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Abstract—This paper proposes DeepRMSA, a deep reinforce-
ment learning framework for routing, modulation and spec-
trum assignment (RMSA) in elastic optical networks (EONSs).
DeepRMSA learns the correct online RMSA policies by pa-
rameterizing the policies with deep neural networks (DNNs)
that can sense complex EON states. The DNNs are trained
with experiences of dynamic lightpath provisioning. We first
modify the asynchronous advantage actor-critic algorithm and
present an episode-based training mechanism for DeepRMSA,
namely, DeepRMSA-EP. DeepRMSA-EP divides the dynamic
provisioning process into multiple episodes (each containing the
servicing of a fixed number of lightpath requests) and performs
training by the end of each episode. The optimization target of
DeepRMSA-EP at each step of servicing a request is to maximize
the cumulative reward within the rest of the episode. Thus, we
obviate the need for estimating the rewards related to unknown
future states. To overcome the instability issue in the training of
DeepRMSA-EP due to the oscillations of cumulative rewards, we
further propose a window-based flexible training mechanism, i.e.,
DeepRMSA-FLX. DeepRMSA-FLX attempts to smooth out the
oscillations by defining the optimization scope at each step as a
sliding window, and ensuring that the cumulative rewards always
include rewards from a fixed number of requests. Evaluations
with the two sample topologies show that DeepRMSA-FLX
can effectively stabilize the training while achieving blocking
probability reductions of more than 20.3% and 14.3%, when
compared with the baselines.

Index Terms—Elastic optical networks (EONs), Routing, mod-
ulation and spectrum assignment (RMSA), Deep reinforcement
learning, Asynchronous advantage actor-critic algorithm.

I. INTRODUCTION

HE explosive growth of emerging applications (e.g.,

cloud computing) and the popular adoption of new net-
working paradigms (e.g., the Internet of Things) are demand-
ing a new network infrastructure that can support dynamic,
high-capacity and quality-of-transmission (QoT)-guaranteed
end-to-end services [1]. Recently, elastic optical networking
(EON) has emerged as one of the most promising network-
ing technologies for the next-generation backbone networks
[2]. Compared with the traditional fixed-grid (e.g., 50 GHz)
wavelength-division multiplexing (WDM) scheme, EON can
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flexibly set up bandwidth-variable superchannels by grooming
series of finer-granularity (e.g., 6.25 GHz) subcarriers and
adapting the modulation formats according to the QoT of
lightpaths [3].

The flexible resource allocation mechanisms in EON, on
the other hand, make the corresponding service provisioning
designs more complicated [4], [5]. To fully exploit the benefits
of such flexibilities and realize cost-effective EON, previous
studies have intensively investigated the routing, modulation
and spectrum assignment (RMSA) problem for EON [6]. The
authors of [7]-[9] first proposed integer linear programming
(ILP) models for solving the static RMSA problems, where
all the lightpath requests are assumed to be known in prior.
While the ILP models can provide the optimal solutions to
the RMSA problems, they are proved to be NP-hard [7]
and are intractable for large-scale problems. In this context,
a number of heuristic or approximation algorithms have been
developed. In [7], Wang et al. proposed two algorithms,
namely, balanced load spectrum allocation and shortest path
with maximum spectrum reuse, to minimize the maximum
required spectrum resources in an EON accounting for the
given traffic demand. The authors of [8] presented a simulated
annealing approach for determining the servicing order of
lightpath requests and applied the k-shortest path routing and
first-fit (KSP-FF) scheme to calculate the RMSA solution for
each request afterward. In [9], [10], the authors investigated to
leverage genetic algorithms to realize joint RMSA optimiza-
tions. A conflict graph based two-phase algorithm with proved
performance level was proposed in [11]. For more heuristic
RMSA designs, such as random-fit, exact-fit and most-used
spectrum assignment, readers can refer to [6].

Unlike static RMSA problems for which explicit optimiza-
tion models can be formulated, optimizing dynamic lightpath
provisioning in EONSs (i.e., dynamic RMSA problems) is more
challenging. The dynamic arrivals and departures of lightpath
requests as well as the uncertainty of future traffic could
dramatically destabilize the EON state and thus deteriorate
the efficiency of the optimizations based on the current state.
To cope with such dynamics, a few dynamic RMSA designs
have been reported lately, in addition to those that can be
derived from the aforementioned static RMSA algorithms.
The authors in [12] applied the multi-path routing scheme
and developed several empirical weighting methods taking
into account path lengths, link spectrum utilization, and other
features to realize state-aware dynamic RMSA. In [13], Yin et



al. investigated the spectrum fragmentation effect in dynamic
lightpath provisioning and proposed a fragmentation-aware
RMSA algorithm to mitigate spectrum fragmentation. More
aggressive service reconfiguration approaches, e.g., spectrum
defragmentation [14], [15], have also been proposed as com-
plements to normal RMSA algorithms to enable periodical
service consolidations but at the expense of high operational
costs. However, the existing works only apply fixed RMSA
policies regardless of the time-varying EON states or rely
on simple empirical policies based on manually extracted
features, i.e., lack of comprehensive perceptions of the holistic
EON states, and therefore are unable to achieve real adaptive
service provisioning in EONs.

In the meantime, recent advances in deep reinforcement
learning (DRL) have demonstrated beyond human-level per-
formance in handling large-scale online control tasks [16],
[17]. DRL parameterizes action policies with deep neural
networks (DNN5s) [18] that can perceive complex system states
from high-dimensional input data, such as, images, and traffic
matrices. By accumulating action experiences from repeated
interactions with the target systems and by reinforcing actions
leading to higher rewards, DRL is able to learn successful
policies (i.e., correct configurations of the DNNs) progres-
sively. The application of DRL in the communication and
networking domain has received intensive research interests
during the past two years [19]-[21]. In [20], the authors
enhanced the general deep Q-learning framework in [16]
with novel exploration and experience replay techniques to
solve the traffic engineering problem. The authors of [21]
presented a DRL-based framework for datacenter network
management and demonstrated a DRL agent which can learn
the optimal topology configurations with respect to different
application profiles. Nevertheless, the application of DRL in
optical networking, or in particular, for addressing the RMSA
problem, has not been investigated.

In this paper, we propose DeepRMSA, a DRL-based RMSA
framework for learning the optimal online RMSA policies in
EONSs. The contributions of this paper can be summarized as
follows. 1) We propose, for the first time, a DRL framework
for optical network management and resource allocation, i.e.,
RMSA. 2) We propose two training mechanisms for Deep-
RMSA, taking into account the unique characteristics of the
RMSA problem. 3) Numerical results verify the superiority of
DeepRMSA over the state-of-art heuristic algorithms.

The rest of the paper is organized as follows. Section II
presents the RMSA problem formulation. Section III discusses
the operation principle of DeepRMSA. In Section IV, we
detail the design of DeepRMSA, including the modeling
and the training mechanisms. Then, in Section V, we show
the performance evaluations and related discussions. Finally,
Section VI concludes the paper.

II. RMSA PROBLEM FORMULATION

Let G(V, E, F) denote an EON topology, where V and F
represent the sets of nodes and fiber links, F' = {F, s |¢.s}
contains the state of each frequency slot (FS) f € [1, fo] on
each fiber link e € E. We model a lightpath request from node

otod (o,d € V)as Ri(o,d, b, ), with b Gb/s and T denoting
the bandwidth requirement and service duration, respectively.
To provision R;, we need to compute an end-to-end routing
path P, 4, determine a proper modulation format m to use for
QoT assurance, and allocate a number of spectrally contiguous
FS’s (i.e., the spectrum contiguous constraint) on each link
along P, q according to b and m. In this work, we assume
that the EON is not equipped with the spectrum conversion
capability. Therefore, the spectra allocated on different fibers
to R; must align (i.e., the spectrum continuous constraint).
We adopt the impairment-aware model in [22] to decide the
modulation format according to the physical distance of P, 4.
Specifically, the number of FS’s needed can be computed as,

b
where C g'il;ls K is the data rate an FS of BPSK signal can sup-
port and m € [1,2, 3, 4] corresponds to BPSK, QPSK, 8-QAM
and 16-QAM, respectively. The static RMSA problem (i.e.,
offline network planning) gives a set of permanent lightpath
requests R = {R: |+} (T — o0) and requires provisioning all
of them in a batch following the link capacity constraint [7].
The objective of the static RMSA problem is to minimize the
total spectrum usage. Unlike the static problem where requests
are known in prior, in the dynamic RMSA problem (i.e., online
lightpath provisioning) being considered in this work, lightpath
requests arrive and expire on-the-fly and need to be serviced
immediately upon their arrivals. The dynamic RMSA problem
aims at minimizing the long-term request blocking probability,
which is defined as the ratio of the number of blocked requests
to the total number of requests over a period.

III. DEEPRMSA OPERATION PRINCIPLE

Fig. 1 shows the operation principle of DeepRMSA. Deep-
RMSA takes advantage of the software-defined networking
(SDN) paradigm for centralized and automated control and
management of the EON data plane [23]. Specifically, a
remote SDN controller interacts with the local SDN agents
to collect network states and lightpath requests, and distribute
RMSA schemes, while the SDN agents drive the actual
device configurations according to the received commands.
The operation principle of DeepRMSA is designed based on
the framework of DRL. Upon receiving a lightpath request
R: (step I), the SDN controller retrieves from the traffic
engineering database key network state representations, includ-
ing the in-service lightpaths, resource utilization and topology
abstraction, and invokes the feature engineering module to
generate tailored state data s; for DeepRMSA (step 2). The
DNNs of DeepRMSA read the state data and output an RMSA
policy 7:(A|st, 8) for the SDN controller, where A is the set
of candidate RMSA schemes for R; and 6 represents the set
of parameters of the DNNs (step 3). Typically, m, gives a
probability distribution over A. The controller in turn takes
an action a; € A based on 7; and attempts to set up the
corresponding lightpath (step 4). The reward system receives
the outcome related to the previous RMSA operations as
feedback (step 5) and produces an immediate reward r; for
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Fig. 1. Operation principle of DeepRMSA.

DeepRMSA. ry, together with s; and ay, are stored in an
experience buffer (step 6), from which DeepRMSA derives
training signals for updating the DNNs afterward (step 7). The
objective of DeepRMSA upon servicing R is to maximize the
long-term cumulative reward defined as,

Li= > A" "ery, @)

t/E€[t,00)

where v € [0,1] is the discount factor that decays future
rewards. Eventually, DeepRMSA enables a self-learning ca-
pability that can learn and adapt RMSA policies through
dynamic lightpath provisioning. Note that, by deploying mul-
tiple parallel DRL agents, each for a particular application or
functionality (e.g., protection [23] and defragmentation [15]),
we can extend DeepRMSA to build an intact autonomic EON
system.

IV. MODELING AND TRAINING MECHANISM

In this section, we first present the modeling of DeepRMSA,
including the definitions of state representation, action space,
and reward. Then, we take into account the unique charac-
teristics of dynamic lightpath provisioning and develop two
training mechanisms for DeepRMSA.

A. Modeling

1) State: The state representation s; for DeepRMSA is an
1x (2|[V]|4+1+4(2J+3)K) array containing the information of
R and the spectrum utilization on the K-shortest' candidate
paths for R;. Let us define the array as,

St = {Oa da T, {{Z]};,jale’jHjE[l,J]aZiazﬁazz}lke[l,K]} . (3)

'We typically set a small value of K (e.g, K = 5) [7] instead of
enumerating all possible candidate paths for every o — d pair because the
gain from using those excessive long routing paths is very limited.

Specifically, we use 2|V| 4+ 1 elements of s; to convey o,
d (in the one-hot format), and 7, where |V| represents the
number of nodes in V. For each k of the K paths, we
calculate the sizes z,i’ﬂ and the starting indices zi’y of the first
J available FS-block, the required number of FS’s z,?; based
on the applicable modulation format, the average size of the
available FS-blocks zé, and the total number of available FS’s
z2. When the number of possible candidate paths between
o and d (denoted as IA(O,d) is smaller than K, we assign
U, 207 e, 28, 24 23} (Vk > K, q) an array of —1 to
ensure a consistent format of s;. Hence, we aim to extract key
features on different candidate paths, from which DeepRMSA
can sense the global EON state. Fig. 2 shows an example
of constructing s; in DeepRMSA. For the sake of simplicity,
we omit the details related to modulation format selection and
assume two or three FS’s are required when path 1-2-4 (k = 1)
or 1-3-5-4 (k = 2) is used. We obtain J = 2 available FS-
blocks (marked by the dashed boxes) on each of the paths.
For instance, the first available FS-block (5 = 1) on path 1-2-
4 has a size of z%’l = 3 and a starting index of zf’l = 0. Note
that, a more comprehensive design could include the original
two-dimensional spectrum state I in s; directly to avoid any
information loss. However, this would dramatically increase
the scale of s; (i.e., requiring fy - |E| elements simply for
conveying F') and cause scalability issues. Moreover, making
DeepRMSA extract useful features from the large-scale binary
matrix while incorporating also the topology connectivity and
the spectrum continuous and contiguous constraints in EON
is not trivial. An interesting solution could be applying a
distributed learning approach while constructing topological
state representations and learning with graph neural networks
[24]. We will keep this as one of our future research tasks.

2) Action: DeepRMSA selects for each R; a routing path
from the K candidates and one of the J FS-blocks on the
selected path. Therefore, the action space (denoted as A)
includes K - J actions.

3) Reward: DeepRMSA receives an immediate reward r; of
1 if R; is successfully serviced. Otherwise, ry = —1.

4) DNNs: DeepRMSA employs a policy DNN fy (s;) for
generating the RMSA policy 7; and a value DNN fp (s¢)
for estimating the value of s; (i.e., the discounted cumulative
reward defined by Eq. 2). 6, and 0,, are the sets of parameters
of the policy and the value DNNs, respectively. fp (s:) and
fo, (s¢) share the same fully-connected DNN architecture [18]
except for the output layers. The output layer of fy (s¢)
consists of K -.J neurons, whereas fy, (s:) has only one output
neuron.

B. Training

We designed the training of DeepRMSA based on the
framework of the A3C algorithm [17]. Basically, A3C makes
use of multiple parallel actor-learners (child threads of a DRL
agent), each interacting with its own copy of the system
environment, to achieve learning with more abundant and
diversified samples. The actor-learners maintain a set of global
DNN parameters ¢, and 6;; asynchronously.

Different from general DRL tasks that can be mod-
eled as Markov decision processes (i.e., the state transition
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Fig. 2. An illustrative example of state representation in DeepRMSA (K =
2,J =2).

from s; to sy;y1 follows a probability distribution given by
P(s¢4+1]8¢t,at)), DeepRMSA involves state transitions which
are difficult to be modeled. In particular, due to the fact that
R,4+1 can be random, there can be infinite possible states
for s;11 in DeepRMSA. Thus, we first slightly modified
the standard A3C algorithm by defining an episode as the
servicing of N lightpath requests, and by making N equal
to the training batch size. Here, an episode defines the op-
timization scope of a DRL task. This way, we eliminate the
need for estimating the value of s;y;. We denote DeepRMSA
with the episode-based training mechanism as DeepRMSA-
EP. Algorithm 1 summarizes the procedures of an actor-learner
thread in DeepRMSA-EP. In line 1, the actor-learner initiates
an empty experience buffer A and sets ¢ as 1. Then, for each
R, the actor-learner checks whether A is empty (i.e., a new
episode starts), and if true, synchronizes the local DNNs with
the sets of global parameters (lines 3-5). Line 6 updates the
EON state by releasing the resources allocated to lightpaths
that expire. In line 7, the actor-learner obtains s; based on the
model discussed in Section IV-A. In line 8, the actor-learner
invokes the policy and value DNNs to generate an RMSA
policy and a value estimation for s;. Note that, in DeepRMSA-
EP, we make s; include one more element to indicate the
position of R, regarding the current episode. For instance, if
R: is the i-th request of the episode, we calculate a position
indicator as (N — ¢ + 1)/N. The actor-learner decides an
RMSA scheme based on the generated policy (lines 9-10) and
receives a reward accordingly (line 11). Specifically, with a
probability of ¢, the actor-learner applies the Roulette strategy,
otherwise, it simply selects the action corresponding to the
highest probability. The RMSA sample is then stored in the
buffer (line 12). With lines 13-21, DeepRMSA-EP performs
training every time the buffer contains NV samples. Specifically,
in the for-loop of lines 14-16, the algorithm first calculates for
each sample y in the buffer the discounted cumulative reward
(staring from Ry till the end of the episode) as,

>

P€[0,N 1], x4 ;€A

Iy = VT @
Then, the advantage of each action being taken can be obtained
by,

0y =Ty — fev (St')y 5)
which indicates how much an action turns out be better than
estimated. Lines 17-18 calculate the policy and values losses

Ly, and Lg,, from which policy and value gradients can be
derived. In particular, Lgp is defined as,

1
Lo, = — N Z 6y log fgp (sr,a)

X/ (SN
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where @ (0 < a <« 1) is a weighting coefficient. The
rationale behind Eq 6 is to reinforce actions (i.e., improving
the probabilities) with larger advantages while encouraging
exploration (by introducing the total entropy of the policies
as a secondary penalty term). The definition of the value
loss is straightforward as the mean square error from value
estimations, i.e.,

Lo, =5 32 (o, (s0) = To)?.

Xt/EA

@)

In line 19, the actor-learner applies the gradients to tune
the global DNN parameters with training algorithms such as
RMSProp or Adam [25]. Finally, the actor-learner empties the
buffer and updates ¢ (line 20) to get prepared for the next
episode.

Algorithm 1: Procedures of an actor-learner thread in
DeepRMSA-EP

1 initiate A =0, e = 1;
2 for each R: do
3 if A == () then
set 0, =67, 0, = 03;
end
release the spectra occupied by expired requests;
obtain s; with R, and G(V, E, F);
calculate fo,(st), fo,(5t);
calculate the cumulative sum of fp, (s¢) as ¢;
10 decide an RMSA scheme a; = arg rrzin {¢(a) > rand()}

with probability of e, otherwise, a; = arg max { fo, (s¢) };

e ® N o B

1 attempt to service R with a; and receive a reward ry;
12 store (s¢, at, fo, (s¢),7¢) in A;

13 if |[A| == N then

14 for each xy = (sy,a, fo,(s¢r),re) in A do

15 calculate I'ys and &, with Egs. 4 and 5;

16 end

17 calculate Lgp and Lg, with Eqs. 6 and 7;

18 obtain the policy and value gradients with Lgp, Lo,
19 apply the gradients to update 6, and 6;

20 empty A and set € = max {€ — €0, Emin };

21 end

22 end

Note that, the uncertainty of dynamic lightpath requests can
result in unpredictable trajectories of s;, which in turn can
cause oscillations of the cumulative rewards and destabilize
the training process. This problem becomes especially severe
when the numbers of requests involved are small. Recall the
calculation of cumulative rewards in Eq. 4, I'y decreases when
xv 1s getting closer to the end of the buffer and eventually
contains the reward from only one request. To cope with this
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Fig. 4. Cumulative rewards from DeepRMSA-FLX and DeepRMSA-EP with

issue, we propose a window-based flexible training mecha-
nism for DeepRMSA, namely DeepRMSA-FLX. Basically,
DeepRMSA-FLX invokes the training process each time the
buffer contains 2N — 1 samples. DeepRMSA-FLX slides a
window of length N through the buffer and calculates the
cumulative reward for each of the first N samples, still with
Eq. 4. Thus, every cumulative reward involves the rewards
from servicing IV requests. By doing so, we aim to smooth out
the oscillations equally for all the samples (if IV is sufficiently
large?). Then, the algorithm calculates the policy and value
losses with these N samples and updates the global DNN
parameters accordingly. The N samples are removed from the
buffer afterward. Meanwhile, the condition for synchronizing
local DNNs (line 3 of Algorithm 1) becomes |A| being equal
to N — 1 in DeepRMSA-FLX.

V. EVALUATION
A. Simulation Setup

We evaluated the performance of DeepRMSA with numeri-
cal simulations. We first used the 14-node NSFNET topology
in Fig. 3 and assumed that each fiber link could accommodate
100 FS’s. The dynamic lightpath requests were generated
according to a Poisson process following a uniform traffic
distribution, with the average arrival rate and service duration
being 10 and 25 time units, respectively. The bandwidth
requirement of each request is evenly distributed between 25
and 100 Gb/s. The DNNs used ELU as the activation function
for the hidden layers. We set v, a, N, €¢, €mmin and the learning

Note that, we typically set N moderate values, e.g., 50, to allow training
signals being applied to the DNNs quickly.

different (a), (c): DNN sizes, and (b), (d): numbers of actor-learners.

Fig. 3. 14-node NSENET topology (link length in kilometers).

rate as 0.95, 0.01, 50, 10~°, 0.05, and 107>, respectively.
We used the Adam algorithm [25] for training. Note that, we
normalized every field of s; before feeding it to the DNNs.

B. Comparison between Different DeepRMSA Configurations

We first assessed the impact of the scale of the DNNs on
the performance of DeepRMSA. We set K = 5 and J = 1.
Hence, DeepRMSA selected only the routing paths and applied
the first-fit scheme for spectrum allocation (evaluations with
different setups of K and J will be presented later). We fixed
the number of actor-learners as 16, and implemented DNNs
of three setups for both DeepRMSA-EP and DeepRMSA-
FLX, i.e., 3 hidden layers of 64 neurons (3 x 64), 5 hidden
layers of 128 neurons (5 x 128), and 8 hidden layers of 256
neurons (8 x 256). Figs. 4(a) and (c) show the evolutions
of cumulative rewards (collected from every 1000 requests)
with different DNN setups during training. We can see that
for both of the algorithms, DNNs with larger scales facilitate
faster training. In average, it requires simulating 750, 000 and
250, 000 requests for DeepRMSA to converge with DNNs of
3 % 64 and 5 x 128 (or 8 x 256), respectively. Eventually, the
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rewards associated with the three setups are very close, with
5 x 128 performing slightly better. This is because 5 x 128
enables a better ability of data representation when compared
with 3 x 64, and in the meantime does not suffer from the
overfitting issue as encountered by 8 x 256.

Then, we evaluated the impact of the number of actor-
learners by fixing the sizes of the DNNs as 5 x 128 and
implementing DeepRMSA with 1, 8 and 16 actor-learners.
Figs. 4(b) and (d) show the corresponding evolutions of
cumulative rewards. Again, we can draw the same observations
from both of the algorithms, i.e., increasing the number of
actor-learners leads to faster convergence and slightly higher
rewards. In particular, increasing the number of actor-learners
from 1 to 8 can accelerate the training speed by a factor
of nearly 10 as multiple parallel actor-learners enable more
diversified explorations of the problem. Since the performance
gain from further increasing the number of actor-learners is
marginal, we expect DeepRMSA with 16 actor-learners to
achieve the best performance. Hence, we fixed the scale of
the DNNs and the number of actor-learners as 5 x 128 and
16, respectively, for later evaluations.

We also conducted simulations with different setups of K
and J to study how they affect the performance of Deep-
RMSA. Figs. 5(a)-(c) show the comparisons of the cumulative
rewards from DeepRMSA-FLX with different setups of J.
Note that, for the case where both K and J are equal to
1, DeepRMSA is reduced to a simple shortest-path routing
and first-fit spectrum allocation (SP-FF) algorithm. We can
see that, for all K = 1, 3, and 5, allowing more flexibility

Number of Requests Simulated (x 104)

Fig. 7. Request blocking probability.

in spectrum allocation (i.e., increasing the value of J) does
not benefit the performance of DeepRMSA. We presume that
the reason is two-fold. First, a larger value of J means
more information provided to the DNNs and larger action
spaces, which increase the difficulty for DeepRMSA to learn
successful RMSA policies. Second, when compared with the
first-fit scheme, such flexibility can cause severer spectrum
fragmentation [26] and downgrade the spectrum utilization
in EONs. Next, we plotted the results with different setups
of K in Fig. 6, fixing J as 1. The results indicate that
increasing routing diversity can improve the performance of
DeepRMSA effectively. We have also tested the performance
of DeepRMSA-EP with different setups of K and J and
observed similar results. For all the evaluations afterward, we
set K =5and J =1.

C. Comparison with Baseline Algorithms

We compared the performance of DeepRMSA-EP and
DeepRMSA-FLX with that of the baseline algorithms, i.e., SP-
FF and K-shortest-path routing and first-fit spectrum allocation
(KSP-FF) [3]. KSP-FF has been shown to achieve the state-
of-art performance among the existing heuristic designs [13].
For fair comparisons, we set K = 5 for KSP-FF. Fig. 7
plots the evolution of request blocking probability from the
algorithms. We can see that DeepRMSA-EP and DeepRMSA-
FLX perform similarly at the beginning and outperform SP-FF
after a training period with only 50,000 requests. However,
DeepRMSA-FLX successfully beats KSP-FF after a training
period with 1,875,000 requests, whereas the performance of
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Fig. 8. (a) Normalized value loss, and (b) entropy of policy during training.

DeepRMSA-EP eventually merely fluctuates around that of
KSP-FF. After training with 5,000, 000 requests, DeepRMSA-
FLX can achieve a blocking reduction of 20.3% compared
with KSP-FF. To reveal the rationale behind the behaviors
of DeepRMSA-EP and DeepRMSA-FLX, Figs. 8(a) and (b)
present the results of normalized value loss and entropy of
policy during training, respectively. It can be seen that the
proposed window-based training mechanism facilitates more
accurate value estimations (lower value losses) and stabilized
training, while the training of DeepRMSA-EP starts to diverge
after 500,000 requests being simulated. Note that, training
periods with thousands of requests are too costly for practical
network operations. A more efficient way of training Deep-
RMSA is expected to be performing offline training with an
RMSA simulator first, before enrolling it in online lightpath
provisioning for fine tuning [21].

D. Robustness Evaluation

All the previous evaluations assumed a uniform traffic dis-
tribution. To verify the robustness of DeepRMSA, we tested its
performance by applying a nonuniform traffic model presented
in [27] with the average request arrival rate and service
duration set as 16 and 25 time units, respectively. Fig. 9 shows
the results of blocking probability. Again, we can see that
DeepRMSA-FLX entirely beats KSP-FF after training with
2,000, 000 requests and eventually achieves a blocking reduc-
tion of 11.4%. After simulations with 5,000, 000 requests, we
switched the traffic distribution back to the uniform model
defined in Section V-A to assess DeepRMSA’s capability of
adapting to traffic changes. It can be seen that the performance
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Fig. 9. Request blocking probability with nonuniform and uniform traffic
distributions.

of DeepRMSA is not bound to traffic distributions and that by
leveraging the previously learned knowledge, DeepRMSA still
outperforms KSP-FF under the new traffic model.

Next, we performed simulations with the 11-node COST239
topology in Fig. 10(a). We used a uniform traffic distri-
bution and set the average request arrival rate and service
duration as 20 and 30 time units, respectively. All the rest
of the parameters remained the same as those for the eval-
vations with the NSFNET topology. Fig. 10(b) shows the
results of request blocking probability with the COST239
topology, which demonstrates a clear performance differ-
ence between DeepRMSA-EP and DeepRMSA-FLX. Even-
tually, DeepRMSA-FLX can achieve a blocking probability
that is 14.3% and 18.9% lower than those of KSP-FF and
DeepRMSA-EP, respectively.

VI. CONCLUSION

In this paper, we proposed DeepRMSA, a DRL-based
RMSA framework for learning the optimal online RMSA
policies in EONs. DeepRMSA parameterizes RMSA policies
with DNNs and trains the DNNs progressively with experi-
ences from dynamic lightpath provisioning. By taking into
account the unique characteristics of the RMSA problem, we
developed two training mechanisms for DeepRMSA based
on the framework of A3C. Simulation results show that the
proposed training mechanisms facilitate successful training
of DeepRMSA, which can achieve blocking reductions of
more than 20.3% and 14.3% in the NSFNET and COST239
topologies, respectively, when compared with the baselines.

An interesting future research topic would be partitioned
DeepRMSA or hierarchical-DeepRMSA where multiple Deep-
RMSA agents cooperate hierarchically (within the same au-
tonomous system) or interact peer-to-peer through brokers
(in a multi-domain EON scenario [28]) to achieve scalabil-
ity of DeepRMSA applied to topologies with larger scales.
Meanwhile, multi-agent DeepRMSA applied to multiple au-
tonomous system networks will introduce game-theoretic
approaches similar to the discussions in [29], [30], thus
yielding more interesting yet practical multi-agent competi-
tive/cooperative learning problems.
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