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Abstract—For datacenter networks (DCNs), it is always impor- cannot work around one of the most challenging demands for
tant to have an effective network orchestration scheme thatan DCNs, i.e,, an effective network orchestration scheme that
coordinate the usages of IT and bandwidth resources timelyln can coordinate the usages of IT and bandwidth resources

this work, we consider the hybrid optical/electrical DCNs HOE- . . . - . .
DCNs) and propose a knowledge-defined network orchestratio proactively and timely for ensuring various quality-ofsee

(KD-NO) system for them. The KD-NO system follows the pre- (Q0S) requirements [11-14]. This demand actually becomes
dictive analytics in human behaviors, which includes foreasting even more challenging in an HOE-DCN, since the addition

based on memory and decision making based on knowledge. Toof the OCS-based inter-rack network complicates its nekwor
explain the design of our KD-NO system, we first discuss how control and management (NC&M) [15, 16]. In other words, an

to fetch low-level knowledge from the telemetry data about he
resource utilization in an HOE-DCN. Then, we describe how HOE-DCN operator has more heterogeneous network elements

to optimize the HOE-DCN'’s configuration for network orches- (NES) to coordinate for maintaining a high matching degree
tration. Specifically, we design an online scheme based ona&e between the HOE-DCN's configuration and the huge volume
re_inforcement learning (DRL), and make_sure that it can extract  of network applications running in it.
high-level knowledge from the low-level input and come up vih With software-defined networking (SDN) [17-19], peo-
optimal HOE-DCN configurations on-the-fly. We prototype the - " chitect more programmable, effective and radiabl
proposed KD-NO system and demonstrate it in an HOE-DCN P prog - = . -
testbed. The experiments run Hadoop applications in the tabed NC&M for DCNs. However, the NC&M is still reactive, which
and show that our KD-NO system can make timely and correct means that the controller always makes decisions based on
decisions in different experimental schemes by leveraginghe the current network status. This would limit a DCN operator’
two-level knowledge, maintain a high matching degree bewven  .554hjlity of guaranteeing various and stringent QoS deisian
the HOE-DCN’s configuration and the applications running in Theref tth ¢ i d agility of the NC&M
it, and thus effectively reduce the job completion time. ) ereiore, we eXPeC € automation an, agiity o .e
in HOE-DCNs to involve knowledge-defined networking (KD-
Index Terms—Datacenter networks (DCNs), Network orches- N) [20, 21]. KDN is essentially the symbiosis of SDN and
tration, Knowledge-defined networking (KDN), Deep learnirg, ii ',I intelli AD. Specificall ith th tized
Deep reinforcement learning, Artificial intelligence (Al). artificia _'nte igence (Al). Speci !Ca y_’ W't_ the centrze
control in SDN, the operator visualizes its HOE-DCN by
collecting rich telemetry data proactively, and then,veleges
|. INTRODUCTION Al-assisted data analytics to abstract knowledge from #ita d

ECENTLY, due to the rapid development of cloudhrough deep learning (DL) or deep reinforcementllgarning
R computing and Big Data analytics [1, 2], cloud traffid DRL) apd uses t_he knowledge to reach smart decisions for
has been increasing exponentially, the majority of which fAutomatic and agile NC&M. _ _
within datacenters (DCs) [3, 4]. Hence, DC networks (DCNs) The actual implementation of KDN in HOE-DCNs still
are facing challenges to accommodate such enormous trai@i€es @ few open and challenging problems. First of all, to
cost-efficiently with sustainable technologies. Compasétti ~ Satisfy the QoS requirements of applications, the KDN-base
electrical packet switching (EPS), optical circuit switaf ;cheme needs to lorchestrate_ the IT and bandwidth resources
(OCS) provides larger bandwidth capacity and consumes Ié3s@h HOE-DCN, i.e, managing not only the NEs in the
power [5-8]. To this end, the hybrid optical/electrical DC,\ERS/OCS—based inter-rack netwo_rks but also the virtual ma-
(HOE-DCN) architecture that can seamlessly integrate tf8ines (VMs) and the servers. This escalates the KDN-based
benefits of EPS and OCS has attracted intensive interests fyC&M to knowledge-defined network orchestration (KD-
both academia and industry [9, 10]. NQ). Secondly, the amoupt of te!emgtry d_ata could be large,

The top-of-rack (ToR) switches in an HOE-DCN are inwhile the useful information bL_med in it is usually sparse.
terconnected by two inter-rack networks based on EPS afgW to extract knowledge from it would be an interesting but

OCS, respectively. Although HOE-DCNs are promising, the%}wallenging prqblem. Finally, the knowledge extractedr_fro
telemetry dataj.e., the future trends of IT and bandwidth
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between the HOE-DCN's configuration and the network ajbout three problemsg., routing the inter-rack traffic among
plications running in it, to make wise decisions. VMs, configuring the OCS and EPS inter-rack networks, and
In this work, we develop a KD-NO system for HOE-placing VMs in the server racks.
DCNs by extending our preliminary study in [16], to address The studies in [9, 23, 24] considered how to configure the
the aforementioned problems. The KD-NO system follow@CS and EPS inter-rack networks in an HOE-DCN, for satis-
the predictive analytics in human behaviors. Specificatly, fying VM traffic demands. However, they still have limitatis.
first forecasts VMs' future demands on IT and bandwidtRirstly, they either configured an HOE-DCN reactively based
resourcesi(e., forecasting based on memory) and then findsn current network status, or just predicted future trafiiogh-
the optimal HOE-DCN configuration based on the predictiohg without considering its temporal and spatial correlasip
(i.e., decision making based on knowledge). Here, the HORhich is known to be harmful for maintaining the prediction
DCN configuration refers to how to place the VMs in servesiccuracy [28, 29]. Secondly, they did not discuss how to
racks and how to route the VM traffic through the EPS/OCS$econfigure the inter-rack networks to address dynamitidraf
based inter-rack networks. To accomplish the predictive atlemands. Lastly but most importantly, they did not tackke th
alytics, our KD-NO system collects telemetry data regagdirM placement problem [30] and thus the IT resource usages
the resource utilizations in the HOE-DCN, analyzes theiapatin the HOE-DCNs might not be well coordinated.
and temporal correlations of the data, and predicts futureThe joint optimization of VM placement and inter-rack traf-
workloads and traffic matrix of VMs with several DL moduledic routing in traditional EPS-based DCNs has been addressed
(i.e. fetching the low-level knowledge). Then, it leverages thia [31-33]. Nevertheless, due to the absence of the OCSibase
low-level knowledge for network orchestration, which is-fo inter-rack network, their solutions cannot be directly lagap
mulated as a mixed integer linear programming (MILP) mod& HOE-DCNs, and more importantly, they did not tried
and is proven as aWP-hard problem. Hence, we design do leverage DL/DRL to realize proactive and agile network
DRL-based online scheme to solve it, which extracts higlrchestration. More recently, people try to incorporate DL
level knowledge from the low-level input and gets optimabr DRL in the network orchestration of DCNs [34, 35].
HOE-DCN configurations on-the-fly. However, these studies neither covered the full spectrum of
We prototype the proposed KD-NO system and expetkD-NO nor introduced multiple Al modules to optimize the
mentally demonstrate it in a small-scale but real HOE-DCNetwork orchestration collaboratively. In terms of theteys
testbed. The experiments run Hadoop applications [22] &ichitecture of KD-NO, the open network automation platfor
the testbed to evaluate our proposal. The results show tH&NAP) [36] laid out the modular design to coordinate the
1) the KD-NO system can accurately predict the workload$ and bandwidth resources in a DCN to follow the loop of
and traffic matrix of the VMs running Hadoop applicationsgollection, analysis, and decision making. This provides u
i.e, fetching the low-level knowledge successfully, 2) it cathe blueprint to architect our KD-NO system. But as ONAP
coordinate the IT and bandwidth resources in the HOIPutits emphasis on orchestrating virtual network funciome
DCN timely without disturbing the active applications, an@xtend it to consider general DCN applications and to leyera
3) taking the low-level knowledge as inputs, the DRL-baseuultiple Al modules and multi-level knowledge, for making
online scheme can extract and learn the high-level knovdedgmart decisions to configure an HOE-DCN.
quickly, and make wise decisions proactively to maintain a
high matching degree between the HOE-DCN'’s configuration I1l. SYSTEM ARCHITECTURE

and the applications running in it. _ In this section, we explain the system architecture of the
The rest of the paper is organized as follows. Section |oe.pcN with KD-NO. which is illustrated in Fig. 1.
reviews the related work. In Section Ill, we introduce the ’

architecture of our KD-NO system. The designs for fetchin , i )
the low-level knowledge about an HOE-DCN are discuss Hybrid Optical/Electrical DCN (HOE-DCN)
in Section 1V, while how to extract the high-level knowledge Fig. 1(a) shows the data plane of the HOE-DCN, where
and use it for proactive network orchestration are presentéie VMs in server racks can have inter-rack communications
in Section V. We show the experimental demonstrations through either a hierarchical EPS-based inter-rack nétwor
Section VI. Finally, Section VII summarizes the paper. built with ToR, aggregation, and core switches, or a flat OCS-
based inter-rack network that interconnects ToR switchids w
an optical switch. Hence, for the inter-rack traffic between
VM pair, we have the flexibility to route it through one of the
The architectures of HOE-DCNs were proposed in [9, 28y0 inter-rack networks, depending on its characteristicd
24] to seamlessly integrate the advantages of both EPS ahe current and foreseeable status of the inter-rack nkswor
OCS. These proposals can potentially address the bandwidtin addition to the network part, the data plane also contains
crunch and ever-increasing energy consumption in DCNsgrvers organized in racks, where VMs can be deployed to
and the transition from the traditional DCNs to them carun applications. The VMs consume IT resources, such as
be conducted smoothly. Meanwhile, to fully explore the ad=PU cycles, memory, and disk space. Where to place the VMs
vantages of HOE-DCNs, an effective network orchestratiags an interesting problem in the network orchestrationg¢esin
scheme would be required to coordinate the IT and bandwidts solution affects not only the IT and bandwidth resource
resources in them [11, 25-27], which generally needs toywomsages in the HOE-DCN but also the QoS metrics of the VMs’

II. RELATED WORK
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Fig. 1. System architecture of HOE-DCN with KD-NO, VM-TA: VMaffic agent, VM-WA: VM workload agent, IT-C: IT controlleR&TD: IT resource
and traffic database, VM-W&T-M: VM workload and traffic mamit VM-W&T-P: VM workload and traffic predictor, NET-C: netwk controller, TED:
traffic engineering database, NAM: network abstraction a@dNOrch: network orchestrator, NOA: network orchestratagent, ED: experience database,
NOSA: network orchestration substitute agent.

applications [37, 38]. For example, if we place two VMs wittbut also forecasts. Specifically, the IT-C incorporates Bie
a huge bandwidth demand in between in two racks whobased Al modules to predict future VM workloads and traffic
inter-rack bandwidth capacity is very limited, they wouldnatrix, based on historical telemetry data, while the NOrch
have difficulty to run their service while the communicatiotakes the predictions and current network state as inputs an
bottleneck caused by them would also disturb other VMs Iaverages two DRL-based Al modules to determine the optimal
the two racks. Therefore, a high matching degree between th@E-DCN configurations on-the-fly.
HOE-DCN’s configurationi(e., the VM placement and traffic  The details regarding the three modules are as follows.
routing scheme) and the applications running in VMs is vital 1) IT-C: The VM workload and traffic monitor (VM-W&T-
for achieving effective network orchestration. This essdly M) in it receives the telemetry data collected by the VM-
motivates us to propose the predictive analytics based KDAs and VM-WAs in Fig. 1(a), and stores the data in the IT
NO. The KD-NO requires us to collect and predict the VMsfesource and traffic database (R&TD). Then, based on the his-
workloads and the traffic matrix among them. Hence, werical data in R&TD, the VM workload and traffic predictor
deploy a VM traffic agent (VM-TA) on each server to collec{vM-W&T-P) forecasts future workloads and traffic matrixes
the matrix of the traffic going in/out the local VMs, whilefor the VMs. The IT-C then reports the current and predicted
for each VM on the server, we assign a VM workload agesM resource demands to the NOrch for it to orchestrate the
(VM-WA) to monitor its workload. HOE-DCN, and will implement the corresponding instruction
with the VM management module.

2) NET-C: The network abstraction module (NAM) in it
abstracts the topology of the inter-rack networks, mositbe

We design the knowledge-defined control plane to includendwidth usages on switch ports, and stores the results in
three modulesj.e., the IT controller (IT-C), network con- the traffic engineering database (TED). Meanwhile, the TED
troller (NET-C), and network orchestrator (NOrch) in Figalso collects the information about traffic routing througk
1(b). Here, the IT-C manages the VMs deployed in serversgtwork management module. Then, the NET-C sends the
while the NET-C configures the inter-rack networks to routeetwork status in TED to the NOrch for it to make network
traffic through them. Meanwhile, the IT-C and NET-C collecbrchestration decisions, and will implement the corresiog
telemetry data regarding the data plane, the IT and band- instructions with the network management module.
width usages and information about VM traffic, and extract 3) NOrch: The DRL-based network orchestration agent
knowledge from the data. This step of knowledge extractiqhOA) in it periodically receives the low-level knowledge
is necessary because the amount of telemetry data is usuabiput the data plane from the IT-C and NET-C, and puts
large while the useful information buried in it is sparse. it in a trained neural network for abstracting the high-leve

However, as the IT-C and NET-C cover different parts dénowledge, which can be utilized to make wise decisions on
the data plane, the extracted knowledge from them is stif-fr configuring the HOE-DCNj.e., reconfiguring the inter-rack
mented and thus cannot be directly utilized for making wisgetworks, migrating VMs, and rerouting the inter-rack ficaf
decisions on configuring the HOE-DCN. Therefore, we placio train the DRL-based NOA for intelligent decision making,
the NOrch on top of them for coordination, which analyzes thege incorporate both an experience database (ED) and a DRL-
low-level knowledge from the IT-C and NET-C to obtain thdased network orchestration substitute agent (NOSA) in the
high-level knowledge about the matching between the HOEOrch. Here, the NOA and NOSA use the same architecture
DCN’s configuration and active applications. Then, the NOrdor their neural networks. During operation, the NOA stores
instructs the IT-C and NET-T to coordinate the IT and bandhe network state, action, reward and next state as an entry
width resources in the HOE-DCN. Here, the low/high-levedf experience in the ED, after each decision making. When
knowledge provides us with not only historical informatiora batch of enough experience entries has been stored in the

B. Knowledge-Defined Control Plane



ED, the NOSA trains itself with them, and then updates ththe IT-C, and leverage transfer learning [39] to adjust them
neural network in the NOA with the training result. By doingor maintaining high forecast accuracy during operatiomisT
so, the NOrch utilizes the NOA for making decisions in afurther reduces our efforts on developing the IT-C.

online manner, while the NOSA works in the background to We conduct a simple experiment involving Hadoop appli-

train its neural network simultaneously. cations to further explain the aforementioned procedure in
details. We have a Hadoop cluster with three VMs, which
IV. FETCHING LOW-LEVEL KNOWLEDGE ABOUT processes CPU-bound and 1/0-bound jobs generated acgordin
HOE-DCN to the job arrival distributions in the cluster data tracesased

y Google [40, 41]. In the experiment, the original diurnal
ttern of the jobsif. for 24 hours) gets scaled down to
minutes. The VM-WAs report the VMs’ CPU and 1/0
workloads everys seconds. One VM is the name-node and
the other two are the data-nodes.

A. Collection of Network Status in NET-C Figs. 2(a) and 2(b) show the collected CPU and I/O work-
As traffic collection is handled by the VM-TAs deployed0@ds of the VMs in an hour (experiment time). We observe
on the serversig, in Fig. 1(b)), the NET-C needs to abstracthat both the CPU and /O workloads of the name-node are
the feasible inter-rack topologies, each of which repressan Much lower than those of the two data-nodes, respectively.
configuration of the EPS/OCS-based inter-rack networks I&'€refore, the screening process should only treat the two
interconnect the ToR switches, collect the set of availabf@ta-nodes as the major contributors of IT workloads. Mean-
ToR switch ports in each inter-rack topology, and moniter tAvhile, by comparing the CPU and 1/O workloads of the two
bandwidth usages on the currently-used parés €lectrical or data-nodes, we can see that they are highly correlated over

optical). These three items compose the low-level knowsed§me- Specifically, the cross-correlation of the two datales’
from the NET-C to the NOrch. Among them, the first twd-PY workloads i$4.60%, while that of thelr_I/Q worklgads
are the static configurations that help the NOrch model t#99-12%. Hence, the VM-W&T-P’s complexity in predicting
HOE-DCN, while the third one is dynamic and reflects thi'® IT workloads of the VMs can be reduced by considering
current network status. Here, we consider a congested portR€ VMs as a correlated VM groupg., the DL models trained

a “hot-spot” in the HOE-DCN, and its total number shouldor predicting the IT workloads obata-nodel can be reused
be minimized in the KD-NO. Hence, we define a few discref@ forecast those obata-node2. o

levels to quantify the bandwidth usage of a port, such thet th Next,.before proceeding to IT workload pre_dlctlon, we need
usage is represented by a much more abstracted informat®nconfirm that the workloads follow certain patterns and

model to restrict the optimization space for the NOrch. ~ thus are actually predictable. Hence, we calculate the-auto
correlations [42] of the IT workloads, and Figs. 3(a) and)3(b

_ o _ show the results foData-nodel, where the light blue area

B. Collection and Prediction of VM Workloads in IT-C in each plot denotes the region whose confidence level is

We allocate a VM-WA on each VM to monitor its workloadsbelow 95%. The auto-correlation results f@ata-node2 are
in terms of CPU and I/O usages. The collected telemetry daiailar since the two data-nodes are highly correlated over
is analyzed by the IT-C for predicting future VM workloaddime, and thus we omit its results here. We observe that the
and extracting low-level knowledge. Note that, there miglauto-correlations of both CPU and 1/0O workloads fluctuate
be numerous VMs in the HOE-DCN, and thus analyzing amwith certain pattern, which indicates that the IT workloads
predicting the workloads of all the VMs would not be af Data-nodel repeat themselves approximately after certain
scalable solution. We have to admit that this scalabiligués durations and thus are predictable.
is still an interesting and open question in the KD-NO, but it As the IT workloads are predictable and the prediction
can be relieved by the following considerations and prooedutechnique for a time series is quite mature [42], we design

It is obvious that the VMs on a server would not contributthe VM-W&T-P in the IT-C with long short-term memory
equally to its IT workloads. Actually, the contributionsutd based neural networks (LSTM-NNs). To adapt to the dynamic
have difference in magnitude scale. Therefore, we proposdTaworkloads in an HOE-DCN, we also implement transfer
simple “screening” process to only select the major contriblearning in the VM-W&T-P. Specifically, for each IT workload
tors for analysis and prediction. Taking the Hadoop appica predictor, we have offline and online training phases. In
[22] as an example, the VM that runs its name-node usuatlye offline training, we train the predictor with historical
has much less CPU and 1/O usages than those runningdtda regarding the corresponding IT workload. To effetive
data-nodes. Hence, the screening process would just ignaeduce the predictor’s complexity and the optimizationcgpa
the name-node VM. Secondly, even for the major contribytoia the NOrch, we do not just use the collected time series of
we might not need to train specific DL modules to analyze IT workload as its input, but summarize the samples over
and predict their IT workloads, considering their corrielas. a certain period€.g, 1 minute in our experiments) to obtain
For instance, in the Hadoop application, the data-node VMs aggregated time series and input the aggregated data to th
can have highly-correlated CPU and 1/0O usages over tim@edictor. And in the proces95% of the aggregated data is
To this end, for highly-correlated IT workloads, we justitra used as the training set while the remainii{g is the testing
one DL model for all their predictors, apply the predictars iset. After that, the predictor is put in the VM-W&T-P and it

In this section, we elaborate on how the NET-C and I1-
C collect telemetry data in the HOE-DCN and extract usef
information {.e., the low-level knowledge) from it.
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enters the online training. Specifically, the predictorefmsts forecast the corresponding IT workloads Déta-node2, the

the volumes of its corresponding IT workload in future seevi prediction accuracy is still reasonably high, which supgor
cycles using the trained LSTM-NN, and after the actual Idur decision to treat the VMs as a correlated VM group. On
workload has been collected, it adds this newly-collect&ta d the other hand, the online training is conducted for the-data
in its training set to retrain and update its LTSM-NN. Not@odes’ predictors for six service cycles and we average the
that, we select the period of sample aggregation such tkat tesults to put in Table I. It can be seen that the online taini
tradeoff between the predictor's complexity and the NGschtakes much shorter time to update the LSTM-NNs and the

effectiveness can be balanced well. prediction accuracy is still maintained reasonably high.
TABLE | TABLE Il
RESULTS ONIT WORKLOAD PREDICTIONS RESULTS ONTRAFFIC PREDICTION
Offline Training Offline Training
CPU /0 Prediction Accuracy| Training Time
Prediction | Training | Prediction | Training Data-nodel — Data-node2 91.6% 29.15 sec
Accuracy | Time (sec) | Accuracy | Time (sec) Online Training
Data-nodel 90.7% 24.08 91.0% 23.75 Data-nodel — Data-node2 89.8% | 1.13 sec
Data-node2 85.7% - 86.5% —
Online Training
Data-nodel | 87.2% 1.15 89.4% 1.42 C. Collection and Prediction of VM Traffic Matrix in IT-C
Data-node2 82.3% 1.23 84.1% 1.35

Fig. 1(a) indicates that the VM-TA on each server collects
the traffic matrix of the local VMs and reports it to the IT-C.

Table | summarizes the results regarding the LSTM-NNEhe proposal discussed in the previous subsection can also b
for IT workload prediction. As we only train the LSTM-NNsapplied to fetch low-level knowledge from the traffic datandA
for Data-nodel’s IT workload predictors, the time of thefor the experiment, the measurements on the traffic among the
offline training forData-node2’s predictors is absent. For theVMs are plotted in Fig. 2(c). The screening process detezmin
offline training, the accuracy obata-nodel’s predictors is that in Fig. 2(c), the major contributor is the traffic betwmee
that on its testing set, while the accuracy Déta-node2’'s the two data-nodes. Meanwhile, the auto-correlation of the
predictors is calculated on all of its historical data. Weatve traffic betweerData-nodesl and 2 in Fig. 3(c) suggests that
that the offline training achieves relatively high prediati the traffic is predictable. Hence, we still use an LSTM-NN
accuracy foiData-nodel on both CPU and I/O workloads. Infor the traffic prediction and train it with both the offline
the meantime, if we apply the predictors Data-nodel to and online phases. Similar as the IT workload predictor, the



traffic predictor also aggregates historical traffic sammad .
use the aggregated data as its input. Table Il summarizes the
results regarding the traffic predictor. Note that, to festhe .
optimization space of the NOrch, we further define a few
discrete levels to quantify the predictions of IT workloatla .
inter-rack traffic volume, so that they can be representdd wi

a much more abstracted information model. .

V. ABSTRACTING AND UTILIZING HIGH-LEVEL
KNOWLEDGE ABOUTHOE-DCN .

In this section, we discuss how to leverage the low-level ®
knowledge regarding the data plane for network orchestrati  *®
We formulate the network orchestration problem as an MILP *
model, prove its\P-hardness, and then design a DRL-based °
online scheme to orchestrate the HOE-DCN, which can extract®
high-level knowledge from the low-level input and come up
with optimal HOE-DCN configurations on-the-fly. *

A. Optimization in Network Orchestration

The network orchestration to coordinate the IT and band-.
width resources in the HOE-DCN is actually an optimization
problem. Specifically, based on the collected and predicted
results on VM workloads and traffic matrix, we should opti- °
mize the configuration of the inter-rack topology, the |dmas
of the VMs, and the routing scheme of VM traffic, such that ®
the number of hot-spots.€., degraded VMs due to overloaded
server$ and congested ToR switch ports) in foreseeable future®
can be minimized for ensuring high QoS to the applica-
tions. Meanwhile, during the process, the operating exggens °
(OPEX) of network orchestration.¢., VM migrations and
reconfigurations on inter-rack topology) should be minigdiz
as well. This particular optimization problem is formulces:

Parameters °

« V: the set of VMs currently running in the HOE-DCN.

o R: the set of ToR switches in the HOE-DCN. ®

o S: the set of servers in the HOE-DCN.

o S, the set of servers under ToR switehe R.

o P,: the set of ports in ToR switch € R for inter-rack

w¢: the predicted workload of VM in terms of CPU
usage, during the next provisioning cycle.

w?: the predicted workload of VMv in terms of 1/0
demand, during the next provisioning cycle.

w; ,: the predicted traffic from VM to VM «’, during

the next provisioning cycle.

P . the set of available ports for the communication
from ToR switchr to ToR switchs’/, when inter-rack
topology G is used.

CZ: the total IT resources on serveiin terms of RAM.
CC: the total IT resources on serverin CPU usage.

CP: the total IT resources on serveiin disk space.

WE': the threshold on CPU workload for server

W!: the threshold on I/O workload for server

«: the parameter that weights the cost of one hot-spot
due to either a congested port or a degraded VM.

(: the parameter that weights the cost of a VM migration.
~: the parameter that weights the cost of an inter-rack
topology reconfiguration.

M: a positive number is big enough to ensure that the
related inequalities are correct.

Variables:

Z,,s: the boolean variable that equals 1 if we run iM
on servers, and 0 otherwise.

yq: the boolean variable that equals 1 if inter-rack topol-
ogy G is selected, and O otherwise.

¥ . the boolean variable that equals 1 if Vivuses port

p in TOR switchr to talk with VM +/, and O otherwise.
m,: the boolean variable that equals 1 if we need to
migrate VM v, and 0 otherwise.

m: the boolean variable that equals 1 if we need to
reconfigure the inter-rack topology, and O otherwise.

gs. the boolean variable that equals 1 if serveris
overloaded, and 0 otherwise.

g, the boolean variable that equals 1 if the performance
of VM wv is degraded, and O otherwise.

gr.p- the boolean variable that equals 1 if pprin ToR
switch r is congested, and O otherwise.

communications, and we assume that each ToR switchObjective:

has the same number and types of ports.

For jointly minimizing the number of hot-spots and OPEX

« by, the linerate of inter-rack poyt € P, in a ToR switch. due to DCN reconfigurations, the objective is defined as

o L,: the threshold on date-transfer time when using port
p € P. in a ToR switch.

o G: the set of feasible and considered inter-rack topolo-
gies, where eacti(R, E) € G indicates how all the ToR
switches are connected with the links #h Here, a link
can be either electrical or optical.

o fe: the binary indicator that equals 1 if the HOE-DCN
is using inter-rack topologys, and O otherwise.

o cl: the IT requirement of VM in terms of RAM usage.

o ¢ the IT requirement of VM in terms of CPU usage.

o cP: the IT requirement of VMv in terms of disk space.

o l, s the binary indicator that equals 1 if VM € V' is
currently running in serveg € S, and 0 otherwise.

IFor a server that runs multiple VMs simultaneously, if théatcCPU
or total 1/O workloads on it exceeds certain thresholdspeetvely, the
performance of all the VMs will be degradeicg., the server is overloaded.

Minimize « - <ng + Zgr,p> +5- va +v-m. (1)
v r,p v

Constraints:

ZZxU,S:L Yv e V.

rTERSES,

@)

Eq. (2) ensures that each VM is deployed on a server.

Z Tou,s -cf‘ < C’f, Vre R, s€S,, 3)
veV
va,s-cfng, Vre R, s €Sy, 4)
veV
S a,.-cl <CP, VreR, ses,. )

veV



Egs. (3)-(5) ensure that the IT resource capacities of easihce the restriction makes variablgs,, m, andm irrelevant

server are not exceeded. to the optimization. Meanwhile, it is easy to verify that et
Z o =1 ©) restricted problem, the objectiye g, can only bed, 1, ..., |V].
Gea When we restrich_ g, = 0, which is equivalentto g5 =

Eq. (6) ensures that only one inter-rack topology is setecteq (referring to Eq. (14)), the optimization of the restricted

o o Yo+ Tos + Ty problem becomes a decision problem: Given a set of VMs

Yoo €V, rr €R, s€ Sy,

vl = 3 (7) v €V, each of which has a two-dimensional (2D) resource
s €8y, GEG, pEPgry: vV T #7 Wl >0, requirement{w<, w!}, and a set of servers € S, each of
which also has a 2D resource capadty’S, W}, whether
Yo oAb <1 VeV, nr' R, there exists a feasible solution to pack all the VMs in the
PEFG (8) servers such that the servers’ resource capacities wotiloleno
$€8,, s €8y, GEG: vV 1 £ wh >0, exceededife, > gs = 0 subject to Egs. (2), (12) and (13))?
S 2P >y wes F o — 2 Vo, €V, 1 €R, This decision problem is essentially a 2D knapsack problem,
pEPG ot if we treat the VMs and servers as items with 2D sizes and

boxes with 2D capacities, respectively. It is known that2Bbe
(9) knapsack problem i&/P-hard [43]. Hence, since the restricted
Egs. (7)-(9) ensure that if there is traffic between two VMe&ase of the network orchestration problem is the general cas
(e, w? , > 0) and the VMs are located in different racksOf & known\/’P-hard problem, we prove it§P-hardnessm
a port has be allocated on both end ToR switches to support _
the inter-rack communication between them. C. DRL-based Network Orchestration
Since the network orchestration problemAN&P-hard and
a hand-crafted heuristic for it would have difficulty to atlap
Eq. (10) determines whether a VM needs to be migrated. to the dynamic environment in an HOE-DCN, we decide to
solve it by leveraging DRL. An important advantage of our
m 2y (1-fa), VGEG. 11 DRL-based approach is that based on its experience, the Al
Eq. (11) determines whether the inter-rack topology needsfodule can make wise KD-NO decisions timely in an online

s€8,, s €S, GGG:v#v/,r#r',wav/>0.

My > Tos - (1=lvs), YreR, s€S,, veV (10)

be reconfigured. manner. The DRL model is designed as:
« State stateS; refers to the state of the HOE-DCN at time
Mg, > <Z Tos .w§> ~WE, WreR, seS., (12) instanti, which includes the current inter-rack topology,
vev IT resource requirements of VMs in RAM usage, CPU

usage and disk space, VM locations, predicted CPU and
Mg, > (Z Tos .w1{> ~WI, YreR, seS. (13) I/0 workloads and traffic matrix of VMs, and ToR switch
ports used for VMs' inter-rack communications.

Egs. (12) and (13) determine whether a server is overloaded ACtion: action A; is the action taken at time instant

due to CPU over-usage or the exhaustion of I/O resources. ~ » Which includes the selected inter-rack topology, new
VM locations, and new ToR switch ports selected for

Gv>9gstTus—1, VreER, s€S, veV. (14) VMs’ inter-rack communications. Here, we encode each
element in an action as an integerg, the inter-rack
network topology is encoded as an integer withinG|].

« Reward: rewardR; of action A; is calculated by taking

e T the opposite number of the result from Eq. (1).
M- grp 2 Z Zylt *Wor | =bp-Lp, VreR, pePr As both the state and action spaces are relatively large in
A (15) our DRL model, we leverage the deep deterministic policy

Eq. (15) determines whether a ToR switch port is congestedf2dient (DDPG) [44] to design its operation procedure. The

rationale for choosing DDPG is two-fold. Firstly, it adofts

Actor-Critic learning strategy to avoid the difficulty oftéen s-

election due to the need of traversing the entire action tatd s

Theorem. The network orchestration problem gP-hard.  spaces whose sizes are relatively large. Secondly, it quesbi

policy gradient with Q-learning and lets them learn fromheac

ofther, and thus achieves improved learning efficiency. DDPG

Nas a dual neural network architecture, namely, Actor and

Critic, respectively. Actor uses a deterministic policyadient

antion 1er(S;) to select an action directly.e.,

veV

Eq. (14) determines whether the performance of a VM is
degraded due to server overload.

B. Hardness Analysis

Proof: We prove theA"P-hardness of the problem by
restriction, which means that we restrict away certain
its aspects until a knowgV’P-hard appears [43]. We first
remove all the constraints except for Egs. (2), (12)-(14e,
the network optimization problem becomes a VM placeme
problem whose optimization objective is Ai = por (Si), (17

Minimize ng (16) where? is the parameter in Actor. Critic uses a Q-function
Qo (S;, A;) to evaluate the Q-value of actiok; in stateS;,

v



and transmits the action gradiente( Va,Qa(S;,A;)) to  Algorithm 1: DRL-based Network Orchestration in NOrch
Actor, for increasing the probability of selecting the aoti | Thread I Online Operation
that has a larger Q-value. Hem! is the parameter in Critic.

As ) ] ; 2 for each service cycldo
Actor optimizespg»(S;) using the policy gradient 3 NOA receives stat®,; from IT-C and NET-C;
1 4 NOA takes actionA; according to Eq. (17);
Vord & > XY, (18) s NOA legalizesA; according to certain rules;
i=1 6 NOA calculates reward®;;
where N is the iterations in training, and; and Y; are 7 NOA stores{S;_1,A;_1,R;_1,S;} in ED;
the gradients ofug» (S;) and Qe (S;, A;), respectively. The s IT-C and NET-C configure HOE-DCN;
gradients are calculated as 9 end
10 End
{Xi = Vorpior (Si), (19) 11 Thread II: Training in Background
Yi=Va, Qoo (Si Ad), 12 | for each training episodeo
where according to Eq. (17J; in Y; equalsug»(S;) in Y;. 13 NOSA updates{#*’, 69"} with Egs. (18)-(20);
Critic optimizes Qye (S;, A;) by minimizing the squared 14 if certain iterations have been passed since the
loss between the expected and estimated Q-vaiiees, last updatethen
15 | NOA updates{6”,6%} with Eq. (21);
L:ihijww»Q (Siv1,Ais1) — Qa(Si, Ai))%, (20) 16 end
N &~ ' e S e 17 end
18 End

wherek is a discount factor any is the iterations in training.
We realize the DRL-based network orchestration with the

two DRL-based agents in the NOrdhe(, the NOA and NOSA EPS-based Inter-Rack

in Fig. 1(b)). Here, the NOA and NOSA have the same neural

network architecture that includes both Actor and Critied a /\/\
their parameters ardd?, 69} and {67 69}, respectively. CPU Wordoad CPU Workioad
Algorithm 1 shows the detailed procedure of the DRL-based 10 Wiz Loltorkiad

network orchestration in the NOrch. There are two threads,
which are for the online operatiohifies1-10) and training in :

paysabuo) aiop

backgroundl(ines 11-18), respectively. On one hand, in each [ w ]

service cycle, the NOA receives the current stdrom the L_VMPool 1| | _VMPool il [l _VMPool _1f  NotConnected
IT-C and NET-C (ine 3), takes network orchestration action < 2 ey

A, according to Eq. (17)Line 4), legalizesA; to satisfy the s '1'_" 7 = '

constraints in previous subsectidrr(e 5), and calculates the OCS-based Inter-Rack™ * = + = * -’

correspondlng rewar®; by taklng the opposite humber OfFig. 4. Example on high-level knowledge regarding the miatchdegree

the result from Eq. (1)Line 6). Then, the IT-C and NET-C petween HOE-DCN's configuration and applications runnimg.i
configure the HOE-DCN accordingly to coordinate the IT and

bandwidth resources in it.{ne 8). Before the next cycle starts,

the NOA stores{Si,Ai,Ri, Siy1} in the ED as an entry of tcpe HOE-DCN, and withAlgorithm 1, it makes wise network
experience l(ine 7). On the other hand, in each backgroun : L . .
orchestration decisions to improve the matching degree.

training episode, the NOSA performs training based on the
experience in ED and updates parameférs, < } according
to Egs. (18)-(20) (ine 13). Meanwhile, after certain training

iterations, the NOA updates its parametét®, 69} (Lines In this section, we first briefly explain our system imple-
14-16) with the following rules: mentation and experimental setup, and then perform three

experiments to demonstrate the effectiveness of our pebpos

VI. EXPERIMENTAL DEMONSTRATIONS

{mznfm+u—mymﬂ/ 1)

0° =10 0%+ (1—1q) 07, A. System Implementation

wherer, andrg are the small coefficients for stable learning. We prototype a small-scale but real HOE-DCN testbed,
Fig. 4 gives an illustrative example on the high-level knowland implement the proposed KD-NO system in it, which is

edge regarding the matching degree between the HOE-DCN&veloped with Python 3.6 and uses the machine learning

configuration and the active applicatiorisz., a state seen library of TensorFlow.

by the NOrch. Here, we assume that there are three rackd) Data Plane: It is built with a few Linux servers orga-

and each of their ToR switches possesses an optical port thiaed in four racks, hardware-based OpenFlow switches, and

can be used to route traffic through the OCS-based inter-rackeconfigurable optical switch, as shown in Fig. 5. The Open-

network. Hence, only one pair of the ToR switches can use tRlow switches are the ToR, aggregation and core switches in

OCS-based inter-rack network at a time. With the high-levéie EPS-based inter-rack network whose connections aeelbas

knowledge in Fig. 4, the NOrch can easily identify hot-spots on 1GbE. Meanwhile, the optical switch gets connected to the
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Experimental setup of the HOE-DCN prototype with KID.
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10GDbE optical ports on all the ToR switches to form the OC¢
based inter-rack network. Each server in a rack is connéotec
its ToR switch through a 1GbE port. The switching time of th
optical switch is around 00 milliseconds, which might still

be an issue for applying optical switching in DCNs. Howeve
with accurate knowledge abstraction, our KD-NO system can
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bypass this issue to certain extent. More specifically, tBe K Fig. 6. Operation procedure of our KD-NO system in experitsen

NO system not only tries to minimize the number of inter-rack
reconfigurations, but also leverages the prediction redolt
conduct inter-rack reconfigurations in advance with theKeaa
before-break” scheme. Hence, the interruption on intek-ra
elephant flows caused by optical switching can be avoided.

2) Control Plane: To realize the IT-C, we leverage the
OpenStack cloud platform and develop the VM management
module with OpenStack APIs. Moreover, we implement the
VM-W&T-M based on collectd [45] and sFlow [46], and
realize VM-W&T-P by referring to the LTSM-NN. On the
other hand, the NET-C is implemented by modifying ONOS
to achieve timely monitoring and management on the NEs in
the HOE-DCN. We implemenAlgorithm 1 in the NOA and
NOSA, and make them cooperate with each other as designed.
Besides, the NOA communicates with the IT-C and NET-C,
such that it can receive network status for making timely
network orchestration decisions while the decisions can be
sent to the IT-C and NET-C for execution.

B. Experimental Setup

down to12 minutes. The thread uses the statistical model
extracted from the Google traces to create the jobs, but
it deviates the peak and valley periods of jobs in the
four clusters to introduce certain uncertainty. This is to
check whether our proposed KD-NO system can learn
the dynamics and differences in resource demands and
therefore make right HOE-DCN configuration decisions.

o Thread?2: it leverages the NOrch to perform a DCN re-

configuration for network orchestration everyminutes.
Note that, in a more practical scheme, the duration of this
service cycle should be acquired through online learning
to adapt to the dynamic workloads in an HOE-DCN. We
will consider this in our future work.

o Thread3: it uses the VM-W&T-M to collect telemetry

data, including VM workloads and traffic between VMs.
Thread 4: it utilizes the VM-W&T-P to forecast future
VM workloads and traffic.

Then, according to whether the DRL-based NOA and

We conduct experiments in three scenarios. In each scenaN@®SA have been involved and converged in the online train-
we run four threads simultaneously to facilitate the openat ing, we divide the KD-NO’s operation in the HOE-DCN into

of our KD-NO system, as illustrated in Fig. 6.

three phases,e., the initial state, and non-steady and steady

o Thread1: it dynamically generates jobs for the HadoofXD-NO states, respectively. The training of the LTSM and
clusters running in the HOE-DCN testbed. SpecificallpRL based modules is executed by the aforementioned threads
we first createl2 VMs on servers in the testbed andn different phases. IrPhase | (i.e., the initial state), we
group them into four Hadoop clusters, each of which hasn Hadoop jobs in the HOE-DCN testbeide( Thread 1),
one name-node and two data-nodes, and then use &l collect enough telemetry datee(, () marked inThread
thread to generate CPU- or/and 1/0O-bound jobs on tt8 without any DCN reconfiguration. We use the collected
clusters. To emulate practical Hadoop workloads, the jobslemetry data to train the LTSM-based predictors offline.
are generated according to the job arrival distributiorBefore the offline training, we pre-process the telemetrya da
in the cluster data traces released by Google [40, 4bly summarizing the data points within every minute to get an
Meanwhile, to save the time for experiments, we scabggregate data point.€., @ in Thread 4), to speed up the
the original diurnal pattern of the jobsd., for 24 hours) training. Next, the VM-W&T-P divides the aggregated data
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into training and testing sets, with the ratios%% and 5%, 09

respectively, which are then used to train the LTSM-based
predictors offline ite., @ in Thread4). The events irPhase
| happen according to the procedure—~®2—@®).

In Phase Il (i.e., the non-steady KD-NO state), we start
to let the DRL-based NOA perform KD-NO and train the
DRL-based NOSA in the background. Here, as shown in
Fig. 6, we design two online training loops, for the LSTM-
NNs in the VM-W&T-P and the DRL-based NOA/NOSA,
respectively. At the beginning of each service cycle, the-VM
W&T-P that has been trained iRhase | forecasts the VM -20
workloads and traffic in coming service cycle(s), and sends
the results to the DRL-based NOA as the low-level knowledge
input (.e, @ in Thread 4). Then, the DRL-based NOA Fig. 7. Convergence performance of NOrch’s online trairimgxperiments.
makes the network orchestration decision based on itsrurre
DRL model f.e., ® in Thread?2). After the HOE-DCN has
been reconfigured accordingly, the VM-W&T-M collects the )
actual VM workloads and traffid.e., ® in Thread3), based jobs, but does not perform any inter-rack topology re-
on which the VM-W&T-P updates its LSTM-NNs on-the- configuration, VM r.mgrat.lon or routing scheme update.
fly with transfer learningi(e., (? in Thread 4). Hence, the Network orchestration without low-level knowled@¢O

online training loop of the LTSM-NNs in the VM-W&T-P is ~ W/0 Low-level Knowledgg: it is a reactive approach
@—®—®—@—@—--- in Phase Il that uses an exhaustlye search algorithm to determine the
Meanwhile, the DRL-based NOA collects and stores entries HOE-DCN configuration based on the current network
of KD-NO experience i(e., in Thread 2). After enough status, but dges not leverage any Iow—leyel kno_wledge,
experience entries have been collected, the DRL-based NOSA €9 the predicted VM workloads and traffic matrix.
trains itself with them in the background, and updates the* Knowledge-defined network orchestratigtD-NO): it is
DRL-based NOA with the training result periodically.€, our proposed KD-NO scheme.
(® in Thread 2). By doing so, the NOrch can utilize the Fig. 7 shows convergence performance of the online training
DRL-based NOA for making KD-NO decisions in the onthat our DRL-based NOrch performs in the HOE-DCN testbed.
line manner, while the NOSA works in the background forere, the relative reward refers to the difference betwéen t
online training. The online training loop of the DRL-basedeward of the action made by the NOrch in a network state
NOA/NOSA is ®—®—©®—®—--- in Phase II. and the optimal reward in the same state. The results iricat
Note that, after the training on the DRL-based NOSA hdbat starting as an untrained Al module, the NOrch can output
converged, we consider that the KD-NO system has proceedebhtively high rewards after the experiment has been ngni
to Phase lll (i.e., the steady KD-NO state). In this phase, whefor ~24 minutes {.e,, 12 service cycles). Meanwhile, under the
the dynamic VM workloads and traffic in the HOE-DCN areyuidance of the NOrch, the online prediction accuracy of the
about to deviate the testbed from its optimal configuratibe, LTSM-based traffic predictor also increases graduallyaliyn
DRL-based NOA will make correct and timely decisions othey make the KD-NO system enter the steady KD-NO state.
VM migration, traffic rerouting, and/or inter-rack reconfig- To quantify the congestions on servers and ToR switch ports,
tion, to maintain the performance of the HOE-DCN. Thereforeve categorize the IT workloads and traffic of VMs into several
the online training loops for the LSTM-NNSs in the VM-W&T- levels and set the overload thresholds for them accordifgly
P and the DRL-based NOA/NOSA still operate the same asVM’s CPU workload, we categorize it into three levels based
in Phase Il. Meanwhile, we would like to point out thaton the length of its peak durationd., when the VM’s CPU
reconfigurations on the HOE-DCN can change the fluctuatiosage isl00%) in a period of sample aggregation. Specifically,
patterns of VM workloads and traffic, which would decreasie levels of[0, 1,2] correspond to a peak duration within
the prediction accuracy of the VM-W&T-P. Consequentlysthi[0, 5), [5,30), and[30, 60) seconds, respectively. The overload
can make the DRL-based NOA/NOSA drift from the optimathreshold on the CPU workload of a server is set as 1, which
state. If this event happens, the KD-NO system will retunmeans that when the total CPU workload of all the VMs on
to Phase Il shortly, until the DRL-based NOA/NOSA havethe server (in levels) exceedsit is considered as overloaded.
converged again and moved back to the optimal state. WithThe 1/0 workload of a VM is qualified into three levels
this cycle, our KD-NO system has the robustness to operat®. Here, the level§0, 1,2] correspond to an 1/0O workload
well in dynamic network environment. of [0,0.1), [0.1,3] and (3,6] GB in a period of sample
We evaluate the KD-NO system iRhase lll with the aggregation, respectively. The overload threshold on tBe |
following three experimental scenarios, and demonsttae tworkload of a sever is set &4, which is equivalent to a total
it can orchestrate the resources in the HOE-DCN correctly afiO workload of more tharv2 GB in an aggregation period
timely, when its DL/DRL modules are trained and operationajn the server. Using the same quantification criteria as the
« Network orchestration without DCN reconfigurati®O  1/0O workload, traffic among VMs are also classified into three
w/o DCN Reconfiguration): it just runs the generatedlevels, and the overload threshold for 1GbE EPS-based ToR

DRL-based NOA

= )
o [$ o
: T

Relative Reward

=
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Fig. 8. Average job completion time (first experiment: CPaithd jobs). Fig. 10. Average job completion time (second experime@:bbund jobs).

150 T

S 100 W CPY contention w0 CPU contention pening on both data-nodes and result in longer job procgssin

2 SOM | time in them, but after the orchestration to invoke correbt V

© . ‘ I it migration(s), CPU contentions are removed and both VMs can
0 50 100 150 200 250 process their tasks with much shorter latency.

o fime (Iseconds) Table 1Il summarizes the results on the average total CPU
100 | /. CPU contention , _ wio CPU contention __ | usage (in levels) and the number of total VM migrations,
> SOW | which are collected after running the experiment in the HOE-
o . ' Dapa-node 1 DCN testbed for 18 service cycles. Here, the average total

0 50 100 150 200 250 CPU usage refers to the average value of the total CPU usage
Time (seconds) (in levels) on all the overloaded servers per service cycle.

We observe that with the same number of VM migrations,

Fig. 9. KD-NO's effect to remove CPU contentions (first expent: CPU- “KD-NO” provides much less overloaded servers than “NO

bound jobs). . . . .
w/o Low-level Knowledge”. This confirms the timeliness and
correctness of its network orchestration decisions.

switch ports is set as. For the optimization objective in Eq. TABLE Ill

(1) we set the values O{IOL ﬂ ’Y} as {1 0.5.0 05} to give METRICS RELATED TOHOE-DCN O:‘ERATION(FIRSTEXPERIMENT.
o o VT L CPU-BouND JoBS
minimizing the number of hot-spots the highest priority. )

Average Total CPU| Total VM

C. Experiment with CPU-bound Jobs Usage (in levels) | Migrations
. . . . . NO w/o DCN Reconfiguration 15.3333 0
The first egpenment only considers CPU-bound jobs, _whlch NO wio Low-Level Knowledge 13.1667 12
usually require a lot of CPU usages but do not cause high I/G KD-NO 71666 R

workloads or inter-rack traffic loads. Hence, to ensure high
QoS to the Hadoop applications, we need to avoid contentions

on CPU usage as many as possible, for reducing the average

job completion time. As the I/O workloads and inter-rac. Experiment with 1/0-bound Jobs
traffic loads are relatively low, they become irrelevant lie t
network orchestration of the HOE-DCN.

Fig. 8 compares the average job completion time achiev
by the three experimental scenarios. It can be seen that “K
NO” provides much shorter job completion time than the tw
benchmarks. Moreover, the results actually suggest: 1) q
proposed KD-NO system can perform timely and correct V

. . s . . e three experimental scenarios, which exhibits the amil
migrations to minimize CPU contentions in the HOE-DC P

N . . S rends as those in Fig. 8. Table IV lists the results on the
and thus reduce the jobs' completion time significantly, ar{fﬁal number of congested ToR ports and the total number

2) without the proactive principle and low-level knowlegge fi K fi . hich indi hat *
/ - KD-N
the network orchestration of “NO w/o Low-level Knowledge”0 inter-rack reconfigurations, which indicate that ©

. ) '~ would not require more inter-rack reconfigurations than “NO
might not be a better scheme than "NO w/o DCN Reconflgwlo Low-level Knowledge”, but its total number of congested

ration”, i.e., some of its VM migrations are based on mcorrecfoR ports is much smaller. All these results further confine t

decisions. The first statement can be further verified with t . N o . .
results in Fig. 9, which shows the CPU workloads of two datgﬁectlveness of "KD-NO", and specifically, it can adjuseth

nodes before and after the network orCheStration condited  2ye consider the 1/0 resources on each server is enadughthere would
“KD-NO”. Before the orchestration, CPU contentions are-hapot be any I/0 contentions, in the experiment.

Our second experiment only considers 1/0-bound jobs that
dgmand for a lot of 1/0O usages and can generate high inter-
ck traffic loads, but would not result in significant CPU
usages. Therefore, we need to minimize congested ToR ports
S many as possible, for reducing the average job completion
€. Fig. 10 compares the average job completion time in



12

inter-rack topology and the VMs' inter-rack communication 120
schemes intelligently according to the traffic distributim IO w/o DCN Reconfiguration

()
. . . £ 100 IINO w/o Low-Level Knowledge
the foreseeable future. Hence, the inter-rack links in t&EH = C_JKD-NO
DCN can be utilized wisely, and thus the completion time of 2 80
I/0-bound jobs can be shortened significantly. §§ .
°3
TABLE IV 8,
METRICS RELATED TOHOE-DCN OPERATION(SECOND EXPERIMENT: &
I/0-BOUND JOBS) T 20
>
<
Total Congested| Total Inter-rack 0
X . Cluster 1 Cluster2  Cluster 3  Cluster 4
ToR Ports Reconfigurations
NO w/o DCN Reconfiguration 24 0 i . o . . .
NO wio Low-Level Knowledge 24 12 Fig. 11. Average job completion time (third experiment: euxobs).
KD-NO 0 12

between the HOE-DCN'’s configuration and the applications
running in it and to optimize the HOE-DCN on-the-fly, which
does not depend on the actual applications.

Finally, the third experiment run both mixed jobise( both  Meanwhile, we also need to admit that due to the limited
CPU- and 1/O-bound ones) in the Hadoop clusters, to test thgdget, our experimental demonstrations are still based on
full capability of our KD-NO system. This time, the networky simplified and small-scale HOE-DCN testbed and only
orchestration system needs to make decisions to coording@sider Hadoop workloads. Although the testbed can be
different types of applications, while without a properides treated as a prototype to confirm the effectiveness of our KD-
it may generate decisions that are in conflict with each oth@jo system in several simple use-cases, the generality and

The results on average job completion time in Fig. 11 stidcalability of our proposal still deserve further inveatigns.
show the superiority of “KD-NO” over the two benchmarks.

The rationale behind the trends in Fig. 11 can be explained VIl. CONCLUSION
with the results in Table V. As it does not invoke HOE-DCN

reconfigurations, “NO w/o DCN Reconfiguration” may nee%
to face simultaneous CPU contentions and traffic congestion)
This is confirmed by the higher CPU usage and the larg
number of congested ToR ports in Table V, when we comp
its results with those of “KD-NO”. Hence, the processing

both types of jobs would be hindered to lead to longer averag

job completion time. Without the proactive principle and/o predicted future workloads and traffic matrix of VMs with

:(evel Irn:wlia(t:lge, |tkwo_u Igttzje d.'ff'C““ fforthN(? \;V/O Lgvr;/—level several DL modules to fetch the low-level knowledge. Next, i
nowledge: to make right decisions for the future. erefor everaged the low-level knowledge for network orchesbrati
although it also invokes a few VM migrations and inter-rac

; . X . . e formulated the network orchestration problem as an MILP
recqnflguratlor_ls, it cannot avoid future CPU contgntlond athodel, proved its\"P-hard, and proposed a DRL-based online
_trafnc conggstlons as *KD-NG" does. As a“result, |ts aVer""%ﬁgorithm. Specifically, based on the extracted knowletiy,
job completion time is longer than that of "KD-NO". DRL-based Al modules could coordinate the IT and bandwidth
resources in the HOE-DCN on-the-fly, so as to achieve a high
F. Discussion matching degree between the HOE-DCN'’s configuration and

Note that, in a real HOE-DCN, the applications would bte applications running in it.
much more various and complex than those considered inT0 verify the effectiveness of our proposal, we built an
our experimental demonstrations. For instance, in additio HOE-DCN testbed with KD-NO. The experiments run Hadoop
Hadoop workloads, there cloud be workloads from Spark ag@Plications in the testbed, and demonstrated that our KD-
TensorFlow too. However, no matter what types of workload$O System can make timely and correct network orchestration
get processed in the HOE-DCN, the operator always needgiggisions in different experimental schemes by leveratiieg
schedule IT and bandwidth resources proactively and tigelytwo-level knowledge, and therefore largely reduce theayer
ensure high QoS. This is exactly what our KD-NO system [gb completion time. Moreover, we found that even though
designed to do. Therefore, although we only consider Hadot9}/-level knowledge cannot be directly used for network
workloads in the experimental demonstrations, our KD-N@chestration, itis indispensable in the overall KD-NOgqess.
system is not specifically designed for handling them. With
sufficient training and minor modifications, it should beeata ACKNOWLEDGMENTS
optimize the QoS of various applications running in the HOE- This work was supported in part by the NSFC Projects
DCN. In other words, the operation principle of our KD-NG61701472 and 61771445, CAS Key Project (QYZDY-SSW-
system is to extract the knowledge regarding matching @egd&sC003), NGBWMCN Key Project (2017Z2X03001019-004).

E. Experiment with Mixed Jobs

In this paper, we proposed a KD-NO system for HOE-

CNs, which follows the predictive analytics in human behav

rs to first forecast VMs’ future demands on IT and bandwidth
fdsources and then find the optimal HOE-DCN configuration
8sed on the predictions. When collecting telemetry dadatab

e resource utilization in an HOE-DCN, our KD-NO system

ﬁalyzed the spatial and temporal correlations of the @aizh,
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