
On Application-aware and On-demand Service
Composition in Heterogenous NFV Environments

Lu Dong, Kai Han, Lipei Liang, Bin Niu, Sicheng Zhao, Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—In this work, we try to further enhance the flex-
ibility and cost-effectiveness of network function virtualization
(NFV) by considering virtual network function service chaining
(vNF-SC) in a heterogeneous NFV environment that can instan-
tiate vNFs on virtual machines (VMs), docker containers, and
SmartNICs. Specifically, we first lay out the network model, build
a real network testbed that supports vNF deployment on kernel-
based VMs, docker containers, and commercial SmartNICs,
and then conduct experiments to measure the throughput and
latency of traffic processing and memory usage of four types of
vNFs implemented on them. Next, based on the measurement
results, we formulate an integer linear programming (ILP)
model to optimize the application-aware vNF-SC provisioning
in the heterogenous NFV environment. Finally, we design and
perform two experiments to demonstrate that our heterogeneous
NFV environment can combine the advantages of VM/docker
container/SmartNIC to provide enhanced flexibility for realizing
on-demand and application-aware vNF-SC composition.
Index Terms—Network function virtualization (NFV), Hetero-

geneous NFV environment, Service chaining.

I. INTRODUCTION
The fast development of the Internet has stimulated huge

volumes of new services [1]. However, due to the increas-
ing equipment cost and maintenance complexity of special-
purpose middleboxes, it becomes more and more challenging
to deploy these services in traditional networks, and moreover,
short time-to-market can hardly be achieved. Therefore, net-
work function virtualization (NFV) [2] has been introduced
to realize network services with virtual network functions
(vNFs) that can be implemented on general-purpose hard-
ware/software. Then, by steering traffic through a sequence of
vNFs, a service provider can quickly realize various service
compositions with vNF service chaining (vNF-SC) [3, 4].
Due to the apparent advantages of vNF-SC, people have

conducted intensive researches on it, including both the the-
oretical approaches on how to deploy requested vNFs on
proper locations and connect them in sequence [5-8], and
the system implementations to orchestrate IT and bandwidth
resources for realizing vNF-SC [9, 10]. However, all these
studies overlooked the intrinsic difference among the substrate
network elements (NEs) and assumed that vNFs were provi-
sioned in a homogeneous NFV environment. This assumption
becomes impractical for the following two reasons. Firstly,
in addition to utilizing virtual machines (VMs) deployed
on commodity servers, vNFs have been realized on various
software/hardware platforms, e.g., docker containers [11] and
programmable network interface cards (i.e., SmartNICs) [12].

Secondly, network services might have various quality-of-
service (QoS) requirements, but some stringent ones can hard-
ly be satisfied if the vNFs are deployed on certain platforms.
For instance, the vNFs based on VMs provide relatively long
latency and small throughput for traffic processing [10], while
SmartNICs cannot achieve capacity elasticity even though
they have superior performance on traffic processing.
The aforementioned dilemma motivates us to study appli-

cation aware vNF-SC composition in a heterogeneous NFV
environment that can instantiate vNFs on VMs, docker con-
tainers, and SmartNICs. In this work, we first lay out the
network model, build a real network testbed that supports
vNF implementation on kernel-based VMs, docker containers,
and commercial SmartNICs, and then conduct experiments
to measure the throughput and latency of traffic processing
and memory usage of four types of vNFs implemented on
them. Next, based on the measurement results, we formulate
an integer linear programming (ILP) model to optimize the
application-aware vNF-SC provisioning in such a heteroge-
nous NFV environment, so that the resource cost of vNF-SC
deployment is minimized while all the QoS requirements (i.e.,
on bandwidth and latency) are satisfied as well. Finally, we
consider two use-cases of our proposal, and design and per-
form experiments in the real network testbed to demonstrate
the advantages of application-aware and on-demand vNF-SC
composition in the heterogeneous NFV environment.
The rest of this paper is organized as follows. Section II pro-

vides a brief survey on the related work. The network model of
application-aware vNF-SC provisioning in heterogenous NFV
environments is described in Section III, and we formulate the
ILP model to solve the problem exactly in Section IV. The
experimental demonstrations of two use-cases are discussed
in Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

Since its inception, NFV has attracted intensive research
interests, and people have proposed numerous algorithms
to optimize vNF-SC deployments in various networks [3-
8]. Note that, as explained in [2], the problem of vNF-
SC provisioning is fundamentally different from the well-
known virtual network embedding (VNE) problem [13], and
thus it deserves further investigations. The authors of [5, 8]
formulated theoretical models to optimize the vNF-SC pro-
visioning in packet networks. Also for packet networks, Sun
et al. [7] proposed a forecast-assisted vNF-SC provisioning

algorithm, while the vNF-SC reconfiguration to adapt to dy-
namic network environments was studied in [3]. Considering
flexible-grid elastic optical networks [14-16] as the underlying
infrastructure, Fang et al. [6] investigated how to optimize the
spectrum and IT resources jointly for vNF-SC provisioning,
and later on, the authors of [4] designed a deep learning
assisted framework to facilitate proactive optimization.
However, none of the studies mentioned above has consid-

ered application-aware vNF-SC provisioning in heterogeneous
NFV environments. More specifically, the heterogeneous NFV
environment here consists of general-purpose NEs whose
performance on traffic processing and memory usage can
be different, when supporting the same type of vNFs. Note
that, it is different from the hybrid environment discussed in
[17], which refers to the one that combines special-purpose
middleboxes and homogeneous general-purpose NEs. In other
words, all the NEs in our heterogeneous NFV environment
support different types of vNFs, while the middleboxes in the
hybrid environment are dedicated to single network services.
Hence, the vNF-SC provisioning in our case is more complex.
From the perspective of system implementation, vNF im-

plementations have been realized on docker containers [9-11],
SmartNICs [12], and field programmable gate arrays (FPGAs)
[18]. Their experimental results suggested that each platform
has its pros and cons to support vNF-SC provisioning. There-
fore, we expect a combination of them to have more flexibility
and better cost-effectiveness, when various QoS requirements
have to be satisfied simultaneously. This actually motivates us
to conduct the study in this work.

III. PROBLEM DESCRIPTION
This section introduces the heterogenous NFV environment

and defines the problem of vNF-SC provisioning in it.

A. Heterogeneous NFV Environment
Fig. 1 shows an example of our heterogenous NFV envi-

ronment. Here, we consider three types of platforms for vNF
implementation, i.e., VM, docker container, and SmartNIC. As
illustrated in Fig. 1, each node in the substrate network (SNT)
can include an arbitrary combination of the three types of plat-
forms. For example, Node 2 includes all the three platforms,
while Node 3 only supports the vNF implementation based
on VMs. Then, the application-aware vNF-SC provisioning
in such a heterogenous NFV environment should minimize
the resource cost of vNF-SC deployment and ensure all the
QoS requirements from the vNF-SCs are satisfied.
For the vNFs, we consider four types of them1, denoted as

{vNF 1, vNF 2, vNF 3, vNF 4}. Here, vNF 1 is for packet
forwarding, vNF 2 realizes a firewall for IP address screening,
vNF 3 performs network address translation (NAT) for traffic
between two different subnets, and vNF 4 is a load-balancer

1Due to the limited budget and human resources, we can only implement
four types of vNFs in our experimental testbed for performance measure-
ments. However, this would not restrict the applicability of our work since
the ILP model in Section IV is generic. In other words, if more vNF types
needs to be considered, one only need to implement them in the platforms,
measure their performance metrics, and input the results in the ILP model.

Fig. 1. Example of vNF-SC provisioning in heterogenous NFV environment.

that hashes the 5-tuple of each packet to map it to an output
port. Then, we build a real experimental testbed to include the
platforms. Specifically, for fair comparisons, we test the three
platforms by attaching them to Linux servers with the same
software/hardware configuration. The experiments measure
the throughput and latency of traffic processing and memory
usage for each vNF type, and Table I lists the results. Since
SmartNIC realizes the vNFs in hardware, it performs the
best on traffic processing. Nevertheless, for the same reason,
its memory usage is also the most, which suggests that the
elasticity of its capacity is the worst.

TABLE I
EXPERIMENTAL RESULTS ON VNF PERFORMANCE MEASUREMENTS

vNF 1 vNF 2 vNF 3 vNF 4

Throughput
(Gbps)

VM (bUm) 1.60 1.55 1.57 1.42
Docker (bDm) 1.32 1.26 1.22 1.7
SmartNIC (bSm) 10 10 10 10

Processing
Latency (μs)

VM (rUm) 177 190 224 262
Docker (rDm) 154.5 154.6 155.7 197
SmartNIC (rSm) 110.2 110.7 110.9 111.7

Memory
Usage (%)

VM (ĉUm) 3.7 3.7 3.5 3.7
Docker (ĉDm) 0.003 0.003 0.002 0.01
SmartNIC (ĉSm) 26.25 22.75 26.25 23.83

B. Network Model and Problem Definition
We model the topology of the SNT as G(V,E), where V

and E are the sets of nodes and network links, respectively.
Each node v ∈ V is a commodity server whose capacities
on VMs, docker containers, and SmartNICs are denoted
as hv

U , hv
D and hv

S , respectively. For example, hv
U = 10,

hv
D = 100 and hv

S = 1 indicate that node v can accom-
modate 10 VMs, 100 docker containers, and one SmartNIC.
The memory space of a VM/container/SmartNIC attached
on node v is CU

v /CD
v /CS

v , respectively. The heterogeneous
NFV environment can support M vNF types, while for each
type m ∈ M , a vNF consumes ĉUm/ĉDm/ĉSm memory space,
can achieve a maximum throughput of bUm/bDm/bSm, and takes
a processing latency of rUm/rDm/rSm, if it is deployed on a
VM/container/SmartNIC, respectively.

A vNF-SC request is modeled as Ri(si, di, SCi, bi, ti),
where si and di are the source and destination nodes, re-
spectively, SCi = (fi,1, · · · , fi,l, · · · , fi,Ni

) denotes its vNF
sequence (i.e., fi,l is the type of the l-th vNF, and Ni is the
number of vNFs in the vNF-SC), bi represents its bandwidth
demand, and ti is the longest latency that it can tolerate. All
the pending vNF-SC requests are stored in set R. To improve
resource utilization and save the cost of vNF deployment, we
allow different vNF-SC requests to share vNFs if necessary.
For instance, vNF-SCs R1 and R2 in Fig. 1 share the vNF 1
implemented on a SmartNIC on Node 2.

IV. ILP FORMULATION
A. ILP Model
For vNF-SC provisioning in the heterogeneous NFV envi-

ronment, we need to instantiate the vNFs on proper platforms
in nodes in V and steer the traffic of each vNF-SC Ri from si
to di through the vNFs in SCi in sequence. The following ILP
model is formulated to optimize the vNF-SC provisioning.
Parameters:
• G(V,E): the SNT’s physical topology.
• Ri(si, di, SCi, bi, ti): a vNF-SC request, Ri ∈ R.
• P : the set of pre-calculated paths, each of which is
among the K shortest paths between a node pair.

• Pu,v: the set of pre-calculated paths between u and v.
• Lp: the hop-count of a path p ∈ P .
• β: the unit cost of 1 Gbps bandwidth usage per hop.
• M : the set of available vNF types.
• fm

i,l : the boolean flag that equals 1 if the l-th vNF in SCi

is a type-m vNF (m ∈ M), and 0 otherwise.
• hv

U/h
v
D/hv

S: the numbers of VMs/containers/SmartNICs
that can be used on node v, respectively.

• CU
v /CD

v /CS
v : the memory space of a VM/container

/SmartNIC on node v, respectively.
• bUm/bDm/bSm: the bandwidth throughput of a VM/container
/SmartNIC that carries a type-m vNF, respectively.

• rUm/rDm/rSm: the traffic processing latency of a VM/
container/SmarterNIC that carries a type-m vNF.

• γp
v : the boolean flag that equals 1 if node v is on path p,
and 0 otherwise.

• ηpv : the sequence number of node v on path p.
• αU

m/αD
m/αS

m: the cost of memory usage for deploying a
type-m vNF on a VM/container/SmartNIC.

Variables:
• uv,k

i,l /d
v,k
i,l /s

v,k
i,l : the boolean variable that equals 1 if the

l-th vNF in SCi is deployed on the k-th VM/container
/SmarterNIC on node v, respectively, and 0 otherwise.

• yvi,l: the boolean variable that equals 1 if the l-th vNF in
SCi is deployed on node v, and 0 otherwise.

• φv,k
m /ϕv,k

m /ψv,k
m : the boolean variable that equals 1 if the

k-th VM/container/SmartNIC on node v carries a type-m
vNF, respectively, and 0 otherwise.

• zip: the boolean variable that equals 1 if SCi uses path
p ∈ P , and 0 otherwise.

Objective:

The optimization objective is to minimize the total cost of
vNF-SC deployment, which includes both the cost of vNF
deployment (Tv) and that of bandwidth usage (Tb). Here, the
two costs can be calculated as

Tv =
∑
m,v

⎛
⎝

hv
U∑

k=1

α
U
m · φv,k

m +

hv
D∑

k=1

α
D
m · ϕv,k

m +

hv
S∑

k=1

α
S
m · ψv,k

m

⎞
⎠ ,

Tb =
∑
i,p

β · bi · z
i
p · Lp.

Hence, the objective is formulated as

Minimize (Tv + Tb). (1)

Constraints:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m,i,l

hv
U∑

k=1

ĉ
U
m · φv,k

m · fm
i,l ≤ C

U
v

∑
m,i,l

hv
D∑

k=1

ĉ
D
m · ϕv,k

m · fm
i,l ≤ C

D
v

∑
m,i,l

hv
S∑

k=1

ĉ
S
m · ψv,k

m · fm
i,l ≤ C

U
v

, ∀v ∈ V. (2)

Eq. (2) ensures that the vNF deployment on each node will
not exceed its memory capacity.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i

bi ·
∑
l

f
m
i,l · u

v,k

i,l ≤ b
U
m

∑
i

bi ·
∑
l

f
m
i,l · d

v,k

i,l ≤ b
D
m

∑
i

bi ·
∑
l

f
m
i,l · s

v,k

i,l ≤ b
S
m

, ∀m, v, k. (3)

Eq. (3) ensures that each vNF’s traffic processing throughput
will not be exceeded.

∑
l,m

f
m
i,l ·

∑
v

⎛
⎝

hv
U∑

k=1

u
v,k

i,l · rUm +

hv
D∑

k=1

d
v,k

i,l · rDm +

hv
S∑

k=1

s
v,k

i,l · rDm

⎞
⎠

≤ ti, ∀i.
(4)

Eq. (4) ensures that for each vNF-SC request, its QoS require-
ment on processing latency is satisfied2.

∑
m

f
m,k

i,l ≤
∑
v

⎛
⎝

hv
U∑

k=1

u
v,k

i,l +

hv
D∑

k=1

d
v,k

i,l +

hv
S∑

k=1

s
v,k

i,l

⎞
⎠ , ∀i, l. (5)

Eq. (5) ensures that the vNFs in SCi of each vNF-SC request
has been deployed.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
m

φ
v,k
m ≤ 1

∑
m

ϕ
v,k
m ≤ 1

∑
m

ψ
v,k
m ≤ 1

, ∀v, k. (6)

2In our experiments, we find that the traffic processing latency of a vNF is
normally much longer than the transmission delay of a network link between
two nodes. Hence, we ignore the transmission delay in the ILP.

Eq. (6) ensures that each platform of VM/container/SmartNIC
can only be used to realize at most one vNF.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i,l

f
m
i,l · u

v,k

i,l > (φv,k
m − 1) ·

⎛
⎝1 +

∑
i,l

f
m
i,l

⎞
⎠

∑
i,l

f
m
i,l · u

v,k

i,l ≤ φ
v,k
m ·

∑
i,l

f
m
i,l

, ∀m,v, k, (7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i,l

f
m
i,l · d

v,k

i,l > (ϕv,k
m − 1) ·

⎛
⎝1 +

∑
i,l

f
m
i,l

⎞
⎠

∑
i,l

f
m
i,l · d

v,k

i,l ≤ ϕ
v,kD
m ·

∑
i,l

f
m
i,l

, ∀m,v, k, (8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i,l

f
m
i,l · s

v,k

i,l > (ψv,k
m − 1) ·

⎛
⎝1 +

∑
i,l

f
m
i,l

⎞
⎠

∑
i,l

f
m
i,l · s

v,k

i,l ≤ ψ
v,k
m ·

∑
i,l

f
m
i,l

, ∀m, v, k. (9)

Eq. (7)-(9) ensure that the variables’ values are set correctly
according to their inherent relations. For instance, Eq. (7)

makes sure that if

(∑
i,l

fm
i,l · u

v,k
i,l

)
> 0, we have φv,kU

m = 1,

and φv,kU
m should be set as zero otherwise.

∑
v

⎛
⎝

hv
U∑

k=1

u
v,k

i,l +

hv
D∑

k=1

d
v,k

i,l +

hv
S∑

k=1

s
v,k

i,l

⎞
⎠ ≤ 1, ∀i, l. (10)

Eq. (10) ensures that the l-th vNF in SCi can only be deployed
in one platform.

∑
p∈Psi,di

z
i
p = 1, ∀i, (11)

∑
p∈Psi,di

z
i
p · γp

v ≥ y
v
i,l, ∀i, l, v. (12)

Eqs. (11) and (12) ensure that one and only one path in Psi,di

is used to provision request Ri for si→di, and each vNF can
only be deployed along the chosen path.

∑
v

(yv
i,l1

· ηp
v)−

∑
v

(yv
i,l2

· ηp
v) ≥ (zip − 1) · Lp,

∀i, p ∈ Psi,di , {l1, l2 : l1 > l2, l1, l2 ∈ SCi}.

(13)

Eq. (13) ensures that the vNFs of each vNF-SC request are
connected in the right sequence along the chosen path.

y
v
i,l =

hv
U∑

k=1

u
v,k

i,l +

hv
D∑

k=1

d
v,k

i,l +

hv
S∑

k=1

s
v,k

i,l , ∀i, l, v. (14)

Eq. (14) explains how to determine the value of yvi,l.

B. ILP Results
We use the six-node topology in Fig. 1 to evaluate the ILP.

We still consider |M | = 4 types of vNFs, and the parameters
regarding their deployments in VMs/containers/SmartNICs
use the values in Table I. The simulations consider three sce-
narios: normal, large-bandwidth and low-latency. We assume
that for each Ri, SCi consists of [1, 4] vNFs, its bandwidth

2 4 6
Number of Requests (|R|)

0

2

4

6

8

A
ve

ra
ge

 T
ot

al
 C

os
t Normal

Low-Latency
Large-Bandwidth

(a) vNF-SC deployment cost

Normal Low-Latency Large-Bandwidth
Simulation Scenarios

0

1

2

3

4

A
ve

ra
ge

 N
um

be
r

VMs
Docker Containers
SmartNICs

(b) Device number for |R| = 6

Fig. 2. ILP simulation results.

demand bi is randomly selected within [0.1, 0.3] Gbps for the
normal and low-latency scenarios and within [0.5, 0.8] Gbps
for the large-bandwidth one, while its latency requirement is
set as ti ∈ [0.8, 5] msec for the normal and large-bandwidth
scenarios and as ti ∈ [0.4, 0.6] msec for the low-latency one.
The cost coefficients are β = 0.05, αU

m = 1, αD
m = 1.6, and

αS
m = 1.76 units according to the latest realistic data [19, 20].
Fig. 2 shows the simulation results, where each data point

is obtained by averaging the results from 10 independent
runs. The results in Fig. 2(a) indicate that for same numbers
of requests, the low-latency scenario has the highest total
cost for vNF-SC deployment while that from the normal
scenario is the lowest. The reason behind this trend can be
explained with the results in Fig. 2(b), which suggest that in
the normal scenario, the vNF-SCs can be supported without
any SmartNICs, while the low-latency scenario requires the
most SmartNICs among the three scenarios.

V. EXPERIMENTAL DEMONSTRATIONS

We conduct experiments in a real network testbed to
demonstrate the advantages of application-aware and on-
demand vNF-SC composition in heterogeneous NFV en-
vironment. Fig. 3 shows the network orchestration system
that includes four layers. The service layer is for various
applications to register in the system to describe their ser-
vice and QoS demands. The orchestration layer determines
the vNF-SC composition schemes for the applications and
makes corresponding decisions on vNF deployment, removal,
migration, and chaining. The mediator layer translates the
instructions from the orchestration layer into policies and
sends them to the manager for heterogeneous vNFs, which
controls the life cycle of vNFs on VMs/containers/SmartNICs,
and to the forwarding controller, which is the SDN controller
to steer application traffic through required vNF instances.
Finally, the infrastructure layer consists of substrate network
elements in the heterogeneous NFV environment.

Fig. 3. Network orchestration system for heterogeneous NFV environment.

We first conduct an experiment to demonstrate the benefit
of having SmartNICs in the heterogeneous NFV environment,
and its scenario is shown in Fig. 4. Initially, we have two vNF-
SCs in the NFV environment, each of which processes 100
Mbps UDP traffic constantly, and their provisioning schemes
are shown in Fig. 4(a). Then, at t = 20 seconds, vNF-SC 1
needs to append a firewall vNF at the end of its service chain.
To avoid long setup delay, we decide to instantiate the new
vNF on a docker container, as shown in Fig. 4(a). Meanwhile,
the QoS demand of vNF-SC 1 states that its end-to-end latency
should not exceed 0.5 msec. However, we find that the new
end-to-end latency of vNF-SC 1 increases to around 0.54 msec
after the vNF insertion, and this violates its QoS requirement.
Hence, at t = 22 seconds, we migrate the NAT vNF on vNF-
SC 1 and make vNF-SCs 1 and 2 share the NAT vNF deployed
on a SmartNIC (as shown in Fig. 4(b)).
Fig. 5 shows the results on end-to-end latency, which

indicates that after the NAT vNF in vNF-SC 1 having been
migrated at t = 22 seconds, the latency of vNF-SC 1 decreases
to around 0.38 msec and re-satisfies its QoS requirement.
Meanwhile, during the whole process, the latency of vNF-SC 2
does not experience dramatic changes. This suggests that due
to the relatively large processing capacity of the SmartNIC,
the sharing of the NAT vNF deployed on it by vNF-SCs 1
and 2 would not affect its service to vNF-SC 2. Therefore,
the heterogeneous NFV environment can properly address
the intrinsic drawbacks of software-based NFV platforms
(i.e., docker containers and VMs) by leveraging the benefits
provided by SmartNICs, and thus application-aware and on-
demand vNF-SC composition can be realized.
Next, we conduct another experiment to demonstrate the

advantage of having software-based platforms in the het-
erogeneous NFV environment. The experimental scenario is
illustrated in Fig. 6, which considers the NFV-SC provisioning
for mobile users. Initially, the user of the vNF-SC in Fig. 6(a)
attaches to Node 6, and the vNF-SC consists of two vNFs
that are deployed on a docker container and a SmartNIC,
respectively. The traffic going through the vNF-SC is live

(a) Dynamic vNF-SC composition with vNF insertion

(b) vNF migration to ensure low-latency requirement

Fig. 4. Scenario of the first experiment.

10 20 30 40
Time (s)

0

0.2

0.4

0.6

0.8

1
E

nd
-to

-e
nd

 L
at

en
cy

 (m
s) vNF-SC 1

vNF-SC 2
Latency Threshold

Fig. 5. End-to-end latency of two vNF-SCs in the first experiment.

video streaming with a constant throughput of 5 Mbps, and
we assume that the user also has a QoS demand on the end-
to-end latency, which should not exceed 0.5 msec. Before the
user changes its location, its QoS demands on bandwidth and
end-to-end latency get satisfied by the vNF-SC provisioning
scheme in Fig. 6(a). However, at t = 14 seconds, it moves
to Node 4. As vNFs deployed on SmartNICs do not support
live migration [12], the video traffic has to be routed through
the bottleneck link between Nodes 6 and 4, which not only
brings excessive latency but also limits the video bandwidth
below 5 Mbps. Hence, the user’s QoS gets affected severely
as shown in Fig. 7(a), i.e., after t = 14 seconds, the luminance
component’s peak signal-to-noise ratio (Y-PSNR) [21] of its
video playback degrades from ∼49 dB to ∼17 dB while the
end-to-end delay increases from 0.27 msec to 6.65 msec.
On the other hand, if we deploy the vNF for firewall

on a VM, it can be migrated to Node 2 lively after the
user having changed its location (as shown in Fig. 6(b)).
Therefore, its video traffic can be routed through 1→3→2→4
to avoid the bottleneck link between Nodes 6 and 4, and
the live VM migration ensures that the video streaming
would not be interrupted during the process. The experimental

(a) vNF-SC provisioning with SmartNIC

(b) vNF-SC provisioning with VM

Fig. 6. Scenario of the second experiment.

10 20 30 40 50 60
Time (s)

0

50

100

Y
-P

S
N

R
 (d

B
)

0

5

10

E
nd

-to
-e

nd
 L

at
en

cy
 (m

s)

(a) vNF-SC with SmartNIC

10 20 30 40 50 60
Time (s)

0

50

100

Y
-P

S
N

R
 (d

B
)

0

5

10

E
nd

-to
-e

nd
 L

at
en

cy
 (m

s)

(b) vNF-SC with VM

Fig. 7. Y-PSNR and end-to-end latency in the second experiment.

results in Fig. 7(b) confirm that with the live VM migration,
both the Y-PSNR of the video playback and the end-to-end
latency stay at their normal levels throughout the process.
This simple experiment suggests that the heterogeneous NFV
environment can also properly address the intrinsic drawbacks
of hardware-based NFV platforms based on SmartNICs, and
thus application-aware and on-demand vNF-SC composition
can still be realized. In all, our heterogeneous NFV environ-
ment can combine the benefits of software/hardware-based
NFV platforms to provide enhanced flexibility for realizing
application-aware and on-demand vNF-SC composition.

VI. CONCLUSION

In this paper, we studied the vNF-SC composition in a
heterogeneous NFV environment that combines VMs, docker
containers, and SmartNICs. Based on the measurement results
from a real network testbed, we first laid out the network
model, and formulated an ILP model to optimize vNF-SC
provisioning in the heterogenous NFV environment such that

the resource cost of vNF-SC deployment is minimized while
the QoS requirements are also satisfied. Then, we designed
and performed two experiments to demonstrate that our het-
erogeneous NFV environment can combine the benefits of
software/hardware-based NFV platforms to provide enhanced
flexibility for application-aware vNF-SC composition.

ACKNOWLEDGMENTS
This work was supported by the NSFC projects 61871357

and 61701472, and CAS key project (QYZDY-SSW-JSC003).

REFERENCES
[1] P. Lu et al., “Highly-efficient data migration and backup for Big Data

applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forward-
ing graphs in inter-DC elastic optical networks,” J. Lightw. Technol.,
vol. 34, pp. 3330–3341, Jul. 2016.

[3] J. Liu et al., “On dynamic service function chain deployment and
readjustment,” IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[4] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network
orchestration for on-demand and cost-effective vNF service chaining in
inter-DC elastic optical networks,” J. Opt. Commun. Netw., vol. 10, pp.
D29–D41, Oct. 2018.

[5] I. Jang et al., “Optimal network resource utilization in service function
chaining,” in Proc. of NetSoft 2016, pp. 11–14, Jun. 2016.

[6] W. Fang et al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[7] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service
chain deployment based on affiliation-aware vNF placement,” in Proc.
of GLOBECOM 2016, pp. 1–6, Dec. 2016.

[8] T. Kuo, B. Liou, K. Lin, and M. Tsai, “Deploying chains of virtual
network functions: On the relation between link and server usage,”
IEEE/ACM Trans. Netw., vol. 26, pp. 1562–1576, Aug. 2018.

[9] C. Sun et al., “NFP: Enabling network function parallelism in NFV,”
in Proc. of ACM SIGCOMM 2016, pp. 43–56, Aug. 2017.

[10] K. Han et al., “Application-driven end-to-end slicing: When wireless
network virtualization orchestrates with NFV-based mobile edge com-
puting,” IEEE Access, vol. 6, pp. 26 567–26 577, 2018.

[11] J. Anderson et al., “Performance considerations of network functions
virtualization using containers,” in Proc. of ICNC 2016, pp. 1–7, Feb.
2016.

[12] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” in Proc. of SoCC 2017, pp. 506–519, Sept. 2017.

[13] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[14] Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning
in elastic optical networks with hybrid single-/multi-path routing,” J.
Lightw. Technol., vol. 31, pp. 15–22, Jan. 2013.

[15] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[16] Y. Yin et al., “Spectral and spatial 2D fragmentation-aware routing and
spectrum assignment algorithms in elastic optical networks,” J. Opt.
Commun. Netw., vol. 5, pp. A100–A106, Oct. 2013.

[17] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Proc. of CNSM 2014, pp. 418–423,
Nov. 2014.

[18] C. Kachris, G. Sirakoulis, and D. Soudris, “Network function virtual-
ization based on FPGAs: A framework for all-programmable network
devices,” arXiv preprint arXiv:1406.0309, 2014.

[19] (2019) Amazon web services. [Online]. Available: https://aws.amazon.
com/cn/ec2/pricing/reserved-instances/pricing/

[20] (2019) Colfax direct. [Online]. Available: http://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=3017&idcategory=0

[21] X. Zhao, H. Lu, C. Chen, and J. Wu, “Adaptive hybrid digital-analog
video transmission in wireless fading channel,” IEEE Trans. Circuits
Syst. Vido Technol., vol. 26, pp. 1117–1130, Jun. 2015.

