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Abstract—Recently, the fast development of backbone network-
s has made the traffic, services and infrastructure of packet-over-
optical networks increasingly complicated. This stimulates the
research and development on fine-grained and realtime perfor-
mance monitoring and troubleshooting. In this paper, we propose
a programmable multilayer in-band network telemetry (ProM L-
INT) system, which can visualize a packet-over-optical network
in realtime, and enable customized performance monitoringand
troubleshooting. We introduce the system design in detail,and
explain how to control the overhead of multilayer INT (ML-IN T)
by inserting INT fields in packets selectively. The ProML-INT
system is experimentally demonstrated in a small-scale butreal
packet-over-optical network testbed. The experimental results
confirm that our proposal can monitor packet and optical layers
jointly in realtime, and the home-made data analyzer in it can
leverage artificial intelligence (AI) to identify the root-causes of
exceptions in packet-over-optical networks correctly andtimely.

Index Terms—Multilayer in-band network telemetry (ML-
INT), Programmable data plane (PDP), Packet-over-opticalnet-
works, Artificial intelligence (AI), Data analytics.

I. I NTRODUCTION

DRIVEN by the ever-increasing pressure from the edge
for many years, backbone networks, which usually take

the multilayer architecture of “packet-over-optical”, have un-
dergone continuous changes in terms of traffic, services and
infrastructure. Consequently, the conventional network control
and management (NC&M) for packet-over-optical networks,
which was designed to address slowly-varying network status
with semi-permanent configurations, is facing great challenges
to adapt to the new network environments [1]. Meanwhile, re-
cent advances on knowledge-defined networking (KDN) have
suggested that the symbiosis of software-defined networking
(SDN) and artificial intelligence (AI) will facilitate AI-assisted
network automation [2, 3]. Hence, future NC&M for packet-
over-optical networks should include AI-assisted networkau-
tomation, such that intelligent NC&M decisions can be made
automatically and timely to arrange highly-dynamic traffic
flows over packet and optical layers coordinately, for high
resource utilization and enhanced quality-of-service (QoS) [4].

The AI-assisted network automation can hardly be realized
without fine-grained and realtime performance monitoring and
troubleshooting. This is because various failures can happen
in a packet-over-optical network frequently and irregularly,
and to identify their root-causes, one needs to analyze fine-
grained telemetry data timely [5–7]. However, the existing
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techniques cannot fulfill these requirements on monitoringand
troubleshooting. The limitations come from three perspectives.
First of all, the monitoring and troubleshooting on a packet-
over-optical network should be multilayer-capable to consider
its packet and optical layers jointly. This will rule out the
mainstream techniques that were designed for single-layer
operations. Secondly, due to the complexity of a backbone
network, the monitoring and troubleshooting on it should be
fine-grained (i.e., at flow level) and realtime. This will make
the techniques that only collect telemetry data in the out-
of-band manner (e.g., the one in [8]) inapplicable. Finally,
the monitoring and troubleshooting should provide the pro-
grammability to customize data collection and to balance the
tradeoff between the accuracy and overhead of monitoring.

Recently, the progress on programmable data-plane (PDP)
[9, 10] has promoted the idea of in-band network telemetry
(INT) [11], which encodes realtime statistics regarding packet
switches in transient packets, and aggregates and processes the
statistics at network edges in the distributed way. INT opens
up new opportunities to realize fine-grained and realtime mon-
itoring and troubleshooting on packet-over-optical networks.
This inspires us to consider multilayer INT (ML-INT), which
can collect statistics from the network elements (NEs) in both
packet and optical layers, and encode them in packets.

In this article, we first review the background of this study
and explain the motivations and challenges of realizing ML-
INT. Then, we lay out the architecture of our programmable
ML-INT (ProML-INT) system, which introduces relatively
small overhead to visualize a packet-over-optical networkin
realtime and enables customized performance monitoring and
troubleshooting. Next, we elaborate on the system design of
ProML-INT and discuss how to implement it. Experimental
demonstrations are also presented to show the advantages of
our proposal. Finally, we summarize the article.

II. REVIEW OF BACKGROUND

A. Programmable Data-Plane (PDP)

The major improvements brought by PDP are that a PDP
switch will not be restricted by the existing network protocols
anymore, and it is capable of defining packet fields, match
actions and packet processing procedure, all in the arbitrary
manner. Programming protocol-independent packet proces-
sor (P4) based PDP [9] provides a high-level programming
language to customize packet formats and the processing
procedure of packets in PDP switches. With the support
from commercial hardware, P4-based PDP has recently at-
tracted intensive interests from both academia and industry. A
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Fig. 1. Overall architecture of our ProML-INT system, App: application, TED: traffic engineering database, PDP-SW: PDPswitch, BV-WSS: bandwidth-
variable wavelength-selective switch, OPM: optical performance monitor.

PDP switch can also be realized by leveraging the protocol-
oblivious forwarding (POF) [10]. POF refers to a packet field
with the tuple<offset, length> (i.e., offset denotes the start
location of the field in a packet andlength describes its length),
and defines the protocol-oblivious forwarding instructionset
(POF-FIS) to handle packet fields in the form of the tuple.
One advantage of POF-based PDP switches is that they are
runtime-programmable,i.e., an SDN controller can modify the
packet processing pipelines in them dynamically by updating
the corresponding flow tables in runtime.

B. In-band Network Telemetry (INT)

INT was initially proposed to enable a network operator to
monitor its packet network in realtime. Specifically, according
to the technical specification published in [11], the INT-
enabled switches along a flow’s routing path can encode their
statistics (e.g., packet processing latency and port throughput)
as INT fields and inserts them in each packet that belongs
to the flow. Therefore, after aggregating and analyzing the
statistics stored in INT fields, we can reveal how each packet
is handled at each hop. In other words, INT realizes end-to-
end monitoring at flow level and thus improves the realtime
visibility on a packet network significantly. Both P4-basedand
POF-based PDP switches support INT. Despite the advantages,
INT suffers from two drawbacks: 1) it may affect the packet
processing throughput of a PDP switch due to the insertion of
INT fields, and 2) it may generate excessively long packets
when the flow has to be routed over many hops and/or the
statistics to record for each hop are many.

C. Recent Advances on Packet-over-Optical Networks

Packet-over-optical networks integrate the benefits of pack-
et switching and circuit switching to not only provision
huge bandwidth but also handle bursty and dynamic traf-
fic cost-effectively [4]. Specifically, in a packet-over-optical
network, the optical layer establishes lightpaths to achieve
high-throughput data transmission over long distances, while
the switches/routers in the packet layer use the lightpathsas

underlying pipes and switch packets among them. However,
for the optical layer, the traditional fixed-grid wavelength-
division multiplexing (WDM) networking is still rigid and
spectrum-inefficient to support today’s Internet services[1,
12]. Hence, flexible-grid elastic optical networking (EON)has
been developed to bring the spectrum allocation granularity in
the optical layer down to12.5 GHz or even narrower [13–
15]. To this end, a backbone network that takes the form of
“packet-over-EON” would be promising, since adaptivity and
agility are provided in both the packet and optical layers.

D. Challenges for Realizing ML-INT

Note that, extending INT to the ML-INT for packet-over-
optical networks is not an easy task, for the following three
challenges. Firstly, since ML-INT needs to have an optical
performance monitor (OPM) to collect realtime statistics from
optical network elements (NEs) and report them to PDP
switches, we need to design and optimize the interaction
between the OPM and the packet processing module in a PDP
switch. More specifically, the interaction mechanism should
arrange the statistics from electrical/optical NEs in the way
that the time correlation between the packet and optical layers
is preserved, and in the meantime, the mechanism should not
affect the packet processing performance of a PDP switch or
the negative effect should be minimized.

Secondly, as ML-INT needs to monitor many more statistics
than those in the conventional INT, how to encode the statistics
in packets should be carefully designed. In other words, we
cannot simply insert all the statistics in each packet as the
conventional INT does, because this would not only bring un-
bearable overheads but also generate excessively long packets.
Note that, when the restriction from the maximum transmis-
sion unit (MTU) is present, excessively long packets introduce
the complexity of packet fragmentation and concatenation.

Finally, the processing of the collected statistics is alsoa
challenging task. We need to design a high-performance data
analyzer to extract, parse and analyze the INT data carried by
high-speed packet flows, and then introduce AI-assisted data
analytics to abstract knowledge regarding NC&M from the
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data, for network automation. In our previous study [6], we
presented the initial design of our ML-INT, but did not try
to leverage AI-assisted data analytics to process the obtained
telemetry data for network monitoring and troubleshooting. In
the following, we will elaborate on our recent efforts to expand
the ML-INT designed in [6] to a programmable ML-INT
(ProML-INT) system that can utilize AI-assisted data analytics
to detect and distinguish five types of network exceptions.

III. PROGRAMMABLE ML-INT FOR V ISUALIZING

PACKET-OVER-OPTICAL NETWORKS

Fig. 1 shows the overall architecture of our ProML-INT
system to visualize a packet-over-optical network in realtime,
for enabling AI-assisted network automation. The functionality
of ProML-INT is realized in the data plane that includes packet
and optical layers. The packet layer consists of PDP switches,
application hosts and data analyzers. The PDP switches can be
either P4-based or POF-based, and they realize ProML-INT to
insert realtime statistics into packets as INT fields.

Specifically, if a traffic flow is chosen for being monitored,
the control plane instructs the ingress and subsequent PDP
switches on its routing path to select a small portion of its
packets to insert INT fields that store collected statistics.
The details regarding this operation will be explained in
the next section. Each INT field carries a statistic of an
electrical/optical NE on the flow’s routing path. For example,
an INT field can contain the throughput of a PDP switch’s
output port or the power-level at the input port of a bandwidth-
variable wavelength-selective switch (BV-WSS). Here, on each
BV-WSS, we implement an OPM to collect statistics about the
lightpaths going through it,e.g., optical signal-to-noise ratio
(OSNR), central wavelength, and power-level. If required,the
PDP switch local to the BV-WSS can specify the lightpath(s)
to monitor and poll related statistics from the OPM. Finally,
the flow’s egress PDP switch removes all the INT fields
from the packets (i.e., making ProML-INT be transparent to
application hosts), and sends the extracted INT fields to a data
analyzer for being aggregated, stored and analyzed.

The control plane of the ProML-INT system utilizes a
hybrid centralized/distributed scheme for performance moni-
toring and troubleshooting. This scheme can avoid flooding the
controller with huge volumes of telemetry data, and provide
each application the flexibility to customize its performance
monitoring and troubleshooting. Network applications canuse
ProML-INT to realize end-to-end, flow-level and distributed
monitoring and troubleshooting, and they will flag alarms
to the centralized controller when seeing exceptions based
on their QoS requirements. This is because each application
can have its own concerned network statistics. Therefore,
each application-level monitor defines exceptions based onthe
application’s QoS requirements and analyzes telemetry data
distributedly, and then based on its preliminary analysis,it
sends alarms to the controller to not only report exceptionsbut
also provide suggestions on how to resolve them. Meanwhile,
the controller performs coarse lightpath-level monitoring (i.e.,
also through ProML-INT), obtains the applications’ service
provisioning schemes from its traffic engineering database

(TED), and utilizes an AI module to analyze the applications’
alarms together with its own lightpath-level monitoring results,
for making timely and intelligent NC&M decisions.
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IV. SYSTEM DESIGN AND IMPLEMENTATION

A. Programmable ML-INT

The system design to realize ProML-INT is illustrated in
Fig. 2. At the bottom, we have the OPM to tap optical signals
from a BV-WSS to monitor lightpaths. In the OPM, the optical
channel monitor (OCM) is a commercial device, and it realizes
high-resolution optical spectrum analysis on the tapped optical
signals. The spectrum data is sent to the OCM Agent, which
further analyzes it to extract the statistics regarding lightpaths
and then stores them in the optical spectrum database (Spec
DB). Meanwhile, the OCM Agent can communicate with a
PDP switch using a TCP socket, and report the lightpaths’
statistics to the switch’s ML-INT metadata memory.

In the PDP switch, the ML-INT metadata memory buffers
the most updated statistics regarding the packet and optical
layers, while the INT Agent organizes the statistics and
prepares them for being inserted in packets by the packet
processing pipelines. Here, to reduce the overhead of ProML-
INT, we design the packet processing pipelines to: 1) only
select a small portion of packets in a flow to insert INT fields,
according to a sampling rate that is runtime programmable,
and 2) ensure that each selected packet only carries a part
of the required statistics regarding the electrical/optical NEs
on the flow’s routing path. This selective INT insertion is
reasonable due to the fact that backbone networks usually
have line-rates at10 Gbps or higher, and thus sampling
network statistics in a per-packet basis could be unnecessary.
For instance, at10 Gbps, the interval between two1500-byte
packets is only1.2 µs, and the statistics of a backbone network
would not change dramatically within such short time.



4

Packet Parser

Match-Action Table

Selected Flow for ML-INT? An INT Packet?

INT Insertion

INT Arbiter for Statistics

An INT Packet?

INT Insertion

Duplicator

Forwarder

INT Arbiter for Statistics INT Arbiter for Statistics

INT Insertion

Forwarder

INT Removal

Ingress Switch

Intermediate Switch

Egress Switch

Y N Y N Y N

INT Arbiter for Tokens

w/
w/o

Forwarder

Fig. 3. Flow chart of the packet processing pipelines for ProML-INT.

We extend the INT packet format defined in [11] to that
shown in Fig. 1. First of all, since ProML-INT does not encode
INT fields in each packet of a flow, we leverage theToS field
in IP header to identify a packet with INT fields (i.e., an INT
packet). Specifically, we set theToS field in an INT packet
to a specific value. Secondly, for each INT packet, an INT
header is inserted after its TCP/UDP header. The INT header
includes anINT Info field followed by a series ofINT Fields.
The information of the whole INT header is stored in theINT
Info field, including the version number, the number of inserted
INT Fields, and the space left for moreINT Fields. EachINT
Field corresponds to a hop on the packet’s routing path, and the
hop refers to the corresponding lightpath in the optical layer
and the lightpath’s destination PDP switch in the packet layer.
Again, to limit the overhead of ProML-INT, we empirically
define the number of statistics to be included in anINT Field
as two. For the two statistics, the first one is mandatorily
chosen as theSwitch ID of the PDP switch that inserts the
INT Field, and the second one can be an arbitrary statistic
supported by ProML-INT. If there are more required statistics
of the hop, we distribute them in different INT packets, and the
data aggregation will be done afterwards by the data analyzer.

In the data analyzer, the INT collector captures the INT
packets sent from the data path. The INT parser extracts
the INT headers from the INT packets, parses the encoded
statistics, and time-stamps and stores them in the data buffer
temporarily. Next, the record filter will read the statistics from
the data buffer, and filter out redundant records before writing
them into the INT database (INT DB). The telemetry data
stored in the INT DB will then be processed by the AI-
assisted data analytics module, for performance monitoring
and troubleshooting. We train the AI-assisted data analytics

module in the offline manner. This means that the trained
module will process telemetry data samples quickly to ensure
realtime network monitoring and troubleshooting, because
the time-consuming training phase will not happen during
operation. Meanwhile, the AI-assisted data analytics module
also communicates with the controller to report exceptions.
The controller manages the service provisioning schemes for
applications, and also, it may update the policy of ProML-INT
(e.g., the sampling rate for the INT insertion on a flow and the
required statistics regarding an NE) in runtime if necessary.

B. Packet Processing Pipelines for ProML-INT

The packet processing pipelines are the key enabling com-
ponents of ProML-INT, and they can be customized by the
controller in runtime to define the following parameters: 1)
the sampling rate for selective INT insertion, 2) the electri-
cal/optical NEs for collecting statistics from, and 3) the re-
quired statistics regarding each concerned NE. Fig. 3 explains
the operation principle of the packet processing pipelines,
which are designed for the ingress, intermediate, and egress
switches on the routing path of a flow.

When a packet arrives at the ingress switch to a packet-
over-optical network, the PDP switch will first check whether
the packet belongs to a flow that has been selected for ML-
INT. If yes, the “INT arbiter for tokens” decides whether the
packet should be selected for INT insertion according to a
token-based mechanism that generates tokens based on the
preset sampling rate. The ingress switch will only insert an
INT header on the packet, when it sees a token, and then
the packet is converted into an INT packet, whose processing
procedure will be different from that of normal packets in
the subsequent switches. Next, the “INT arbiter for statistics”
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determines which statistic to encode in theINT Field for
the INT packet, while theINT Field is inserted by the INT
insertion module. Finally, the forwarder sends the INT packet
out together with other normal ones.

The operation procedure of an intermediate switch is sim-
pler, and the switch only inserts anINT Field in an INT
packet. Note that, before inserting theINT Field, the switch
hypothetically checks whether the resulting packet length
would be longer than the MTU of its network. If yes, the
switch will not perform the INT insertion. The operation in
the egress switch is similar, with the only exceptions that
the switch duplicates each INT packet and sends it to a data
analyzer, and removes the INT header from an INT packet
before forwarding it to the destination host.

C. AI-assisted Data Analytics

Since each INT packet only contains a part of the required
statistics on all the NEs over its routing path, a data analyzer
first needs to aggregate the statistics in different INT packets to
obtain a complete realtime view about the NEs. We design the
AI-assisted data analytics module in the data analyzer based
on a deep neural network (DNN), which can be utilized to
detect the root-causes of exceptions after offline supervised
training. Specifically, the AI module takes the time series of
the statistics collected on the NEs along a flow’s routing path
as inputs, and outputs the root-causes (e.g., low input power,
degraded OSNR, packet layer congestion, and PDP switch
misconfiguration) when seeing exceptions. The DNN in the
AI module has one input layer, four hidden layers, and one
output layer, where the neurons in them are all fully connected.
The input layer consists of 5 nodes and uses them to take
in multilayer telemetry data samples, each of which is 5-
dimensional (i.e., packet processing latency, input bandwidth,
output bandwidth, input power, and OSNR). For the hidden
layers, each of them consists of 128 neurons with Sigmoid or
ReLU activation functions. The output layer contains 5 nodes,
each of which corresponds to a root-cause of exceptions.

To obtain the training data set, we emulate various ex-
ceptions in a packet-over-optical network testbed, utilize the
ProML-INT system to collect realtime telemetry data, and la-
bel the data with the corresponding root-causes. Then, we take
90% of the data as the training set, while treat the remaining
10% as the testing set. In the training, we define the loss as
the categorical cross-entropy. The training adjusts the DNN’s
parameters to make the categorical cross-entropy less thana
preset threshold, and then we use the testing set to check the
performance of the AI module. We repeat the aforementioned
training/testing operations until the classification accuracy of
the AI module cannot be improved any more.

The ProML-INT system can get the fine-grained telemetry
data regarding a multilayer packet-over-optical network within
one millisecond. Meanwhile, after being trained in the offline
manner, our AI-assisted data analytics module can process
each telemetry data sample for troubleshooting within one
millisecond too. Hence, the overall latency in the ProML-INT
system for network monitoring and troubleshooting will be in
the scale of milliseconds, which means that it can react timely

to exceptions in the multilayer network and make intelligent
NC&M decisions in realtime.
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Fig. 4. Experimental setup, EDFA: Erbium-doped fiber amplifier.

V. EXPERIMENTAL DEMONSTRATION

A. Experiment Setup

We use the experimental setup in Fig. 4 to demonstrate a
prototype of our ProML-INT system. The packet layer consists
of four P4-based PDP switches, each of which equips with
10 GbE optical ports. The two hosts (i.e., Hosts A and B)
are emulated with commercial traffic generators/analyzers. The
optical layer is based on EON, and includes commercial 1×9
BV-WSS’, erbium-doped fiber amplifiers (EDFAs), and fiber
links. Each BV-WSS operates within[1528.43, 1566.88] nm
with a 12.5 GHz spectrum allocation granularity. The red
arrowed lines indicate the routing path of an application flow
that has a throughput of8 Gbps and needs to have ProML-
INT. The packet size of the application flow is set as1, 024
bytes, and the sampling rate for the INT insertion is50%.

Then, for the flow, we generate various types of exceptions
intentionally. For example, we attenuate the power of its
lightpaths to emulate power loss, inject wide-band noise inits
lightpath to generate OSNR degradation, increase the volume
of the background traffic on its lightpaths to emulate packet
layer congestion, and install incorrect flow tables in the PDP
switches on its routing path to emulate switch misconfigura-
tion. For each case, we monitor the receiving bandwidth of
the flow atHost B, and tag the collected statistics as those for
exceptions when the receiving bandwidth is less than90% of
that fromHost A. Here, we assume that there is only one type
of exception at a time. The telemetry data is time-stamped and
labeled with the corresponding root-causes, and we use it as
the training data set to let the AI module learn the correlations
between the ML-INT results and various types of exceptions.

B. Experimental Results

We first verify the processing throughput of our home-made
data analyzer, and the experimental results indicate that a
single data analyzer can extract, parse, filter and store theINT
Fields from packets with an arrival rate up to2 million packets
per second (Mpps). This processing throughput ensures that
the data analyzer can handle the INT packets in the8 Gbps
application flow fromHost A to Host B without any difficulty.
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Then, with the data analyzer, we leverage the procedure
mentioned in the previous subsection to collect around18, 000
INT data samples regarding the flow’s transmission over
Link B-D. All the data samples are tagged, and we divide
them into training and testing sets, which includes90% and
10% samples, respectively. For instance, Fig. 5 plots partial
training samples regarding the optical power and OSNR of the
lightpath that goes intoBV-WSS D. There are three types of
samples in Fig. 5,i.e., normal, low input power, and degraded
OSNR, and they indicate that it would be difficult to pick out
the exception cases with a simple threshold-based scheme.
This explains the necessity of introducing AI-assisted data
analytics in the performance monitoring and troubleshooting.

10 12 14 16 18 20 22

OSNR (dB)

-26

-24

-22

-20

-18

-16

-14

-12

P
o
w

e
r 

(d
B

m
)

Normal

Low Input Power

Degraded OSNR

Fig. 5. Training samples regarding optical power and OSNR.

After being trained, the AI-assisted data analytics module
performs well on the testing set. Specifically, it can identify
packet layer congestion and PDP switch misconfiguration with
100% accuracy, find the exceptions due to low input power
and degraded OSNR with accuracies of96.35% and98.64%,
respectively. Moreover, if we mix the exception cases together,
its overall classification accuracy on the testing set is96.99%.

Next, we conduct an experiment with the trained AI-assisted
data analytics module to demonstrate that our ProML-INT
system can achieve fine-grained and realtime performance
monitoring and troubleshooting for packet-over-optical net-
works. This time, we still send the8 Gbps application flow
from Host A to Host B, and run the flow for an hour. During
this period, we generate the exceptions of low input power to
BV-WSS B, degraded OSNR toBV-WSS B, and packet layer
congestion inPDP Switch 2. Meanwhile, the data analyzer
extracts and aggregates the statistics carried by INT packets,
time-stamps them, and then leverages the AI-assisted data
analytics module to process them, all in the realtime manner.
The experimental results for realtime performance monitoring
and troubleshooting are illustrated in Fig. 6, which shows the
INT data samples labeled by the data analyzer. Note that, to
show the results clearly, we omit a few similar samples here.

The experimental results in Fig. 6 further confirm that our
ProML-INT system can monitor the packet and optical layers
in the realtime manner, preserve the temporal correlations

among the monitoring results, and identify the root-causesof
exceptions correctly and timely. Therefore, the network oper-
ator can leverage it to abstract knowledge regarding NC&M
and realize knowledge-defined network automation.
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VI. D ISCUSSION ANDCONCLUSIONS

In this paper, we introduced our proposal of the ProML-INT
system, which can visualize a packet-over-optical networkin
realtime, and enable customized performance monitoring and
troubleshooting. We discussed its system design in detail,and
explained how to control the overhead of ML-INT by inserting
INT fields in packets selectively. The implementation of the
ProML-INT system was also described, and then the whole
system was experimentally demonstrated in a small-scale but
real packet-over-optical network testbed. The experimental
results suggested that our ProML-INT system can monitor
packet and optical layers jointly in realtime, and the AI-
assisted data analytics module in it can identify the root-causes
of exceptions correctly and timely. Hence, our ProML-INT
system can be considered as a potential enabler for AI-assisted
network automation in packet-over-optical networks.

Meanwhile, our ProML-INT system could still be improved
in the following aspects. Firstly, the control plane can be
further enhanced to close the loop of performance monitoring
and troubleshooting. More specifically, after determiningthe
root-causes of exceptions, the control plane should apply prop-
er strategies to reconfigure the packet-over-optical network
timely for failure recovery. Secondly, the AI-assisted data
analytics module should be further studied to ensure good scal-
ability and cover exceptions in a more comprehensive manner.
For instance, the combined effects of multiple simultaneous
exceptions should be investigated with it.
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