Data-node 1

Name-node

(b) I/O workloads of VMs

0 6 12 18 24 30 36 42 48 54 60
0

5

10

T
ra

ffi
c

(M
bp

s)

0 6 12 18 24 30 36 42 48 54 60
0

20

40

T
ra

ffi
c

(M
bp

s)

0 6 12 18 24 30 36 42 48 54 60
Time (minutes)

0

1

2

T
ra

ffi
c

(G
bp

s)

Name-node -> Data-node 1

Name-node -> Data-node 2

Data-node 1 -> Data-node 2

(c) Traffic among VMs

Fig. 2. Telemetry data collected for a Hadoop cluster that includes three VMs.

0 6 1812 24 30 4236 48 54 60

Lag (minutes)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

A
u

to
-c

o
rr

e
la

ti
o
n

Data-node 1: CPU

(a) CPU usage

0 6 1812 24 30 4236 48 54 60

Lag (minutes)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

A
u

to
-c

o
rr

e
la

ti
o
n

Data-node 1: I/O

(b) I/O workload

0 6 1812 24 30 4236 48 54 60

Lag (minutes)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

A
u
to

-c
o
rr

e
la

ti
o
n

Data-node 1 -> Data-node 2: Traffic

(c) Traffic between VMs

Fig. 3. Auto-correlations ofData-node1’s IT workloads and traffic betweenData-nodes1 and 2.

enters the online training. Specifically, the predictor forecasts
the volumes of its corresponding IT workload in future service
cycles using the trained LSTM-NN, and after the actual IT
workload has been collected, it adds this newly-collected data
in its training set to retrain and update its LTSM-NN. Note
that, we select the period of sample aggregation such that the
tradeoff between the predictor’s complexity and the NOrch’s
effectiveness can be balanced well.

TABLE I
RESULTS ONIT WORKLOAD PREDICTIONS

Offline Training
CPU I/O

Prediction Training Prediction Training
Accuracy Time (sec) Accuracy Time (sec)

Data-node1 90.7% 24.08 91.0% 23.75

Data-node2 85.7% − 86.5% −

Online Training

Data-node1 87.2% 1.15 89.4% 1.42

Data-node2 82.3% 1.23 84.1% 1.35

Table I summarizes the results regarding the LSTM-NNs
for IT workload prediction. As we only train the LSTM-NNs
for Data-node1’s IT workload predictors, the time of the
offline training forData-node2’s predictors is absent. For the
offline training, the accuracy ofData-node1’s predictors is
that on its testing set, while the accuracy ofData-node2’s
predictors is calculated on all of its historical data. We observe
that the offline training achieves relatively high prediction
accuracy forData-node1 on both CPU and I/O workloads. In
the meantime, if we apply the predictors ofData-node1 to

forecast the corresponding IT workloads ofData-node2, the
prediction accuracy is still reasonably high, which supports
our decision to treat the VMs as a correlated VM group. On
the other hand, the online training is conducted for the data-
nodes’ predictors for six service cycles and we average the
results to put in Table I. It can be seen that the online training
takes much shorter time to update the LSTM-NNs and the
prediction accuracy is still maintained reasonably high.

TABLE II
RESULTS ONTRAFFIC PREDICTION

Offline Training
Prediction Accuracy Training Time

Data-node1 → Data-node2 91.6% 29.15 sec

Online Training

Data-node1 → Data-node2 89.8% 1.13 sec

C. Collection and Prediction of VM Traffic Matrix in IT-C

Fig. 1(a) indicates that the VM-TA on each server collects
the traffic matrix of the local VMs and reports it to the IT-C.
The proposal discussed in the previous subsection can also be
applied to fetch low-level knowledge from the traffic data. And
for the experiment, the measurements on the traffic among the
VMs are plotted in Fig. 2(c). The screening process determines
that in Fig. 2(c), the major contributor is the traffic between
the two data-nodes. Meanwhile, the auto-correlation of the
traffic betweenData-nodes1 and 2 in Fig. 3(c) suggests that
the traffic is predictable. Hence, we still use an LSTM-NN
for the traffic prediction and train it with both the offline
and online phases. Similar as the IT workload predictor, the

6

traffic predictor also aggregates historical traffic samples and
use the aggregated data as its input. Table II summarizes the
results regarding the traffic predictor. Note that, to restrict the
optimization space of the NOrch, we further define a few
discrete levels to quantify the predictions of IT workload and
inter-rack traffic volume, so that they can be represented with
a much more abstracted information model.

V. A BSTRACTING AND UTILIZING HIGH-LEVEL

KNOWLEDGE ABOUT HOE-DCN

In this section, we discuss how to leverage the low-level
knowledge regarding the data plane for network orchestration.
We formulate the network orchestration problem as an MILP
model, prove itsNP-hardness, and then design a DRL-based
online scheme to orchestrate the HOE-DCN, which can extract
high-level knowledge from the low-level input and come up
with optimal HOE-DCN configurations on-the-fly.

A. Optimization in Network Orchestration

The network orchestration to coordinate the IT and band-
width resources in the HOE-DCN is actually an optimization
problem. Specifically, based on the collected and predicted
results on VM workloads and traffic matrix, we should opti-
mize the configuration of the inter-rack topology, the locations
of the VMs, and the routing scheme of VM traffic, such that
the number of hot-spots (i.e., degraded VMs due to overloaded
servers1 and congested ToR switch ports) in foreseeable future
can be minimized for ensuring high QoS to the applica-
tions. Meanwhile, during the process, the operating expenses
(OPEX) of network orchestration (i.e., VM migrations and
reconfigurations on inter-rack topology) should be minimized
as well. This particular optimization problem is formulated as:

Parameters:
• V : the set of VMs currently running in the HOE-DCN.
• R: the set of ToR switches in the HOE-DCN.
• S: the set of servers in the HOE-DCN.
• Sr: the set of servers under ToR switchr ∈ R.
• Pr: the set of ports in ToR switchr ∈ R for inter-rack

communications, and we assume that each ToR switch
has the same number and types of ports.

• bp: the linerate of inter-rack portp ∈ Pr in a ToR switch.
• Lp: the threshold on date-transfer time when using port
p ∈ Pr in a ToR switch.

• G: the set of feasible and considered inter-rack topolo-
gies, where eachG(R,E) ∈ G indicates how all the ToR
switches are connected with the links inE. Here, a link
can be either electrical or optical.

• fG: the binary indicator that equals 1 if the HOE-DCN
is using inter-rack topologyG, and 0 otherwise.

• cRv : the IT requirement of VMv in terms of RAM usage.
• cCv : the IT requirement of VMv in terms of CPU usage.
• cDv : the IT requirement of VMv in terms of disk space.
• lv,s: the binary indicator that equals 1 if VMv ∈ V is

currently running in servers ∈ S, and 0 otherwise.

1For a server that runs multiple VMs simultaneously, if the total CPU
or total I/O workloads on it exceeds certain thresholds, respectively, the
performance of all the VMs will be degraded,i.e., the server is overloaded.

• wC
v : the predicted workload of VMv in terms of CPU

usage, during the next provisioning cycle.
• wI

v : the predicted workload of VMv in terms of I/O
demand, during the next provisioning cycle.

• wT
v,v′ : the predicted traffic from VMv to VM v′, during

the next provisioning cycle.
• PG,r,r′ : the set of available ports for the communication

from ToR switch r to ToR switch r′, when inter-rack
topologyG is used.

• CR
s : the total IT resources on servers in terms of RAM.

• CC
s : the total IT resources on servers in CPU usage.

• CD
s : the total IT resources on servers in disk space.

• WC
s : the threshold on CPU workload for servers.

• W I
s : the threshold on I/O workload for servers.

• α: the parameter that weights the cost of one hot-spot
due to either a congested port or a degraded VM.

• β: the parameter that weights the cost of a VM migration.
• γ: the parameter that weights the cost of an inter-rack

topology reconfiguration.
• M : a positive number is big enough to ensure that the

related inequalities are correct.

Variables:

• xv,s: the boolean variable that equals 1 if we run VMv
on servers, and 0 otherwise.

• yG: the boolean variable that equals 1 if inter-rack topol-
ogy G is selected, and 0 otherwise.

• z
r,p
v,v′ : the boolean variable that equals 1 if VMv uses port
p in ToR switchr to talk with VM v′, and 0 otherwise.

• mv: the boolean variable that equals 1 if we need to
migrate VM v, and 0 otherwise.

• m: the boolean variable that equals 1 if we need to
reconfigure the inter-rack topology, and 0 otherwise.

• gs: the boolean variable that equals 1 if servers is
overloaded, and 0 otherwise.

• gv: the boolean variable that equals 1 if the performance
of VM v is degraded, and 0 otherwise.

• gr,p: the boolean variable that equals 1 if portp in ToR
switch r is congested, and 0 otherwise.

Objective:
For jointly minimizing the number of hot-spots and OPEX

due to DCN reconfigurations, the objective is defined as

Minimize α ·

(

∑

v

gv +
∑

r,p

gr,p

)

+ β ·
∑

v

mv + γ ·m. (1)

Constraints:
∑

r∈R

∑

s∈Sr

xv,s = 1, ∀v ∈ V. (2)

Eq. (2) ensures that each VM is deployed on a server.
∑

v∈V

xv,s · c
R
v ≤ C

R
s , ∀r ∈ R, s ∈ Sr, (3)

∑

v∈V

xv,s · c
C
v ≤ C

C
s , ∀r ∈ R, s ∈ Sr, (4)

∑

v∈V

xv,s · c
D
v ≤ C

D
s , ∀r ∈ R, s ∈ Sr. (5)

7

Eqs. (3)-(5) ensure that the IT resource capacities of each
server are not exceeded.

∑

G∈G

yG = 1. (6)

Eq. (6) ensures that only one inter-rack topology is selected.

z
r,p

v,v′ ≤
yG + xv,s + xv′,s′

3
, ∀v, v

′
∈ V, r, r

′
∈ R, s ∈ Sr,

s
′
∈ Sr′ , G ∈ G, p ∈ PG,r,r′ : v 6= v

′
, r 6= r

′
, w

T
v,v′ > 0,

(7)

∑

p∈PG,r,r′

z
r,p

v,v′ ≤ 1, ∀v, v
′
∈ V, r, r

′
∈ R,

s ∈ Sr, s
′
∈ Sr′ , G ∈ G : v 6= v

′
, r 6= r

′
, w

T
v,v′ > 0,

(8)

∑

p∈PG,r,r′

z
r,p

v,v′ ≥ yG + xv,s + xv′,s′ − 2, ∀v, v
′
∈ V, r, r

′
∈ R,

s ∈ Sr, s
′
∈ Sr′ , G ∈ G : v 6= v

′
, r 6= r

′
, w

T
v,v′ > 0.

(9)
Eqs. (7)-(9) ensure that if there is traffic between two VMs
(i.e., wT

v,v′ > 0) and the VMs are located in different racks,
a port has be allocated on both end ToR switches to support
the inter-rack communication between them.

mv ≥ xv,s · (1− lv,s), ∀r ∈ R, s ∈ Sr, v ∈ V. (10)

Eq. (10) determines whether a VM needs to be migrated.

m ≥ yG · (1− fG), ∀G ∈ G. (11)

Eq. (11) determines whether the inter-rack topology needs to
be reconfigured.

M · gs ≥

(

∑

v∈V

xv,s · w
C
v

)

−W
C
s , ∀r ∈ R, s ∈ Sr, (12)

M · gs ≥

(

∑

v∈V

xv,s · w
I
v

)

−W
I
s , ∀r ∈ R, s ∈ Sr. (13)

Eqs. (12) and (13) determine whether a server is overloaded
due to CPU over-usage or the exhaustion of I/O resources.

gv ≥ gs + xv,s − 1, ∀r ∈ R, s ∈ Sr, v ∈ V. (14)

Eq. (14) determines whether the performance of a VM is
degraded due to server overload.

M · gr,p ≥

∑

v,v′:v 6=v′

z
r,p

v,v′ · w
T
v,v′

− bp · Lp, ∀r ∈ R, p ∈ Pr.

(15)
Eq. (15) determines whether a ToR switch port is congested.

B. Hardness Analysis

Theorem. The network orchestration problem isNP-hard.

Proof: We prove theNP-hardness of the problem by
restriction, which means that we restrict away certain of
its aspects until a knownNP-hard appears [43]. We first
remove all the constraints except for Eqs. (2), (12)-(14), Then,
the network optimization problem becomes a VM placement
problem whose optimization objective is

Minimize
∑

v

gv, (16)

since the restriction makes variablesgr,p, mv andm irrelevant
to the optimization. Meanwhile, it is easy to verify that in the
restricted problem, the objective

∑

v

gv can only be0, 1, ..., |V |.

When we restrict
∑

v

gv = 0, which is equivalent to
∑

s

gs =

0 (referring to Eq. (14)), the optimization of the restricted
problem becomes a decision problem: Given a set of VMs
v ∈ V , each of which has a two-dimensional (2D) resource
requirement{wC

v , w
I
v}, and a set of serverss ∈ S, each of

which also has a 2D resource capacity{WC
s ,W I

s }, whether
there exists a feasible solution to pack all the VMs in the
servers such that the servers’ resource capacities would not be
exceeded (i.e.,

∑

s

gs = 0 subject to Eqs. (2), (12) and (13))?

This decision problem is essentially a 2D knapsack problem,
if we treat the VMs and servers as items with 2D sizes and
boxes with 2D capacities, respectively. It is known that the2D
knapsack problem isNP-hard [43]. Hence, since the restricted
case of the network orchestration problem is the general case
of a knownNP-hard problem, we prove itsNP-hardness.

C. DRL-based Network Orchestration

Since the network orchestration problem isNP-hard and
a hand-crafted heuristic for it would have difficulty to adapt
to the dynamic environment in an HOE-DCN, we decide to
solve it by leveraging DRL. An important advantage of our
DRL-based approach is that based on its experience, the AI
module can make wise KD-NO decisions timely in an online
manner. The DRL model is designed as:

• State: stateSi refers to the state of the HOE-DCN at time
instanti, which includes the current inter-rack topology,
IT resource requirements of VMs in RAM usage, CPU
usage and disk space, VM locations, predicted CPU and
I/O workloads and traffic matrix of VMs, and ToR switch
ports used for VMs’ inter-rack communications.

• Action: action Ai is the action taken at time instant
i, which includes the selected inter-rack topology, new
VM locations, and new ToR switch ports selected for
VMs’ inter-rack communications. Here, we encode each
element in an action as an integer,e.g., the inter-rack
network topology is encoded as an integer within[1, |G|].

• Reward: rewardRi of actionAi is calculated by taking
the opposite number of the result from Eq. (1).

As both the state and action spaces are relatively large in
our DRL model, we leverage the deep deterministic policy
gradient (DDPG) [44] to design its operation procedure. The
rationale for choosing DDPG is two-fold. Firstly, it adoptsan
Actor-Critic learning strategy to avoid the difficulty of action s-
election due to the need of traversing the entire action and state
spaces whose sizes are relatively large. Secondly, it combines
policy gradient with Q-learning and lets them learn from each
other, and thus achieves improved learning efficiency. DDPG
has a dual neural network architecture, namely, Actor and
Critic, respectively. Actor uses a deterministic policy gradient
functionµθp(Si) to select an action directly,i.e.,

Ai = µθp(Si), (17)

whereθp is the parameter in Actor. Critic uses a Q-function
QθQ(Si,Ai) to evaluate the Q-value of actionAi in stateSi,

8

and transmits the action gradient (i.e., ∇Ai
QθQ(Si,Ai)) to

Actor, for increasing the probability of selecting the action
that has a larger Q-value. Here,θQ is the parameter in Critic.

Actor optimizesµθp(Si) using the policy gradient

∇θpJ ≈
1

N

N
∑

i=1

Xi · Yi, (18)

where N is the iterations in training, andXi and Yi are
the gradients ofµθp(Si) andQθQ(Si,Ai), respectively. The
gradients are calculated as

{

Xi = ∇θpµθp(Si),

Yi = ∇Ai
QθQ(Si,Ai),

(19)

where according to Eq. (17),Ai in Yi equalsµθp(Si) in Yi.
Critic optimizesQθQ(Si,Ai) by minimizing the squared

loss between the expected and estimated Q-values,i.e.,

L =
1

N

N
∑

i=1

(Ri + κ ·QθQ(Si+1,Ai+1)−QθQ(Si,Ai))
2
, (20)

whereκ is a discount factor andN is the iterations in training.
We realize the DRL-based network orchestration with the

two DRL-based agents in the NOrch (i.e., the NOA and NOSA
in Fig. 1(b)). Here, the NOA and NOSA have the same neural
network architecture that includes both Actor and Critic, and
their parameters are{θp, θQ} and {θp

′

, θQ
′

}, respectively.
Algorithm 1 shows the detailed procedure of the DRL-based
network orchestration in the NOrch. There are two threads,
which are for the online operation (Lines1-10) and training in
background (Lines11-18), respectively. On one hand, in each
service cycle, the NOA receives the current stateSi from the
IT-C and NET-C (Line 3), takes network orchestration action
Ai according to Eq. (17) (Line 4), legalizesAi to satisfy the
constraints in previous subsection (Line 5), and calculates the
corresponding rewardRi by taking the opposite number of
the result from Eq. (1) (Line 6). Then, the IT-C and NET-C
configure the HOE-DCN accordingly to coordinate the IT and
bandwidth resources in it (Line 8). Before the next cycle starts,
the NOA stores{Si,Ai,Ri,Si+1} in the ED as an entry of
experience (Line 7). On the other hand, in each background
training episode, the NOSA performs training based on the
experience in ED and updates parameters{θp

′

, θQ
′

} according
to Eqs. (18)-(20) (Line 13). Meanwhile, after certain training
iterations, the NOA updates its parameters{θp, θQ} (Lines
14-16) with the following rules:

{

θp = τp · θp + (1− τp) · θ
p′ ,

θQ = τQ · θQ + (1− τQ) · θ
Q′

,
(21)

whereτp andτQ are the small coefficients for stable learning.
Fig. 4 gives an illustrative example on the high-level knowl-

edge regarding the matching degree between the HOE-DCN’s
configuration and the active applications,i.e., a state seen
by the NOrch. Here, we assume that there are three racks
and each of their ToR switches possesses an optical port that
can be used to route traffic through the OCS-based inter-rack
network. Hence, only one pair of the ToR switches can use the
OCS-based inter-rack network at a time. With the high-level
knowledge in Fig. 4, the NOrch can easily identify hot-spotsin

Algorithm 1: DRL-based Network Orchestration in NOrch

1 Thread I: Online Operation
2 for each service cycledo
3 NOA receives stateSi from IT-C and NET-C;
4 NOA takes actionAi according to Eq. (17);
5 NOA legalizesAi according to certain rules;
6 NOA calculates rewardRi;
7 NOA stores{Si−1,Ai−1,Ri−1,Si} in ED;
8 IT-C and NET-C configure HOE-DCN;
9 end

10 End
11 Thread II: Training in Background
12 for each training episodedo
13 NOSA updates{θp

′

, θQ
′

} with Eqs. (18)-(20);
14 if certain iterations have been passed since the

last updatethen
15 NOA updates{θp, θQ} with Eq. (21);
16 end
17 end
18 End

CPU Workload

I/O Workload

VM

VM

…

VM Pool

Rack 1

CPU Workload

I/O Workload

VM

VM

…

VM Pool

Rack 2

CPU Workload

I/O Workload

VM

VM

…

VM Pool

Rack 3

M
o
re

 C
o
n
g
e
s
te

d

Not Connected

EPS-based Inter-Rack

OCS-based Inter-Rack

Fig. 4. Example on high-level knowledge regarding the matching degree
between HOE-DCN’s configuration and applications running in it.

the HOE-DCN, and withAlgorithm 1, it makes wise network
orchestration decisions to improve the matching degree.

VI. EXPERIMENTAL DEMONSTRATIONS

In this section, we first briefly explain our system imple-
mentation and experimental setup, and then perform three
experiments to demonstrate the effectiveness of our proposal.

A. System Implementation

We prototype a small-scale but real HOE-DCN testbed,
and implement the proposed KD-NO system in it, which is
developed with Python 3.6 and uses the machine learning
library of TensorFlow.

1) Data Plane: It is built with a few Linux servers orga-
nized in four racks, hardware-based OpenFlow switches, and
a reconfigurable optical switch, as shown in Fig. 5. The Open-
Flow switches are the ToR, aggregation and core switches in
the EPS-based inter-rack network whose connections are based
on 1GbE. Meanwhile, the optical switch gets connected to the

9

High-Performance Servers

OpenFlow Switches

Reconfigurable Optical

Switch

Rack 3 Rack 4

ToR

Switch

Aggregation

Switch

Core

Switch

1 GbE Port

10 GbE Port

Rack 2Rack 1

Fig. 5. Experimental setup of the HOE-DCN prototype with KD-NO.

10GbE optical ports on all the ToR switches to form the OCS-
based inter-rack network. Each server in a rack is connectedto
its ToR switch through a 1GbE port. The switching time of the
optical switch is around100 milliseconds, which might still
be an issue for applying optical switching in DCNs. However,
with accurate knowledge abstraction, our KD-NO system can
bypass this issue to certain extent. More specifically, the KD-
NO system not only tries to minimize the number of inter-rack
reconfigurations, but also leverages the prediction results to
conduct inter-rack reconfigurations in advance with the “make-
before-break” scheme. Hence, the interruption on inter-rack
elephant flows caused by optical switching can be avoided.

2) Control Plane: To realize the IT-C, we leverage the
OpenStack cloud platform and develop the VM management
module with OpenStack APIs. Moreover, we implement the
VM-W&T-M based on collectd [45] and sFlow [46], and
realize VM-W&T-P by referring to the LTSM-NN. On the
other hand, the NET-C is implemented by modifying ONOS
to achieve timely monitoring and management on the NEs in
the HOE-DCN. We implementAlgorithm 1 in the NOA and
NOSA, and make them cooperate with each other as designed.
Besides, the NOA communicates with the IT-C and NET-C,
such that it can receive network status for making timely
network orchestration decisions while the decisions can be
sent to the IT-C and NET-C for execution.

B. Experimental Setup

We conduct experiments in three scenarios. In each scenario,
we run four threads simultaneously to facilitate the operation
of our KD-NO system, as illustrated in Fig. 6.

• Thread1: it dynamically generates jobs for the Hadoop
clusters running in the HOE-DCN testbed. Specifically,
we first create12 VMs on servers in the testbed and
group them into four Hadoop clusters, each of which has
one name-node and two data-nodes, and then use this
thread to generate CPU- or/and I/O-bound jobs on the
clusters. To emulate practical Hadoop workloads, the jobs
are generated according to the job arrival distributions
in the cluster data traces released by Google [40, 41].
Meanwhile, to save the time for experiments, we scale
the original diurnal pattern of the jobs (i.e., for 24 hours)

• Thread 1: Dynamic Hadoop Job Generation

Time (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24 ……

Time (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24 ……

Time (minutes)

0 2 4 6 8 10 12 14 16 18 20 22 24 ……

C
P

U
 (

%
)

VM 1

…

…

• Thread 3: Collecting VM Workloads and Traffic between VMs (VM-W&T-M)

• Thread 2: Network Orchestration (NOrch)

• Thread 4: Predicting Future VM Workloads and Traffic (VM-W&T-P)

Time (minutes)
0 2 4 6 8 10 12 14 16 18 20 22 24 ……A

g
g

re
g

a
te

d

C
P

U
 (

%
)

VM 1

1

2 3

1 2 3

5

6

4 7

8 9

4 5 6

7

8 9

Phase I

(Initial State)

Phase II

(Non-steady KD-NO

State)

Phase III

(Steady KD-NO State)

4 5 6

7

8 9

Fig. 6. Operation procedure of our KD-NO system in experiments.

down to12 minutes. The thread uses the statistical model
extracted from the Google traces to create the jobs, but
it deviates the peak and valley periods of jobs in the
four clusters to introduce certain uncertainty. This is to
check whether our proposed KD-NO system can learn
the dynamics and differences in resource demands and
therefore make right HOE-DCN configuration decisions.

• Thread2: it leverages the NOrch to perform a DCN re-
configuration for network orchestration every2 minutes.
Note that, in a more practical scheme, the duration of this
service cycle should be acquired through online learning
to adapt to the dynamic workloads in an HOE-DCN. We
will consider this in our future work.

• Thread 3: it uses the VM-W&T-M to collect telemetry
data, including VM workloads and traffic between VMs.

• Thread 4: it utilizes the VM-W&T-P to forecast future
VM workloads and traffic.

Then, according to whether the DRL-based NOA and
NOSA have been involved and converged in the online train-
ing, we divide the KD-NO’s operation in the HOE-DCN into
three phases,i.e., the initial state, and non-steady and steady
KD-NO states, respectively. The training of the LTSM and
DRL based modules is executed by the aforementioned threads
in different phases. InPhase I (i.e., the initial state), we
run Hadoop jobs in the HOE-DCN testbed (i.e., Thread 1),
and collect enough telemetry data (i.e., 1© marked inThread
3) without any DCN reconfiguration. We use the collected
telemetry data to train the LTSM-based predictors offline.
Before the offline training, we pre-process the telemetry data
by summarizing the data points within every minute to get an
aggregate data point (i.e., 2© in Thread 4), to speed up the
training. Next, the VM-W&T-P divides the aggregated data

10

into training and testing sets, with the ratios of95% and5%,
respectively, which are then used to train the LTSM-based
predictors offline (i.e., 3© in Thread4). The events inPhase
I happen according to the procedure1©→ 2©→ 3©.

In Phase II (i.e., the non-steady KD-NO state), we start
to let the DRL-based NOA perform KD-NO and train the
DRL-based NOSA in the background. Here, as shown in
Fig. 6, we design two online training loops, for the LSTM-
NNs in the VM-W&T-P and the DRL-based NOA/NOSA,
respectively. At the beginning of each service cycle, the VM-
W&T-P that has been trained inPhase I forecasts the VM
workloads and traffic in coming service cycle(s), and sends
the results to the DRL-based NOA as the low-level knowledge
input (i.e., 4© in Thread 4). Then, the DRL-based NOA
makes the network orchestration decision based on its current
DRL model (i.e., 5© in Thread2). After the HOE-DCN has
been reconfigured accordingly, the VM-W&T-M collects the
actual VM workloads and traffic (i.e., 6© in Thread3), based
on which the VM-W&T-P updates its LSTM-NNs on-the-
fly with transfer learning (i.e., 7© in Thread 4). Hence, the
online training loop of the LTSM-NNs in the VM-W&T-P is
4©→ 5©→ 6©→ 7©→ 4©→· · · in Phase II.

Meanwhile, the DRL-based NOA collects and stores entries
of KD-NO experience (i.e., 8© in Thread 2). After enough
experience entries have been collected, the DRL-based NOSA
trains itself with them in the background, and updates the
DRL-based NOA with the training result periodically (i.e.,
9© in Thread 2). By doing so, the NOrch can utilize the

DRL-based NOA for making KD-NO decisions in the on-
line manner, while the NOSA works in the background for
online training. The online training loop of the DRL-based
NOA/NOSA is 5©→ 8©→ 9©→ 5©→· · · in Phase II.

Note that, after the training on the DRL-based NOSA has
converged, we consider that the KD-NO system has proceeded
to Phase III (i.e., the steady KD-NO state). In this phase, when
the dynamic VM workloads and traffic in the HOE-DCN are
about to deviate the testbed from its optimal configuration,the
DRL-based NOA will make correct and timely decisions on
VM migration, traffic rerouting, and/or inter-rack reconfigura-
tion, to maintain the performance of the HOE-DCN. Therefore,
the online training loops for the LSTM-NNs in the VM-W&T-
P and the DRL-based NOA/NOSA still operate the same as
in Phase II. Meanwhile, we would like to point out that
reconfigurations on the HOE-DCN can change the fluctuation
patterns of VM workloads and traffic, which would decrease
the prediction accuracy of the VM-W&T-P. Consequently, this
can make the DRL-based NOA/NOSA drift from the optimal
state. If this event happens, the KD-NO system will return
to Phase II shortly, until the DRL-based NOA/NOSA have
converged again and moved back to the optimal state. With
this cycle, our KD-NO system has the robustness to operate
well in dynamic network environment.

We evaluate the KD-NO system inPhase III with the
following three experimental scenarios, and demonstrate that
it can orchestrate the resources in the HOE-DCN correctly and
timely, when its DL/DRL modules are trained and operational.

• Network orchestration without DCN reconfiguration(NO
w/o DCN Reconfiguration): it just runs the generated

2 8 14 20 26 32 38 44 50 56 62 68 72

Time (minutes)

-20

-15

-10

-5

0

5

R
el

at
iv

e
R

ew
ar

d

0.7

0.8

0.9

A
ve

ra
ge

 P
re

di
ct

io
n

A
cc

ur
ac

y

DRL-based NOA

LTSM-based traffic predictor

Fig. 7. Convergence performance of NOrch’s online trainingin experiments.

jobs, but does not perform any inter-rack topology re-
configuration, VM migration or routing scheme update.

• Network orchestration without low-level knowledge(NO
w/o Low-level Knowledge): it is a reactive approach
that uses an exhaustive search algorithm to determine the
HOE-DCN configuration based on the current network
status, but does not leverage any low-level knowledge,
e.g., the predicted VM workloads and traffic matrix.

• Knowledge-defined network orchestration(KD-NO): it is
our proposed KD-NO scheme.

Fig. 7 shows convergence performance of the online training
that our DRL-based NOrch performs in the HOE-DCN testbed.
Here, the relative reward refers to the difference between the
reward of the action made by the NOrch in a network state
and the optimal reward in the same state. The results indicate
that starting as an untrained AI module, the NOrch can output
relatively high rewards after the experiment has been running
for ∼24 minutes (i.e., 12 service cycles). Meanwhile, under the
guidance of the NOrch, the online prediction accuracy of the
LTSM-based traffic predictor also increases gradually. Finally,
they make the KD-NO system enter the steady KD-NO state.

To quantify the congestions on servers and ToR switch ports,
we categorize the IT workloads and traffic of VMs into several
levels and set the overload thresholds for them accordingly. For
a VM’s CPU workload, we categorize it into three levels based
on the length of its peak duration (i.e., when the VM’s CPU
usage is100%) in a period of sample aggregation. Specifically,
the levels of [0, 1, 2] correspond to a peak duration within
[0, 5), [5, 30), and[30, 60) seconds, respectively. The overload
threshold on the CPU workload of a server is set as 1, which
means that when the total CPU workload of all the VMs on
the server (in levels) exceeds1, it is considered as overloaded.

The I/O workload of a VM is qualified into three levels
too. Here, the levels[0, 1, 2] correspond to an I/O workload
of [0, 0.1), [0.1, 3] and (3, 6] GB in a period of sample
aggregation, respectively. The overload threshold on the I/O
workload of a sever is set as24, which is equivalent to a total
I/O workload of more than72 GB in an aggregation period
on the server. Using the same quantification criteria as the
I/O workload, traffic among VMs are also classified into three
levels, and the overload threshold for 1GbE EPS-based ToR

11

Cluster 1 Cluster 2 Cluster 3 Cluster 4
0

20

40

60

80

100

120

A
ve

ra
ge

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

NO w/o DCN Reconfiguration
NO w/o Low-Level Knowledge
KD-NO

Fig. 8. Average job completion time (first experiment: CPU-bound jobs).

0 50 100 150 200 250

Time (seconds)

0

50

100

150

C
P

U
 (

%
)

0 50 100 150 200 250

Time (seconds)

0

50

100

150

C
P

U
 (

%
) w/o CPU contention

w/o CPU contentionw/ CPU contention

Data-node 2

Data-node 1

w/ CPU contention

Fig. 9. KD-NO’s effect to remove CPU contentions (first experiment: CPU-
bound jobs).

switch ports is set as1. For the optimization objective in Eq.
(1), we set the values of{α, β, γ} as {1, 0.5, 0.05} to give
minimizing the number of hot-spots the highest priority.

C. Experiment with CPU-bound Jobs

The first experiment only considers CPU-bound jobs, which
usually require a lot of CPU usages but do not cause high I/O
workloads or inter-rack traffic loads. Hence, to ensure high
QoS to the Hadoop applications, we need to avoid contentions
on CPU usage as many as possible, for reducing the average
job completion time. As the I/O workloads and inter-rack
traffic loads are relatively low, they become irrelevant in the
network orchestration of the HOE-DCN.

Fig. 8 compares the average job completion time achieved
by the three experimental scenarios. It can be seen that “KD-
NO” provides much shorter job completion time than the two
benchmarks. Moreover, the results actually suggest: 1) our
proposed KD-NO system can perform timely and correct VM
migrations to minimize CPU contentions in the HOE-DCN
and thus reduce the jobs’ completion time significantly, and
2) without the proactive principle and low-level knowledge,
the network orchestration of “NO w/o Low-level Knowledge”
might not be a better scheme than “NO w/o DCN Reconfigu-
ration”, i.e., some of its VM migrations are based on incorrect
decisions. The first statement can be further verified with the
results in Fig. 9, which shows the CPU workloads of two data-
nodes before and after the network orchestration conductedby
“KD-NO”. Before the orchestration, CPU contentions are hap-

Cluster 1 Cluster 2 Cluster 3 Cluster 4
0

20

40

60

80

100

120

A
ve

ra
ge

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

NO w/o DCN Reconfiguration
NO w/o Low-Level Knowledge
KD-NO

Fig. 10. Average job completion time (second experiment: I/O-bound jobs).

pening on both data-nodes and result in longer job processing
time in them, but after the orchestration to invoke correct VM
migration(s), CPU contentions are removed and both VMs can
process their tasks with much shorter latency.

Table III summarizes the results on the average total CPU
usage (in levels) and the number of total VM migrations,
which are collected after running the experiment in the HOE-
DCN testbed for 18 service cycles. Here, the average total
CPU usage refers to the average value of the total CPU usage
(in levels) on all the overloaded servers per service cycle.
We observe that with the same number of VM migrations,
“KD-NO” provides much less overloaded servers than “NO
w/o Low-level Knowledge”. This confirms the timeliness and
correctness of its network orchestration decisions.

TABLE III
METRICS RELATED TOHOE-DCN OPERATION(FIRST EXPERIMENT:

CPU-BOUND JOBS)

Average Total CPU Total VM
Usage (in levels) Migrations

NO w/o DCN Reconfiguration 15.3333 0

NO w/o Low-Level Knowledge 13.1667 12

KD-NO 7.1666 12

D. Experiment with I/O-bound Jobs

Our second experiment only considers I/O-bound jobs that
demand for a lot of I/O usages and can generate high inter-
rack traffic loads, but would not result in significant CPU
usages. Therefore, we need to minimize congested ToR ports
as many as possible, for reducing the average job completion
time2. Fig. 10 compares the average job completion time in
the three experimental scenarios, which exhibits the similar
trends as those in Fig. 8. Table IV lists the results on the
total number of congested ToR ports and the total number
of inter-rack reconfigurations, which indicate that “KD-NO”
would not require more inter-rack reconfigurations than “NO
w/o Low-level Knowledge”, but its total number of congested
ToR ports is much smaller. All these results further confirm the
effectiveness of “KD-NO”, and specifically, it can adjust the

2We consider the I/O resources on each server is enough,i.e., there would
not be any I/O contentions, in the experiment.

12

inter-rack topology and the VMs’ inter-rack communication
schemes intelligently according to the traffic distribution in
the foreseeable future. Hence, the inter-rack links in the HOE-
DCN can be utilized wisely, and thus the completion time of
I/O-bound jobs can be shortened significantly.

TABLE IV
METRICS RELATED TOHOE-DCN OPERATION (SECOND EXPERIMENT:

I/O-BOUND JOBS)

Total Congested Total Inter-rack
ToR Ports Reconfigurations

NO w/o DCN Reconfiguration 24 0

NO w/o Low-Level Knowledge 24 12

KD-NO 0 12

E. Experiment with Mixed Jobs

Finally, the third experiment run both mixed jobs (i.e., both
CPU- and I/O-bound ones) in the Hadoop clusters, to test the
full capability of our KD-NO system. This time, the network
orchestration system needs to make decisions to coordinate
different types of applications, while without a proper design,
it may generate decisions that are in conflict with each other.

The results on average job completion time in Fig. 11 still
show the superiority of “KD-NO” over the two benchmarks.
The rationale behind the trends in Fig. 11 can be explained
with the results in Table V. As it does not invoke HOE-DCN
reconfigurations, “NO w/o DCN Reconfiguration” may need
to face simultaneous CPU contentions and traffic congestions.
This is confirmed by the higher CPU usage and the larger
number of congested ToR ports in Table V, when we compare
its results with those of “KD-NO”. Hence, the processing of
both types of jobs would be hindered to lead to longer average
job completion time. Without the proactive principle and low-
level knowledge, it would be difficult for “NO w/o Low-level
Knowledge” to make right decisions for the future. Therefore,
although it also invokes a few VM migrations and inter-rack
reconfigurations, it cannot avoid future CPU contentions and
traffic congestions as “KD-NO” does. As a result, its average
job completion time is longer than that of “KD-NO”.

F. Discussion

Note that, in a real HOE-DCN, the applications would be
much more various and complex than those considered in
our experimental demonstrations. For instance, in addition to
Hadoop workloads, there cloud be workloads from Spark and
TensorFlow too. However, no matter what types of workloads
get processed in the HOE-DCN, the operator always needs to
schedule IT and bandwidth resources proactively and timelyto
ensure high QoS. This is exactly what our KD-NO system is
designed to do. Therefore, although we only consider Hadoop
workloads in the experimental demonstrations, our KD-NO
system is not specifically designed for handling them. With
sufficient training and minor modifications, it should be able to
optimize the QoS of various applications running in the HOE-
DCN. In other words, the operation principle of our KD-NO
system is to extract the knowledge regarding matching degree

Cluster 1 Cluster 2 Cluster 3 Cluster 4
0

20

40

60

80

100

120

A
ve

ra
ge

 J
ob

 C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

NO w/o DCN Reconfiguration
NO w/o Low-Level Knowledge
KD-NO

Fig. 11. Average job completion time (third experiment: mixed jobs).

between the HOE-DCN’s configuration and the applications
running in it and to optimize the HOE-DCN on-the-fly, which
does not depend on the actual applications.

Meanwhile, we also need to admit that due to the limited
budget, our experimental demonstrations are still based on
a simplified and small-scale HOE-DCN testbed and only
consider Hadoop workloads. Although the testbed can be
treated as a prototype to confirm the effectiveness of our KD-
NO system in several simple use-cases, the generality and
scalability of our proposal still deserve further investigations.

VII. C ONCLUSION

In this paper, we proposed a KD-NO system for HOE-
DCNs, which follows the predictive analytics in human behav-
iors to first forecast VMs’ future demands on IT and bandwidth
resources and then find the optimal HOE-DCN configuration
based on the predictions. When collecting telemetry data about
the resource utilization in an HOE-DCN, our KD-NO system
analyzed the spatial and temporal correlations of the data,and
predicted future workloads and traffic matrix of VMs with
several DL modules to fetch the low-level knowledge. Next, it
leveraged the low-level knowledge for network orchestration.
We formulated the network orchestration problem as an MILP
model, proved itsNP-hard, and proposed a DRL-based online
algorithm. Specifically, based on the extracted knowledge,the
DRL-based AI modules could coordinate the IT and bandwidth
resources in the HOE-DCN on-the-fly, so as to achieve a high
matching degree between the HOE-DCN’s configuration and
the applications running in it.

To verify the effectiveness of our proposal, we built an
HOE-DCN testbed with KD-NO. The experiments run Hadoop
applications in the testbed, and demonstrated that our KD-
NO system can make timely and correct network orchestration
decisions in different experimental schemes by leveragingthe
two-level knowledge, and therefore largely reduce the average
job completion time. Moreover, we found that even though
low-level knowledge cannot be directly used for network
orchestration, it is indispensable in the overall KD-NO process.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Projects
61701472 and 61771445, CAS Key Project (QYZDY-SSW-
JSC003), NGBWMCN Key Project (2017ZX03001019-004).

13

TABLE V
METRICS RELATED TOHOE-DCN OPERATION (THIRD EXPERIMENT: M IXED JOBS)

Average Total CPU Total Congested Total VM Total Inter-rack
Usage (in levels) ToR Ports Migrations Reconfigurations

NO w/o DCN Reconfiguration 4 12 0 0
NO w/o Low-Level Knowledge 3.6771 12 6 18

KD-NO 0 2 10 18

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] K. Wu, P. Lu, and Z. Zhu, “Distributed online scheduling and routing
of multicast-oriented tasks for profit-driven cloud computing,” IEEE
Commun. Lett., vol. 20, pp. 684–687, Apr. 2016.

[3] “Cisco global cloud index: Forecast and methodology, 2016-
2021.” [Online]. Available: https://www.cisco.com/c/en/us/solutions/
service-provider/visual-networking-index-vni/index.html

[4] Y. Tian, R. Dey, Y. Liu, and K. Ross, “Topology mapping andgeolo-
cating for China’s Internet,”IEEE Trans. Parallel Distrib. Syst., vol. 24,
pp. 1908–1917, Sept. 2013.

[5] Z. Zhu et al., “RF photonics signal processing in subcarrier multiplexed
optical-label switching communication systems,”J. Lightw. Technol.,
vol. 21, pp. 3155–3166, Dec. 2003.

[6] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[7] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,”J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[8] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[9] N. Farrington et al., “Helios: A hybrid electrical/optical switch archi-
tecture for modular data centers,”ACM SIGCOMM Comput. Commun.
Rev., vol. 40, pp. 339–350, Oct. 2010.

[10] W. Lu et al., “AI-assisted knowledge-defined network orchestration for
energy-efficient datacenter networks,”IEEE Commun. Mag., in Press,
2018.

[11] H. Bazzazet al., “Switching the optical divide: Fundamental challenges
for hybrid electrical/optical datacenter networks,” inProc. of SOCC
2011, pp. 1–8, Aug. 2011.

[12] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud man-
agement for profit-driven multimedia cloud computing,”IEEE Trans.
Multimedia, vol. 17, pp. 1297–1308, Aug. 2015.

[13] H. He, Y. Zhao, J. Wu, and Y. Tian, “Cost-aware capacity provisioning
for internet video streaming CDNs,”Comput. J., vol. 58, pp. 3255–3270,
Dec. 2015.

[14] W. Lu et al., “Profit-aware distributed online scheduling for data-oriented
tasks in cloud datacenters,”IEEE Access, vol. 6, pp. 15 629–15 642,
2018.

[15] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[16] W. Lu et al., “Leveraging predictive analytics to achieve knowledge-
defined orchestration in a hybrid optical/electrical DC network: Collab-
orative forecasting and decision making,” inProc. of OFC 2018, pp.
1–3, Mar. 2018.

[17] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN:An intel-
lectual history of programmable networks,”ACM SIGCOMM Comput.
Commun. Rev., vol. 44, pp. 87–98, Apr. 2014.

[18] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[19] X. Wanget al., “PNPL: Simplifying programming for protocol-oblivious
SDN networks,”Comput. Netw., vol. 147, pp. 64–80, Dec. 2018.

[20] A. Mestreset al., “Knowledge-defined networking,”ACM SIGCOMM
Comput. Commun. Rev., vol. 47, pp. 2–10, Jul. 2017.

[21] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service chaining
in inter-DC elastic optical networks,”J. Opt. Commun. Netw., vol. 10,
pp. D29–D41, Oct. 2018.

[22] D. Borthakur, The Hadoop Distributed File System: Architecture and
Design. Apache Software Foundation, 2007.

[23] G. Wang et al., “c-Through: Part-time optics in data centers,”ACM
SIGCOMM Comput. Commun. Rev., vol. 41, pp. 327–338, Oct. 2011.

[24] K. Chen et al., “OSA: An optical switching architecture for data cen-
ter networks with unprecedented flexibility,”IEEE/ACM Trans. Netw.,
vol. 22, pp. 498–511, Apr. 2014.

[25] W. Fanget al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[26] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[27] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[28] S. Kandulaet al., “The nature of data center traffic: Measurements &
analysis,” inProc. of ACM SIGCOMM 2009, pp. 202–208, Aug. 2009.

[29] J. Guo and Z. Zhu, “When deep learning meets inter-datacenter opti-
cal network management: Advantages and vulnerabilities,”J. Lightw.
Technol., vol. 36, pp. 4761–4773, Oct. 2018.

[30] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[31] J. Jianget al., “Joint VM placement and routing for data center traffic
engineering,” inProc. of INFOCOM 2012, pp. 2876–2880, Mar. 2012.

[32] W. Fanget al., “VMPlanner: Optimizing virtual machine placement and
traffic flow routing to reduce network power costs in cloud data centers,”
Comput. Netw., vol. 57, pp. 179–196, Jan. 2013.

[33] B. Konget al., “Demonstration of application-driven network slicing and
orchestration in optical/packet domains: On-demand vDC expansion for
Hadoop MapReduce optimization,”Opt. Express, vol. 26, pp. 14 066–
14 085, 2018.

[34] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTo: Scaling deep rein-
forcement learning for datacenter-scale automatic trafficoptimization,”
in Proc. of ACM SIGCOMM 2018, pp. 191–205, Aug. 2018.

[35] S. Salmanet al., “DeepConf: Automating data center network topologies
management with machine learning,” inProc. of NetAI 2018, pp. 8–14,
Aug. 2018.

[36] “Open Network Automation Platform (ONAP).” [Online].Available:
https://www.onap.org/

[37] Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtualnetwork
function graph (vNFG) provisioning in multidomain elasticoptical
networks,”J. Lightw. Technol., vol. 35, pp. 2712–2723, Jul. 2017.

[38] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[39] S. Pan and Q. Yang, “A survey on transfer learning,”IEEE Trans. Knowl.
Data Eng., vol. 22, pp. 1345–1359, Oct. 2010.

[40] “Google Cluster-Usage Traces.” [Online]. Available:https://github.com/
google/cluster-data

[41] C. Reiss et al., “Towards understanding heterogeneous clouds at
scale: Google trace analysis,”Tech. Rep. ISTC-CC-TR-12-101, pp. 1–
21, Apr. 2012. [Online]. Available: http://www.pdl.cmu.edu/PDL-FTP/
CloudComputing/ISTC-CC-TR-12-101.pdf

[42] A. Weigend,Time Series Prediction: Forecasting the Future and Under-
standing the Past. Routledge, 2018.

[43] M. Garey and D. Johnson,Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, 1979.

[44] T. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv:1509.02971, Feb. 2016. [Online]. Available: https:
//arxiv.org/abs/1509.02971

[45] “collected.” [Online]. Available: https://collectd.org/
[46] “sFlow.” [Online]. Available: https://sflow.org/

