Demonstration of application-driven network
slicing and orchestration in optical/packet
domains: on-demand vDC expansion for
Hadoop MapReduce optimization

BINGXIN KONG!, Sial Liu!, JIE YIN!, SHENGRU LI', AND ZUQING
ZHul*

YUniversity of Science and Technology of China, Hefei, Anhui, 230027, China

L :
zqzhu@ieee.org

Abstract: Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to
improve the quality-of-service (QoS) of their Big Data applications. However, for achieving
guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual
datacenter (vDC) network, in which it can manage and manipulate the network connections
freely. To address this requirement, we design and implement a network slicing and orchestra-
tion (NSO) system that can create and expand vDCs across optical/packet domains on-demand.
Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures
of the system’s data, control and management planes, and present the operation procedures for
creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed
NSO system is then realized in a small-scale network testbed that includes four optical/packet
domains, and we conduct experiments in it to demonstrate the whole operations of the data, con-
trol and management planes. Our experimental results verify that application-driven on-demand
vDC expansion across optical/packet domains can be achieved for M/R optimization, and after
being provisioned with a vDC, the SP using the NSO system can fully control the vDC network
and further optimize the M/R jobs in it with network orchestration.

© 2018 Optical Society of America
OCIS codes: (060.4250) Networks; (060.4510) Optical communications.

1. Introduction

Recently, applications related to Big Data analytics have been increasing exponentially and thus
imposed new challenges to Internet infrastructure [1]. To adapt to the rapid growth of such appli-
cations, service providers (SPs) are relying on the cloud infrastructure based on geographically
distributed (geo-distributed) datacenters (DCs) to achieve timely responses to demands [2, 3].
However, due to the high cost of owning and maintaining multi-DC cloud systems, it would not
be feasible for each SP to build its own geo-distributed DCs. Therefore, it is common for SPs
to leverage hybrid clouds for ensuring high quality-of-service (QoS) and staying profitable si-
multaneously [4]. Specifically, in addition to its private DC(s), an SP can rent IT and bandwidth
resources from a few public DCs to expand its services dynamically. Then, by creating virtual
machines (VMs) through server virtualization [5] in public DCs, the SP can easily deploy its
services with reduced latency and increased capacity.

Note that, server virtualization is not the whole story of hybrid cloud management. This is
because to successfully deploy Big Data applications with stringent requirements on latency
and/or throughput, an SP may require explicit control of the DC network that interconnects
VMs and servers in public and private DCs, respectively [6]. For example, it is known that the
response time of an analytics request is important for gaining data insight [7], while in Hadoop
MapReduce (M/R) [8], which is a programming model for Big Data analytics and implemented
based on the famous Hadoop framework, the poorly managed communication-heavy phase with-
out considering the network condition can prolong the response time significantly [7]. Hence,

the SP should be able to configure the traffic routing and bandwidth allocation in the DC network
to deliver its services timely and wisely. This, however, is only partially realized in practice, s-
ince the SP usually does not have the authority to control the hybrid cloud’s DC network and can
only set up end-to-end connections among VMs and servers [6,9]. The issue can be addressed
by leveraging the ideas of network slicing [10] and [11]. Here, network slicing means to run
multiple logical networks as virtually independent business operations on a common physical
infrastructure in an efficient and economical way [10], while network orchestration refers to the
scheme to manage the ecosystem of computing, storage, and networking elements in a multi-
DC cloud system (i.e., including both intra- and inter-DC networks) in concert for ensuring the
QoS of applications [11]. More specifically, the DC network should be virtualized such that the
SP can get a virtual DC network to manage and manipulate the network connections in it for
guaranteed latency and/or bandwidth [12, 13]. Specifically, the SP can request virtual network
(VNT) slices and VMs from one or more infrastructure providers (InPs), and stitch them and
its private DC(s) together to form a virtual DC (vDC). Here, the topology of each VNT should
be customized such that the virtual switches (VS’) and virtual links (VLs) in it are assigned
with sufficient switching capacity and bandwidth, respectively, and can connect the VMs and
servers of the SP like in a real DC. This actually motivates us to study the network slicing and
orchestration system (NSO) for creating and managing vDCs.

The rapid growth of data traffic has been stressing the transport capacities of inter-DC net-
works, which are currently built based on fixed-grid wavelength-division multiplexing (WD-
M) transmission systems. However, such an inter-DC network only has a rigid optical lay-
er for bandwidth allocation, and thus can hardly adapt to the heterogeneous bandwidth de-
mands among DCs. Recently, by leveraging the flexible WDM grids [14], elastic optical net-
works (EONs) have been proposed for achieving flexible bandwidth allocation in the optical
layer [15, 16]. Hence, with an EON-based inter-DC network, the operator can utilize optical
bandwidth resources more efficiently by setting up lightpaths adaptively according to the ac-
tual bandwidth demands [17-20]. Moreover, industry has already supplied the key enabling
components for EONS, e.g., bandwidth-variable wavelength-selective switches (BV-WSS’) and
bandwidth-variable transponders (BV-Ts), as commercial products. Therefore, in this work, we
will consider an EON as the inter-DC optical domain.

Previous studies have suggested that by leveraging software-defined networking (SDN), the
network control and management (NC&M) of vDCs becomes more programmable for their
SPs [9,21]. To combine network virtualization with SDN, the key system is the network vir-
tualization hypervisor (NVH) [22], with which an InP can slice VNTs for SPs. Note that, in
order to adapt to the bursty M/R workloads, an SP might need to expand its vDC dynamically
across heterogeneous optical/packet domains by leveraging multiple NVHs. This is because a
hybrid cloud usually consists of several packet domains as intra-DC clusters and an inter-DC
optical domain to interconnect the clusters [23,24]. The network domains are usually managed
by different InPs, each of which would own and operate an NVH. Moreover, the application-
driven vDC expansion would not be possible without the support from the IT management, i.e.,
monitoring IT resource usages on VMs/servers and adjusting their workloads accordingly.

To this end, we can see that to enable the "pay-as-you-use" scenario for the SPs to achieve
application-driven on-demand vDC expansion, we need a multi-NVH based NSO system. Here,
the on-demand vDC expansion refers to the mechanism that when the IT and/or bandwidth
resources in an SP’s private DC or vDC become insufficient for its applications, it requests
for customized VNTs and VMs from the InPs through an NSO system, which will create the
required VNTs and VMs and stitch them with the SP’s original DC to form a new vDC. More
specifically, for Hadoop M/R optimization, the NSO system should be able to realize dynamic
network slicing in optical/packet domains and manage VMs/servers in DCs effectively. The
design and implementation of an NSO system with such comprehensive functionality have not

been fully explored before. Furthermore, to verify the system is truly operational, one needs
to incorporate experimental demonstrations that can evaluate it with real M/R jobs running.
Hence, the performance of the control plane operation for expanding a vDC on-demand, the
data plane operation for routing real M/R traffic in the vDC, and the IT management operation
for distributing the jobs among the VMs/servers, can all be confirmed. Nevertheless, to the best
of our knowledge, such experimental demonstrations have not been achieved before.

In this work, we design and implement an NSO system that can create and expand vDCs
across optical/packet domains on-demand for M/R optimization. Specifically, we present both
the architectures of the data, control and management planes in the system and the operation
procedures for creating, expanding, monitoring and managing a vDC for M/R optimization in
details. The proposed NSO system is realized in a small-scale network testbed that includes
four optical/packet domains, and we conduct experiments with it for proof-of-concept demon-
strations on the whole operations of the data, control and management planes. The experimental
results verify that application-driven on-demand vDC expansion across optical/packet domains
can be achieved for M/R optimization, and after being provisioned with a vDC, the SP can fully
control the vDC network and further optimize the M/R jobs in it with network orchestration.

The rest of the paper is organized as follows. Section 2 provides a brief survey on the related
work. We describe the architecture of the proposed NSO system in Section 3, and the opera-
tion procedures designed to achieve Hadoop M/R optimization are discussed in Section 4. We
present the experimental demonstrations in Section 5. Finally, Section 6 summarizes the paper.

2. Related work

To realize virtual SDNs (vSDNs), NVH abstracts the resources in the InP’s substrate network,
virtualizes substrate switches for network slicing, and bridges the communications between the
substrate switches and the controllers of vSDNs. Therefore, from the view point of each vSDN
controller, it directly manages the VS’ in its VNT slice, while all the substrate switches view
the NVH as the centralized controller for NC&M. Previously, a few NVH systems for packet
domains have been demonstrated, such as Flow Visor [25], OpenVirtex [26], and SR-PVX [27].
However, they cannot achieve vSDN slicing in optical domains since the characteristics of the
optical layer have not been addressed. By extending the famous OpenFlow protocol to include
optical-related extensions, researchers have studied the system architecture and operation pro-
cedure for realizing VNT slicing across multiple heterogeneous domains, and they have demon-
strated the control plane operations for virtual optical network deployment and virtual infras-
tructure composition over multi-domain multi-technology transport networks in [28] and [29],
respectively. Nevertheless, these demonstrations did not include data plane operations, and they
did not try to deploy real applications in the created virtual network/infrastructure either. Re-
cently, with the EON as the background, we have designed and implemented a network system
to build and operate virtual software-defined EONs (vSD-EONSs) in [30], and demonstrated con-
trol and data plane operations for survivable and application-driven vSD-EON slicing in [31]
and [32], respectively. However, the network system does not work for heterogeneous domains
or have the capability of IT management, and thus it cannot achieve application-driven NSO.
In addition to generic network virtualization, attentions have also been paid on vDC formula-
tion. Specifically, people have designed network systems, such as Oktopus [9] and Diverter [21],
to create vDCs in the packet domain within a physical DC. Besides the drawback that they did
not address heterogeneous domains, the proposed systems have other limitations, e.g., Oktopus
works only for tree-like substrate topologies and Diverter does not provide QoS guarantee on
bandwidth or latency. Chen et al. [23] demonstrated the control plane operations for building
vDCs over multi-domain optical networks. However, data plane operations were not included
and the authors only considered the optical domain by abstracting each DC as an edge node.
Meanwhile, there are standardization efforts on network slicing and orchestration too. Cross

stratum optimization (CSO) discusses the cooperation between the application stratum and net-
work stratum to efficiently utilize cloud and network resources for providing various QoS levels
to applications [33]. However, the architecture of CSO does not include the virtualization lay-
ers discussed in this work, and thus an SP might not have the explicit and fine-grained control
on its vDC network that interconnects the VMs and/or servers. The architecture of abstraction
and control of traffic engineered networks (ACTN) leverages physical network controllers to
manage administrative domains, uses a multi-domain service coordinator to abstract underlay
transport resources and provisions VNTs to tenants, and allocates each tenant a customer net-
work controller to manage its [34]. Nevertheless, ACTN only focuses on how to realize the
virtualization of network resources across multiple domains, but it does not consider the virtu-
alization and management of IT resources. In the meantime, we hope to point out that the vDC
creation/expansion discussed in this paper covers a more generic aspect in terms of NC&M
than the network function virtualization (NFV) [35]. Specifically, in a use-case of NFV, both
the types of virtual network functions (VNFs) and the traffic routing among them are predeter-
mined, while for the vDC creation/expansion, the VNTs are undirected and the VMs can carry
various types of VNFs. In other words, with a vDC, the SP can implement many NFV use-cases.

Hadoop M/R is a scalable framework for realizing Big Data analytics with parallel and distrib-
uted algorithms in a cluster [8]. The Hadoop cluster gets supports from the Hadoop distributed
file system (HDFS) to run on commodity servers, and consists of a master node and a few slave
nodes. The master node is in charge of handling job requests, assigning tasks to slave nodes, and
monitoring the cluster’s performance, while all the tasks are actually executed by the slave n-
odes. Hence, typical M/R applications such as WordCount (i.e., to count the number of a word’s
occurrences in a given set) and Teragen (i.e., to generate random data) can run in a Hadoop clus-
ter. Known as the next generation Hadoop, Hadoop yet another resource negotiator (YARN)
has been designed to conceal the heterogeneousness among slave nodes. Recently, intensive s-
tudies have been conducted to optimize M/R from the perspectives of resource scheduling [36]
and job [37]. Nevertheless, how to optimize Hadoop M/R with application-aware network de-
sign has just started to attract research interests since recently [7]. In [7], the authors leveraged
SDN to design a framework that can conduct adaptive traffic engineering on M/R workloads
to optimize their overall completion time. However, the proposed approach neither considered
network virtualization nor tried to scale network resources dynamically.

3. System architecture
3.1. Overall network architecture

Figure 1 shows the overall architecture of the proposed NSO system that can create and ex-
pand vDCs across optical/packet domains dynamically for M/R optimization. The NSO system
consists of three planes, i.e., the data, control and management plane, all of which will be im-
plemented and demonstrated in this work. Then, by checking the network elements in the three
planes, we can see that there are five entities plotted with different colors in it, i.e., four au-
tonomous systems (AS’) and a third-party resource broker.

For the AS’, the SP owns the private DC, two InPs own two public DCs, respectively, and
the third InP owns the EON that interconnects the DCs. The DCs are packet domains built with
OpenFlow (OF) switches (i.e., commercial hardware switches or software-based OpenvSwitch
(OVS) [38]). Each public DC takes the normal three-layer intra-DC network architecture based
on fat-tree [6], i.e., the VMs/servers are connected by top-of-rack (ToR) switches, the aggrega-
tion switches groom the traffics from ToR switches, and the core switches facilitate backbone
communications. Each core switch is equipped with several optical ports (i.e., 10GbE SFP mod-
ules), which can be used to set up lightpaths in the EON. Note that, we use transparent optical
networking in the EON, which means that each optical port is directly connected to a BV-WSS
in the EON without going through an optical line system for optical-electrical-optical (O/E/O)

Public DC2

~y

o
7S

£
ol | _Fm
R

sz

Data Plane

<> For Creating/Expanding vDC % Core Switch I TOR Switch ‘
Server

SP InP of EON InP of DC1 InP of DC2

EON V-Layer |i[VMgr J«—[NVH | | DCV-Layer |=i[vMgr |&—] NVH & SVH |

1 -
<—> For Controlling vDC I Aggregation Switch E: BV-WSS with OF-AG

Fig. 1. System architecture for creating and expanding vDCs across heterogeneous
optical/packet domains, ToR switch: top-of-rack switch, BV-WSS: bandwidth-variable
wavelength-selective switch, OF-AG: OpenFlow agent, V-Layer: virtualization layer, VM-
gr: virtualization manager, NVH: network virtualization hypervisor, SVH: server virtual-
ization hypervisor, M/R-EH: MapReduce event handler.

conversion and traffic grooming. This is because we only have very limited funding budget and
needs the flexibility provided by the transparent scheme to virtualize the EON and gain full
control over the end-to-end data transmission between any VM/sever pair. The EON consists of
several BV-WSS’, each of which is controlled by an OF agent (OF-AG) [39, 40] that is home-
made and programmed based on OVS. To coordinate the AS’ for application-driven NSO, we
design a resource broker (Broker) and place it in the management plane [41,42]. We assume
that the Broker is owned and operated by a third-party other than the SP and InPs, and thus
the autonomy of each InP is protected. In other words, the Broker only analyzes the resource
request from the SP, disassembles it into sub-requests, and forwards them to proper InPs, while
the actual NSO is done by the InPs.

3.2. Interactions of management, control and data planes

Each AS owns and operates a network element in the control plane in Fig. 1. The orchestrator of
the SP achieves [T/bandwidth resource orchestration in its vDC for M/R optimization, and thus
it not only talks with the data plane of the private DC but also communicates with those of the
public DCs and EON through their virtualization layers (V-Layer) when necessary. Moreover,
the orchestrator may send an alert message to the M/R event handler (M/R-EH) in the man-
agement plane, when it sees a mismatch between the resources in its vDC and the requirement

from the M/R workloads. The V-Layer of each InP realizes NSO in its AS for vDC creation and
expansion. Hence, each V-Layer consists of a virtualization manager (VMgr) and a resource
hypervisor. Specifically, upon receiving a sub-request from the Broker, the VMgr calculates
the NSO scheme in its AS, which is then realized by the resource hypervisor. Here, the NSO
scheme in an AS includes at least the virtual network embedding (VNE) scheme [13] (i.e., how
to map the VS’ and VLs of the VNT in the sub-request onto the AS’ substrate network), and if
it is for a public DC, the NSO scheme also includes the VM placement (i.e., how to deploy the
required VMs in the sub-request on the DC’s servers). Since the EON only contains bandwidth
resources, the resource hypervisor in EON V-Layer only consists of an NVH to realize VNE
schemes. We design the NVH based on OpenVirteX and extend it to support OpenFlow 1.3 with
optical transport protocol extensions (OTPE).

ﬁvDC Fragment\
. NC&M

! S — V1Y
| n

! R —— Y o1 V|
i A
|

!

v v
M/R-EH _ RESTful API
(c)

LI —— TED

ToR RESTful d

o “I “I “I APl <> RIEM
SVH G > |T|%B

Broker
VS ﬁ Orchestrator

(a) (d)

Core

Aggregation I NVH

R <~ > RESTful
F\’AESTT' fP| TED <> API
Orchestrator | VMgr of EON
Vool
. (e)
Mon-app | <> DAM
OoNOS | -
. ¥ RESTul
? VMM VMDB RAM <> BE
i A A v
v v v ITDB <-rmrmmreemmmm
OF Protocol RESTful API VMgr of DC
(b) U]

Fig. 2. (a) Creation of a vDC fragment in a public DC, (b) design of the SP’s orches-
trator, Mon-APP: monitoring application, VMM: VM manager, VMDB: VM monitoring
database, DAM: data analytics module, (c) design of the SP’s M/R-EH, RMM: resource
management module, MCM: monitoring configuration module, (d) design of Broker, TED:
traffic engineering database, ITDB: IT resource database, RHM: request handler module,
and (e) design of EON VMgr, and (f) design of DC VMgr.

On the other hand, for each public DC, the resource hypervisor in DC V-Layer consists of
both an NVH and a server virtualization hypervisor (SVH), to orchestrate the IT/bandwidth
resources in the DC for realizing NSO schemes. Figure 2(a) explains how to orchestrate the
IT/bandwidth resources in a public DC to create a vDC fragment according to an NSO scheme
for vDC expansion. Here, we assume that the resource hypervisor already received the NSO
scheme from its VMgr. The VM placement in the NSO scheme is realized by the SVH, which
is programmed based on the Nova module in OpenStack [43]. Specifically, the SVH assigns
IT resources to the vDC fragment in the form of VMs, which are configured as kernel VMs

(KVMs) by Nova. The VNE in the NSO scheme is accomplished by the NVH, which is also
implemented based on OpenVirteX. The NVH can create VS’ over ToR, aggregation and core
switches and connect them and the VMs from the SVH with arbitrary VLs. After realizing the
NSO scheme, the resource hypervisor will connect to the SP’s orchestrator to stitch the created
vDC fragments with the private DC for vDC expansion.

3.3. Network elements of SP

The design of the orchestrator is shown in Fig. 2(b). In the orchestrator, we implement the S-
DN controller of the vDC based on ONOS [44], which manages the physical/virtual switches
in the vDC with OF. Note that, to achieve application-driven NSO, we program a monitoring
application (Mon-APP) in ONOS to monitor the operation of the vDC’s network part. Specifi-
cally, Mon-APP sends Port_Stats_Request messages to the physical/virtual switches in the vDC
periodically to collect their working status. The switches will then reply with Port_Stats_Reply
messages to report the bandwidth utilization and packet loss rate on each physical/virtual link
in the packet domains and the optical power on each VL in the EON. Based on the collected
information, Mon-APP determines the working status of each link in the vDC (i.e., in the nor-
mal or abnormal state), and will send an alert message to the M/R-EH through RESTful API
if necessary. The VM/server part of the vDC is controlled by the VM manager (VMM) in the
orchestrator, which is implemented based on the virt-manager [45] to start, migrate and stop the
M/R jobs on VMs/servers. Similar to its network part, the operation of the vDC’s VM/server
part should also be monitored in real-time for application-driven NSO. Therefore, we place an
IT resource monitoring agent implemented based on libvirt [46] in each of the VM/server to
collect the utilizations of CPU, memory and storage on it. The monitoring agents communi-
cate with the VM monitoring database (VMDB) in the orchestrator, which is realized based on
InfluxDB [47] and can store the collected metrics as customizable time-series. Then, the data
analytics module (DAM) will analyze the data in the VMDB, determines the working status of
each VM/server in the vDC, or sends an alert message to the M/R-EH if necessary.

Figure 2(c) illustrates the design of the M/R-EH, which sits on top of the orchestrator for high-
level NC&M. Here, the resource management module (RMM) collects the alert messages from
the orchestrator, analyzes their contents, and determines whether an adjustment on the vDC is
necessary and how to adjust the vDC based on the automatic management strategies pre-defined
by the SP through the NC&M I/O. For instance, if the RMM finds that the utilization of VM-
s/servers in the vDC is unbalanced, it would invoke VM migrations to re-balance the workloads,
and if it determines that the resources in the vDC will become insufficient for M/R workloads, it
would send a resource request to the Broker for vDC expansion. The monitoring configuration
module (MCM) is designed for configuring the strategies of network and VM/server monitoring
in the orchestrator. Specifically, the SP can define the frequency of monitoring and the trigger
conditions and parameters of alerts through the MCM.

3.4. Third-party resource broker

Upon receiving a resource request from the M/R-EH, the Broker coordinates the InPs to realize
vDC expansion. To achieve this, the Broker is designed as in Fig. 2(d), which includes four
software modules. The RESTful-API handles the communications to/from the M/R-EH and the
InPs’ V-Layers, respectively. For instance, it accepts the resource requests from the M/R-EH,
each of which includes the requirements on virtual topology, bandwidth and VMs for vDC ex-
pansion. The traffic engineering database (TED) is responsible for gathering global topology of
the substrate multi-domain networks. Since each InP might not want to disclose the complete
topology of its domain due to security considerations, it may only provide an abstracted topol-
ogy to the Broker. The Broker then aggregates all the abstracted topologies from the InPs to
get the global topology and stores it in the TED. Similarly, the IT resource database (ITDB)

is used to stores the abstracted IT resources in the public DCs. When there comes a resource
request from the M/R-EH, the RESTful-API forwards it to the request handler module (RHM),
which will analyze the request, communicate with the TED and ITDB to obtain necessary in-
formation, and then divide it into sub-requests (i.e., vDC fragments). This can be achieved by
modifying the algorithms developed by us in [48] to consider more than two domains. Each sub-
request is for a specific optical/packet domain (i.e., an InP), and contains a virtual intra-domain
topology and the requirements on IT and bandwidth resources in it. Then, the Broker sends the
sub-requests to the V-Layers of the corresponding InPs through the RESTful API.

3.5. Network elements of InPs

In each V-Layer, the VMgr calculates the NSO scheme in its domain for embedding a sub-
request. Note that, the designs of the VMgrs for the InPs of a public DC and the EON are
different, since the EON only contains bandwidth resources. The design of the VMgr of the
EON is shown in Fig. 2(e). The RHM receives the sub-request from the Broker, gets the EON’s
current status from the TED, calculates a vSD-EON slicing scheme for the virtual intra-domain
topology to satisfy its bandwidth requirement, and then forwards the vSD-EON slicing scheme
to the NVH in its V-Layer for implementation. Note that, the network slicing in the EON is
different from that in the packet-based public DCs, and we realize it by leveraging the approach
developed in our previous studies [31,32]. The details in the VMgr of a public DC is illustrated
in Fig. 2(f), and compared with the VMgr in Fig. 2(e), we add two more modules to realize IT
management for embedding a sub-request in the public DC. Here, the RHM analyzes the sub-
request from the Broker, which contains a virtual intra-DC topology with both IT and bandwidth
requirements, and calculates the NSO scheme to embed it based on the network status stored
in TED and ITDB. Specifically, the NSO scheme should include not only the network slicing
scheme for embedding the virtual intra-DC topology but also the VM placement scheme for
instantiating the required VMs on servers. Note that, algorithms should be implemented in the
VMgrs to determine the VNE and VM placement schemes in their AS’. Since this work main-
ly focuses on the proof-of-concept demonstration of application-driven NSO in optical/packet
domains and similar algorithms have already been studied by us before [48], we would not em-
phasize on the algorithm part. Instead, we just implement simple algorithms in the VMgrs to
ensure that the experiments will run as designed. This will not limit the effectiveness of our NSO
system, since the VMgrs are software modules and can be modified without any restrictions.

4. Operation procedures

With the network system designed in the previous section, we can realize two major function-
alities, which are: 1) creating/expanding a vDC across heterogeneous optical/packet domains
on-demand and provisioning the vDC to an SP, and 2) monitoring and managing the vDC with
IT/bandwidth resource orchestration for Hadoop M/R optimization. The operation procedures
to achieve the functionalities are explained as follows.

4.1. vDC creation

The NC&M tasks on a vDC all happen in two phases, i.e., the planning and provisioning phases.
Specifically, the tasks in the planning phase are responsible for scaling the IT and network re-
sources in the vDC according to its resource requirement, while those in the provisioning phase
are for allocating the resources obtained in the planning phase to actual applications. Hence, vD-
C creation and expansion both happen in the planning phase. Meanwhile, there are two ways to
scale a VM, i.e., the horizontal and vertical scaling schemes [49]. Here, vertical scaling means
to add more IT resources in the VM in runtime, which, however, is not supported in Open-
Stack [49]. Therefore, our NSO system uses the horizontal scaling scheme that instantiates new

M/R-EH BroKer Switchs/ VMs/

VMgr-EON NVH VH N VMM
z OF-AGs Servers =B WSl HOhoS L
) Connect to!IONOS
Ptivate DC{ Connect to VMM
__V.D_C.R:.ue_st _______________________ [..] N L
Y TeqUes) Resource Update Request.
. Resource Update Reply
Creating Sub-request to EON Network SlicingiScheme
Fragment — g Connéct to ONOS
i i NOS; Confirmation
in EON Sub-request Confirmation EGN Network Confirmation 1O
¥ VMgr-DC1
(@]
() Resources Update Request. e
9 Resources Update Reply >
i Sub-request to DC1 £
lacemerjt Scheme
gﬂ Creating q M Placeme it Scheme Connecttdo VMM | | €
S Fragment— i T [8
) - VMM Confirmation 2
8 in DC1 DC1 IT Confirmation z
Network Slicing Scheme Connkct to ONOS. o
Sub-request Confirmation DC1iNetwork Corlfirmation 1 ONOS Confirmation
o VMgr-DC2
Creating Resource Update Request
Fragment— =~~~ " P
in DC2 Sub-request Confirmation
'yDC Confirmation! o

Fig. 3. Operation procedure for creating a vDC and provision it to an SP.

VMs to share the existing VM’s workloads, which makes the operations of creating and expand-
ing a vDC in the planning phase essentially the same. To this end, we only discuss how to create
a vDC across optical/packet domains and provision it to an SP with the procedure in Fig. 3.

< JavaScript Object Notation: application/json < Member Key: "controller"
4 Object 4 Object
< Member Key: "VM_resource" 4 Member Key: "type"
4 Object String value: VMM
> Member Key: "controller" < Member Key: "name"
Member Key: "vm_number" String value: defaultcontroller
> Member Key: "vm4" < Member Key: "address"
> Member Key: "vm2" String value: tcp:192.168.108.221
> Member Key: "vm3"
Member Key: "vml" 4 Member Key: "vmi"

< Member Key:

4 Member Key:
4 Object

“emd”
String value: the request of virtual da

"network_resource"

4 Object

4 Member Key: "vm_name"
String value: vmil
4 Member Key: "vcpu"

"controller!
"topology"

> Member Kev:
Member Key:

Number value: 4
< Member Key: "sub_net"
String value: 20.0.0.0/24

= 7 < Member Key: "hard_disk"
4+ Member Key: "topology" n el
i & +Member Key: "controller” String value: 126
rray . Object < Member Key: "v_mempry"
4 Arra : :
Numyber‘ value: @ “ Member Key: "type" b val“.l.e' 499..5
+ Array String value: ONOS ‘Me;n:e'r Key41 ‘”"—°: siliae
. Lo " ring value: ubuntul4.
Number value: 1@ Member Key: "name
. Array String value: defaultcontroller
Array 4 Member Key: "address"
- Array String value: tcp:192.168.108.187

Fig. 4. Wireshark capture of a vDC request.

Initially, for the private DC, the servers and SDN switches in it should be connected to the
ONOS and VMM in the SP’s orchestrator, respectively. Then, when necessary, the M/R-EH will
send a vDC request to the Broker and request for more IT and bandwidth resources. Since the IT
resource requirements will be fulfilled with VMs, the vDC request should contain the number
of new VMs and the properties of each VM, e.g., its image name and required IT resources in
CPU cycles, memory, and disk size. An example on the Wireshark capture of a vDC request
is shown in Fig. 4. The "VM_resource" portion indicates the IT resource demand, where the

"controller" field specifies the information of the VMM that manages the VMs in the vDC
and the remaining fields are used to customize the required VMs. In the "network_resource"
portion, the "controller" field specifies the information of the ONOS (i.e., the SDN controller
of the vDC), and the field of "topology" describes the topology and bandwidth requirements
of the vDC. Upon receiving the request, the Broker will first communicate with the VMgr of
each InP to update its information on the abstracted IT/bandwidth resources in the InP’s domain
(i.e., the EON or a public DC). Then, based on the latest network status, the Broker divides the
vDC request into sub-requests (i.e., vDC fragments), each of which will be sent to an domain
for implementation. In the EON, the VMegr first analyzes the sub-request and then calculates a
vSD-EON slicing scheme, which will be realized by the NVH. Next, the NVH connects to the
ONOS in the SP’s orchestrator to hand over the fragment created in the EON to the SP. After
all these have been done, the VMgr replies a confirmation to the Broker.

The operations in a public DC in response to the sub-request from the Broker are similar,
with the only difference that both network slicing and VM placement (VMP) should be done by
the NVH and SVH, respectively, to create the vDC fragment. Then, the NVH and SVH connect
to the ONOS and VMM in the SP’s orchestrator, respectively, to hand over the vDC fragment.
At this point, the vDC is created to include the original private DC and the newly-formed vDC
fragments over the EON and public DCs. Note that, in the vDC, all the VMs/servers work just
like in an intra-DC network based on Ethernet. Moreover, since all the physical/virtual switches
in the vDC can be controlled by the ONOS in its orchestrator, the SP has full control over
the vDC network, which means that it can establish arbitrary network connections among the
VMs/servers with explicit routing and bandwidth configurations for Hadoop M/R optimization.

VMs/ BV- Switches OF-AGs NVHs SVHs ONOS VMM M/R-EH
Sqwers WSS IT Monitoring Strategy
IT Mohitoring Configuratipn Network Monitoring Strategy
o Virtual IT Results Virtual IT Results
e o Physical IT Results IT Data
% 5_ Port Stats Request Port_Stats_Request 1 Analysis Alert
ES Port_Stats_Reply Port_Stats_Reply
% = Port_Stats_Request
< Port_Stats_Reply
Netwofk Data
c .
S Analysis Alert
s g I VMs Configuratior VM Migration
> %’4 Rerouting Scheme
§ I S U e — = . -
4 PacKet In Phcket In
- S Flow; Mod Flow_Mod
® ©
o % Provigion Lightpath Flow_Mod w/ OTFE
< Lightpath Setup Confirmation Flow 'Mod

Fig. 5. Operation procedure for monitoring and managing a vDC.

4.2. vDC management

After obtaining the vDC, the SP should be able to monitor its operation in real-time and manage
the IT/bandwidth resources in it through network orchestration, for M/R optimization. Figure
5 illustrates the operation procedure for these tasks. Here, we consider a scenario in which the
SP’s orchestrator detects unbalanced resource usage in the vDC and tries to re-balance the work-
loads. First of all, the M/R-EH deploys the monitoring strategies for IT and network resources
in the VMM and ONOS, respectively. Then, based on the strategies, the VMM and ONOS
monitors the resource utilization in the vDC by sending requests to VMs/servers and switch-
es, respectively. Specifically, for the network part, the monitoring is achieved by leveraging

the Port_Stats_Request and Port_Stats_Reply messages defined in OF, while for the VM/server
part, the VMM sends the IT monitoring configuration to the agents on VMs/servers and col-
lects feedbacks from them. The collected monitoring data is then analyzed by the DAM in the
orchestrator, and if unbalanced resource usage is detected (e.g., in Fig. 5, we assume that the
bandwidth utilization triggers the ONOS sending an alert message to the M/R-EH), network or-
chestration will be invoked to re-balance the workloads. Specifically, the M/R-EH instructs the
VMM and ONOS to conduct VM migration and rerouting, respectively. Here, the "Path Activa-
tion" phase in Fig. 5 shows how to set up an end-to-end path with explicit routing configuration
to connect a VM in a public DC and a server in the private DC across multiple domains. The
VM'’s edge switch first sends a Packet_In message to the ONOS through the NVH of its domain,
and the ONOS will then calculate the path and activate it by sending Flow_Mod messages to
the related switches. For the packet domains, the physical switches in the private DC receives
the Flow_Mod messages directly from the ONOS, while those in the public DCs get the trans-
lated messages through the NVHs of their domains. For the EON, the OF-AGs also receive
the Flow_Mod messages through the NVH of its domain. Then, they parse the messages to get
the routing and spectrum assignment (RSA) scheme of the inter-DC lightpath, and set up the
lightpath by configuring their BV-WSS’ accordingly.

5. Experimental demonstrations

Our experimental demonstrations include three parts. We first verify that the proposed system
can monitor and manage the private DC well, and obtain the performance benchmark of running
M/R jobs in the private DC only. Then, an experiment is conducted to confirm that application-
driven on-demand vDC expansion across optical/packet domains can be achieved for M/R op-
timization. Finally, we demonstrate that after being provisioned with the vDC, the SP can fully
control the vDC network and further optimize the M/R jobs in it with network orchestration. The
experiments are conducted with a small-scale network testbed that includes four optical/packet
domains. To emulate a DC, we use Pica8 P-3297 switches with 10GbE optical ports as the core
switches, and realize the aggregation and ToR switches with high-performance Linux servers
running OVS. Under each ToR switch, there are a few Linux servers, which either work as the
physical severs in the private DC or are configured with the Nova-Computer module in Open-
Stack to host the VMs in the public DCs. The EON uses Finisar 1 x9 BV-WSS’ that operate
within [1528.43, 1566.88] nm and have a bandwidth granularity of 12.5 GHz. On each BV-WSS,
we equip a homemade OF-AG that is implemented based on OVS and runs on an embedded Lin-
ux board. The power losses in the EON are compensated with Erbium-doped fiber amplifiers
(EDFAs). The network elements in control and management planes are all homemade and run
on Linux servers. We program them either from scratch (i.e., the M/R-EH and Broker) or by
leveraging open-source software (i.e., the orchestrator and V-Layers), as explained in Section 3.

5.1. Monitoring and managing private DC

We first bring up the private DC and deploy Hadoop M/R in it. For proof-of-concept demon-
strations, we deploy the Hadoop cluster with one master node and one slave node. Here, the
master node manages the Hadoop File System (HDFS) and also works as a YARN to manage
the resources in the cluster, while the slave node called Slavel runs the M/R jobs. We instantiate
the master and slave nodes on two VMs, each of which has four CPU cores, 4 GB memory and
12 GB storage, and they are connected with 1 Gbps bandwidth. Then, we run the M/R jobs for
WordCount in the Hadoop cluster with different workloads (i.e., with data sizes of 100, 300 and
500 MB), and measure the job completion time of each workload by averaging the results from
5 independent runs. The results are plotted in Fig. 6(a), which shows that the job completion
time increases sharply when the workload’s data size changes from 100 MB to 300 MB.

The analysis can be verified by the results on CPU and memory utilizations in Figs. 6(d) and

6(e), respectively, which are measured on Slavel. Here, the data size of WordCount is 100 MB.
In Fig. 6(d), we observe that the CPU utilization can go above 80% for a relatively long period.
If we implement an IT monitoring strategy in the VMM and let it report an alert message to the
M/R-EH when seeing CPU utilization going above 80% for 15 seconds, an alert message will
be sent out by the VMM at ¢ = 30 seconds in Fig. 6(d). The Wireshark capture in Fig. 6(b) and
the parsed message in Fig. 6(c) confirm that the alert message gets sent from the VMM to the
M/R-EH for reporting abnormal CPU utilization. We also implement a strategy to let the VMM
report that the state changes back to normal, when it sees CPU utilization staying below 80%
for 15 seconds. Hence, the VMM will report the normal state to the M/R-EH at ¢ ~ 60 seconds
in Fig. 6(d), which is also confirmed by the results in Figs. 6(b) and 6(c).

(DB39.034_VMM____M/R-EHHTTP_593POST_/ HTTP/1.1!

39.147 M/R-EHVMM HTTP 174HTTP/1.0_200_OK
169. MM -EHH ST H 1.1
169.042 VI M/R-EHHTTP 434 PO /OHTTE/

69.053 M/R-EHVMM HTTP 172HTTP/1.0 200 OK

@
3

3
3

-Object
‘Member Key: "value"

Number value: 90.975 @

-Member Key: "state"

[String value: alerting |

‘Member Key: "title"

[String value: [Alerting] CPU Utilization]

o
3

Job Completion Time (Seconds)

100 300 500 ‘Member Key: "state"
Data Size (MB) String value: ok
(a) ‘Member Key: "title" @

String value: [OK] CPU Utilization
Trigger an Alert (C)

—CPU of Slave1 100 -
- = Threshold —Memory of Slave1
|- = Threshold

Memory Utilization (%)
IS @
S 3

CPU Utilizition (%)

20

0 ; 0
0 5 10 15 20 25 30 35 40 45 50 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Time (Seconds) Time (Seconds)

Report Normal

(d) (e)

Fig. 6. Experimental results for monitoring and managing the private DC, (a) job com-
pletion time, (b) Wireshark capture of communication between VMM and M/R-EH, (c)
details of the alert messages for reporting CPU usages, (d) CPU usage on Slavel with 100
MB workload, and (e) memory usage on Slavel with 100 MB workload.

5.2. Application-driven on-demand vDC expansion

After receiving the alert message, the M/R-EH determines that the resources in the private DC
are insufficient for the M/R jobs and thus it will send a vDC request to the Broker, which will
then invoke the on-demand vDC expansion. The Wireshark captures of control messages used
for the vDC expansion are shown in Fig. 7. The messages collected on the Broker are in Fig.
7(a), and the corresponding explanations are as follows. In Step 1, the Broker receives the vDC
request from the M/R-EH, and by analyzing the request, it determines that the vDC expansion
will need to 1) deploy four and two VMs in public DC1 and public DC2, respectively, and 2)
slice virtual networks across the optical/packet domains to connect the VMs with the servers in
the private DC. In Step 2, the Broker updates its information on the abstracted IT/bandwidth
resources in the domains by sending resource update requests to the VMgrs. Then, the Broker
sends the sub-requests for the vDC expansion to the VMgrs in Step 3. Finally, after receiving

the confirmations from the VMgr, the broker hands over the newly-formed vDC to the SP in
Step 4. We can see that our NSO system takes 21.13 seconds to accomplish the vDC expansion.

6.082 M/R-EH _Broker HTTP POST /Broker HTTP/1.1 L..@ 9.455 Broker VMgr-DC1 HTTP POST /VMgr‘—DCl/update-r‘e..@
6.231 Broker VMgr-DC1 HTTP POST /VMgr-DCl/update-re.. 9.456 VMgr-DC1 Broker HTTP HTTP/1.8 200 OK (annlic..@
6.232 VMgr-DC1 Broker HTTP HTTP/1.8 200 OK (applic..._ i9.488 Broker VMgr-DC1 HTTP POST /VMgr-DC1/sub-req H.|
6.233 Broker VMgr-EON HTTP POST /VMgr‘-EON/update-r‘e...® 9.491 VMgr-DC1 SVH-DC1 HTTP POST /Scheme HTTP/1.1 (.i®
6.234 VMgr-EON Broker HTTP HTTP/1.6 260 OK (applic.. 29.987 SVH-DC1 VMgr-DC1 HTTP HTTP/1.0 200 OK (applic.
6.234 Broker VMgr-DC2 HTTP POST /VMgr-DC2/update-re.. :30.109 VMgr-DC1 NVH-DC1 HTTP POST /Scheme HTTP/1.1 (.|
6.235 VMgr-DC2 Broker HTTP HTTP/1.6 200 OK (applic.. i3@.151 NVH-DC1 VMgr-DC1 HTTP HTTP/1.1 200 OK (applic..
6.263 Broker VMgr-DC2 HTTP POST /VMgr-DC2/sub-req H.. {

6.264 Broker VMgr-EON HTTP POST /VMgr-EON/sub-req H4..®3B.415 VMgr-DC1 NVH-DC1 HTTP POST /Scheme HTTP/1.1
6.264 Broker VMgr-DC1 HTTP POST /VMgr-DC1l/sub-req H.. 30.434 NVH-DC1 VMgr-DC1 HTTP HTTP/1.1 208 OK (appli
6.657 VMgr-EON Broker HTTP HTTP/1.8 200 OK (applic.. (30.435\VMgr-DC1 Broker __HTTP_HTTP/1.0 200 OK __(applic..
20.870 VMgr-DC2 Broker HTTP HTTP/1.@ 200 OK (applic..
27.211 VMgr-DC1 Broker HTTP HTTP/1.0 200 OK (applic.. (c)
27.213 Broker M/R-EH HTTP HTTP/1.8 200 OK (applic...@

@) 13,732 Broker VMgr-DC2 HTTP POST 7VMgr-DC2/Update-re..
I T 13.733 VMgr-DC2 Broker HTTP HTTP/1.0 200 OK (applic..
11.356 Broker VMgr-EON HTTP POST /VMgr-EON/uUpdate-re.. {13.762 Broker VMgr-DC2 HTTP POST /VMgr-DC2/sub-req H..
11.356 VMgr-EON Broker HTTP HTTP/1.0 200 OK (applic. 13.765 VMgr-DC2 SVH-DC2 HTTP POST /Scheme HTTP/1.1 (..
11.387 Broker VMgr-EON HTTP POST /VMgr-EON/sub-req H.. 27.778 SVH-DC2 VMgr-DC2 HTTP HTTP/1.0 208 OK (applic.
11.568 VMgr-EON VMgr-EON HTTP POST /Scheme HTTP/1.1 (.. 227.922 VMgr-DC2 NVH-DC2 HTTP POST /Scheme HTTP/1.1 (.
11.619 VMgr-EON VMgr-EON HTTP HTTP/1.1 200 OK (applic.. 227.994 NVH-DC2 VMgr-DC2 HTTP HTTP/1.1 200 OK (applic..

11.758 VMgr-EON VMgr-EON HTTP POST /Scheme HTTP/1.1 (.| [28.344 VMgr-DC2 NVH-DC2 HTTP POST /Scheme HTTP/1.1 (..
11.779 VMgr-EON VMgr-EON HTTP HTTP/1.1 200 OK (applic.| (28.366 NVH-DC2 VMgr-DC2 HTTP HTTP/1.1 268 OK (applic..
11.780 VMgr-EON Broker HTTP HTTP/1.0 200 OK (applic.. 28.367 VMgr-DC2 Broker HTTP HTTP/1.0 200 OK (applic.

(b) (d)

Fig. 7. Wireshark capture of control messages used for vDC expansion, (a) messages col-
lected on Broker, (b) messages collected on EON VMgr, (c) messages collected on DC1
VMegr, and (d) messages collected on DC2 VMagr.

The messages collected on the VMgrs are in Figs. 7(b)-7(d). Since the NSO scheme to realize
the vDC fragment in public DC1 is the most complex, we use it as an example to explain the
operations of the VMgrs for the purpose of conciseness. In Fig. 7(c), the message exchanges
for updating the Broker’s information on the abstracted IT/bandwidth resources in public DC1
are in Step 1. In Step 2, DC1 VMgr receives the sub-request, and it informs the SVH in its
domain to create four VMs in Step 3. After creating the VMs in suitable servers successfully,
the network slicing scheme to satisfy the network requirement is sent to the NVH in its domain
in Step 4. In Step 5, after having the NVH in its domain connected to the SP’s orchestrator,
DC1 VMgr informs the Broker about the successful creation of the vDC fragment in its domain.
The creation of the vDC fragment in public DC1 takes 20.98 seconds in total, which can be
broken into 20.53 seconds for VM creation and 0.45 seconds for network slicing. The messages
in Fig. 7(b) indicates that the vSD-EON slicing in the EON takes 0.43 second, while those in
Fig. 7(d) suggests that DC2 VMgr uses 14.63 seconds to create the vDC fragment in its domain.
We can see that the Broker implements the vDC fragment creations in parallel to reduce time
latency. To illustrate the vDC expansion, Fig. 8(a) show the physical topology of the network
testbed, where we denote each substrate switch as "SN" and number the SNs in each domain
independently. The topology of the vDC is illustrated in Fig. 8(b), where we denote each virtual
switch as "VN" and number them continuously as in the same domain. Meanwhile, we also list
partial mapping results for embedding the vDC in public DC1 and the EON in Table 1.

Table 1. Partial node and link mapping results to embed the vDC
Domain Virtual Topology | Physical Topology
VN1, VN2, VN3 SNS5, SN1, SN6

EON VN1-VN2 SN5-SN2-SN1
VNI-VN3 SN5-SN6

VN4, VN5, VN6 SN1, SN2, SN3
Public DC1 VN4-VN5 SN1-SN2

VN4-VN6 SN1-SN3

Note that, the time required for instantiating a new VM depends on the size and location of
the VM image, the IT resource requirement of the VM, the workload on the physical server, etc.
Among these factors, the image size and IT resource requirement of the VM are determined by
its SP and cannot be changed, while the remaining two can be optimized. However, even though
we do our best to optimize the two factors, the room that can be squeezed from the latency is
still very limited. This is because the time used for spawning and booting up the VM is the
major part in the latency. Another way to reduce the latency is to create the VM in advance, i.e.,
the InP can pre-deploy several types of standard VMs on its servers and directly handover the
live VMs to the SPs to satisfy their VM requests. By doing so, the InP can reduce the latency of
VM creation significantly, but the flexibility of creating customized VMs has been sacrificed.

EON SN2 SN4‘
poiirs peiiid
DETY —E2asr Fragment in EON
/ =
VN3
N\, VN2
\ 7 \ rd T
biy VN4 é VN1 ==
’ I / g = .
— e < I on
5 = we " N5 sN1i_Private DC | yns/ yno_ 2
H — =
E c
3}] o
268 52 g
2 sN1 P I 8
g (I CE =
E SN3 SN2 5 VM4 VM3 VM2 VM1 @ Server1 Server2 Server3 VM5 VM6

—
&

(b)

Fig. 8. (a) Physical topology of the network testbed, and (b) virtual topology of vDC.

27.544M/R-EH Broker HTTP POST /Broker HTTP/1.1...®
27.674Broker VMgr-DC1HTTP POST /VMgr-DC1/update..
27.675VMgr-DC1Broker HTTP HTTP/1.0 200 OK (app..
27.677 Broker VMgr-DC2HTTP POST /VMgr-DC2/update..
27.679 VMgr-DC2 Broker HTTP HTTP/1.0 200 OK (app.. -5 Creating New VMs in one DCs 1
27.700 Broker VMgr-DC1HTTP POST /VMgr-DC1/sub-re..
27.700 Broker VMgr-DC2HTTP POST /VMgr-DC2/sub-re..
54.441VMgr-DC2Broker HTTPHTTP/1.0 200 OK (app..|®
55.608 VMgr-DC1Broker HTTPHTTP/1.0 200 OK (app..
55.610Broker M/R-EH HTTPHTTP/1.0 200 OK (app.. @

(a)
.578 M/R-EH Broker HTTPPOST /Broker HTTP/1.l1...®
.709 Broker VMgr-DC1HTTP POST /VMgr-DC1/update..
.710 VMgr-DC1Broker HTTPHTTP/1.0 200 OK (app..
.735 Broker VMgr-DC2HTTP POST /VMgr-DC2/update..
.736 VMgr-DC2Broker HTTPHTTP/1.0 200 OK (app..
755 Broker VMgr-DCIHTTP POST /VMgr-DC1/sub-re..!@
52.547 VMgr-DC1Broker HTTP HTTP/1.0 200 OK (app.. 0 2 4 6 8 10 12
52.550 Broker M/R-EH_HTTPHTTP/1.0 200 OK (app..|® Number of New VMs

(b) (c)

QCreating New VMs in two DC

W W B A
S o0 o o ©

N
3]

o

- o N
o

Time for vDC Expansion (seconds)
o o o

[N K

Fig. 9. Experimental results for evaluating NSO system’s scalability on vDC expansion,
(a) Wireshark capture of control messages used for vDC expansion in two public DCs, (b)
Wireshark capture of control messages used for vDC expansion in one public DC, and (c)
Time used for vDC expansion.

The experimental results in Fig. 7 indicate that in our small-scale network testbed, the latency
of vDC expansion depends largely on the time used for instantiating VMs. Therefore, we con-
duct more experiments to study the scalability of our NSO system by letting it creating more
new VMs in vDC expansion and measuring the total time used for the operations. Here, we con-
sider two experimental scenarios, i.e., all the new VMs are instantiated in one public DC and
the new VMs are instantiated in two public DCs evenly, and the experimental setup is the same
as discussed above. Figures 9(a) and 9(b) show the Wireshark captures of the control messages

used for vDC expansion in the two scenarios, respectively, for the worst case scenario (i.e., there
are 10 new VMs to be instantiated). The M/R-EH sends vDC expansion request to the Broker
in Step 1, and in Step 2, the Broker determines the VM placement scheme that indicates the
number of VMs to be instantiated in each DC according to the IT resource requirement. Note
that, as these experiments are mainly for measuring the NSO system’s scalability, the actual VM
placement schemes are hard-coded into the Broker. In Step 3, the messages in Fig. 9(a) indicate
that the Broker instructs the VMgrs of both DC1 and DC2 to create new VMs simultaneously,
while Fig. 9(b) illustrates that all the new VMs are instructed to be instantiated in DC1. Finally,
after all the new VMs have been instantiated successfully, the confirmation is sent back to the
M/R-EH in Step 4. For the two-DC scenario, the vDC expansion totally uses 28.07 seconds,
and the VM instantiations in DC1 and DC2 takes 27.91 and 26.74 seconds, respectively, since
the operations in the two DCs can be parallel. For the one-DC scenario, the new VMs have to
be instantiated in a serial manner, and thus it takes 45.97 seconds in total for the vDC expan-
sion. Figure 9(c) shows the total time used for vDC expansion when the number of new VMs
changes from 2 to 10. As expected, the one-DC scenario consumes more time than the two-DC
scenario in general. Meanwhile, we notice that the curves in Fig. 9(c) change almost linearly
with the number of new VMs, and even though instantiating two new VMs takes around 15
and 20 seconds in the two-DC and one-DC scenarios, respectively, the subsequent new VMs
consume much less time to be instantiated. For instance, the average time used for creating a
new VM becomes 2.807 and 4.597 seconds, for the the two-DC and one-DC scenarios, respec-
tively, when there are 10 new VMs to instantiate. This is because even in the same DC, our
NSO system can parallelize certain operations of VM instantiations when the VMs are created
over different servers. The results in Fig. 9(c) verify that our NSO system has reasonably good
scalability in terms of number of new VMs involved in the vDC expansion.

Input Spectrum to SN1 in EON Output Spectrum from SN5 in EON

vSD-EON Background ‘ ' VSD-EON’
212.5GHz Lightpath 10 212.5GHz

/\ / K\/ A\
) /
40! \ A

Power (dBm)
I R
o o o
3

i
o

Power (dBm)
5 8 &

|

1 -50
VY b \“’WW\,: ASA v VA~
60 60
1545 1545.5 1546 1546.5 1547 1547.5 1548 1548.5 1549 1545 1545.5 1546 1546.5 1547 1547.5 1548 1548.5 1549
Wavelength (nm) Wavelength (nm)

(@)

Input Spectrum to SN1 in EON Output Spectrum from SN5 in EON

o

vSD-EON vSD-EON
Background
10 212.5GHz " Lightpath 10k 212.5GHz
_) - I
E-20 / i E-20 f \ \
g A % \
= A 2 |
8 \ \ i & r
: | \ : \
S-40 \ | L -40 / s\
50 - \ = 1
M \\WA % M\ ki \\//‘ [\/\/\/\/\/\/\/\«/
60 60 | | i . !
1545 1545.5 1546 1546.5 1547 1547.5 1548 1548.5 1549 1545 1545.5 1546 1546.5 1547 1547.5 1548 1548.5 1549
Wavelength (nm) (b) Wavelength (nm)

Fig. 10. Experimental results for flexible-grid optical switching in the vDC, (a) input and
output spectra of one-lightpath case, and (b) input and output spectra of two-lightpath case.

We also conduct experiments to verify that our NSO system can explore the flexibility of
EONSs in the optical layer when creating/expanding vDCs. Here, for the vDC shown in Fig.
8(b), the NSO system allocates 212.5 GHz optical spectra (i.e., central wavelengths ranging

within [1545.87, 1547.47) nm) to the vSD-EON that interconnects the vDC fragments. Then, to
confirm that the related flexible-grid based optical switching has been configured correctly, we
set up one and two lightpaths in the vSD-EON from VN2 to VN1 and measure the input and
output spectra on the corresponding substrate optical switches. The lightpaths are for 10 Gbps
capacity, and based on the mapping relation in Table 1, VN1 and VN2 get mapped onto SN5
and SN1 in the EON in Fig. 8(a), respectively. Hence, we measure the input spectrum from
the SN1 in public DC1 to the SN1 in the EON and the output spectrum from the SN5 in the
EON to the SN1 in private DC, and show the results in Fig. 10. In Fig. 10(a), we observe that
a 10 Gbps lightpath with a central wavelength of 1546.92 nm gets established successfully in
the vSD-EON since its spectrum can be seen in both the input and output spectra, while the
background lightpath (i.e., with a central wavelength of 1547.72 nm) to the SN1 in the EON,
which does not belong to the vDC, gets switched away and cannot be observed in the output
spectrum. The results of the two-lightpath case are shown in Fig. 10(b), where we add another
10 Gbps lightpath with a central wavelength of 1546.12 nm to expand the bandwidth capacity
from VN2 to VNI in the vSD-EON. We can see that the spectra of the two lightpaths in the
vDC still get switched correctly.

5.3. Network orchestration in vDC for Hadoop M/R optimization

After obtaining the vDC, the SP’s M/R-EH decides to add a new slave node to the Hadoop
cluster for M/R optimization. Specifically, it instructs the VMM in the orchestrator to copy the
image of Slavel to VM1 in Fig. 8(b) and configure it as the new slave node. To achieve this, a
new path is activated in the vDC to support the VM duplication, and the related experimental
results are shown in Fig. 11. The Wireshark captures of the related control messages are in Fig.
11(a). Step 1 indicates that NVH of DC1 receives the Packet_In message from the edge switch
that connects to VM1 in public DC1, and it translates the message to forward to the ONOS.
In Step 2, the ONOS receives the Packet_In message, and calculates path between VM1 and
Serverl. In Steps 3 and 4, ONOS sends Flow_Mod messages through NVH of DC1 to SN2
and SN1 in DCI to activate the VL for VN5-VN4. In Step 5, the Flow_Mod messages with
optical transport protocol extensions (w/ OTPE) are forwarded to the OF-AGs of SNS, SN2,
SN1 in the EON through NVH of EON, which are used to configure the corresponding BV-
WSS’ for setting up a new lightpath on the VL for VN1-VN2. The new lightpath uses a center
wavelength of 1546.92 nm and provides 10 Gbps capacity to support the inter-DC connection
between public DC1 and the private DC, and it is set up in Step 6. Figure 11(b) plots the optical
spectrum of the new lightpath. Finally, in Step 7, the ONOS sends a Flow_Mod message directly
to SN1 in the private DC to activate the path segment to Serverl, which hosts Slavel. Hence,
the end-to-end path for the VM duplication has been established. Note that, the VM duplication
requires two-way communication, and the reverse path is activated similarly. Therefore, we omit
the procedure here for conciseness.

With the newly-added slave node, namely Slave2, the M/R jobs have more resources to use.
We redo the WordCount experiments in Section 5.1 with the same parameters, and the new
results on CPU and memory utilizations on Slavel are plotted in Figs. 12(a) and 12(b), respec-
tively, for 100 MB workload. By comparing the new results with those in Figs. 6(d) and 6(e),
we can see that the utilizations of IT resources become much less after the vDC expansion. The
performance improvement achieved by the vDC expansion can be further verified by the results
on job completion time in Fig. 12(c). After the vDC expansion and adding Slave2 in the Hadoop
cluster, the NSO system can shorten the job completion time effectively, especially for the case
with 500 MB data to analyze. Moreover, the job completion time increases linearly with the data
size this time. These results confirm the vDC expansion’s effectiveness on M/R optimization.

Next, we conduct an experiment to show that our proposed system can leverage the network
orchestration in the vDC to further optimize M/R jobs, when there is other services running

@

6.. 5.75.4N\LH DQ.lONO.S QpenElow. lﬁz TMR?«. QEPT. PAQKE'[IN @ 4
8590N0S NVH-DC1 OpenFlow 146 Type: OFPT_FLOW ®
®

6 59340NOS NVH-DC1 OpenFlow. 146 Type: OFPT FLOW._| MOD
6.5943NVH-DC1SN2 OpenFlow 178 Type: OFPT_FLOW_MOD
6.5966NVH-DC1SN1 OpenFlow 178 Type: OFPT_FLOW MOD

uuuuuu

- Length, i
OTPE 1706633

6 58810NOS NVH EON OF w- > 55592 [Type:FlowMod ® 40 T
0..29430N0S. ... NVH-EON. .OF :w-OTPE 170,6633. 2.25391. . [Type. FlowMod] J \\
6.6057 NVH-EON SN5 OF-w-0TPE 1706633 > 57672 [Type:FlowMod -50 " MM W) A Ay
6.6084 NVH-EON SN2 OF-w-OTPE 1706633 > 60136 [Type:FlowMod N,fw“ﬁ\/ W V“\\/‘ \;’\wv,\
6.6152NVH-EON SN1 OF-w-OTPE 1706633..>.53375. [Type:FlowMod 802 1
:2.22990N0S SN1 OpenFlow 146Type: OFPT FLOW MOD @ m 1545 1546 1547 1548
Wavelength (nm)
(@) (b)

Fig. 11. (a) Experimental results for the path activation to duplicate a VM in vDC, and (b)
optical spectrum of new lightpath.

g
S
=
3

— = Bl DC E;

—CPUorsavel] | ey smet]| 3 [Beeone]
- - Threshold 2 - - Threshold 2
. OSSR R o B B BB o BB A]
S 8 3.,
S 60 Zeo g
b 2 =
= = s
g 40 240 \ 3

o a 50
o
o =2 £
20 20 S
]
S
0 0 —
0 10 20 30 40 0 10 20 30 40 300 500
Time (Seconds) Time (Seconds) Data Size (MB)
(a) (b) (c)

Fig. 12. Experimental results for running M/R jobs in the vDC after expansion, (a) CPU us-
age on Slavel with 100 MB workload, (b) memory usage on Slavel with 100 MB workload,
and (c) job completion time.

simultaneously. Specifically, we assume that a backup service is suddenly started to transfer
data from Server3 to VM2 in the vDC. Hence, the VL for VN4-VNS5 (i.e., with a bandwidth of
1 Gbps) would become the bottleneck to limit the performance of the M/R and backup services.
The control messages collected on the M/R-EH to resolve the network bottleneck are shown in
Fig. 13(a). In Step 1, the ONOS detects the abnormal bandwidth usage on the VL for VN4-VN5
(i.e., over 70%), and sends an alert message to the M/R-EH. The details of the alert message
are in Fig. 13(b). Then, in Step 2, the M/R-EH decides to migrate Slave2 on VM1 to VM3
and sends the message in Fig. 13(c) to the VMM. The VMM triggers the VM migration and
sends a confirmation to the M/R-EH when the VM migration has been completed in Step 3. The
detailed process to move Slave2 for M/R optimization is shown in Fig. 13(d), which indicates
that the VM migration takes 9 seconds and uses an average throughput of 909 Mbps. When
the VM migration has been done, the M/R-EH instructs the ONOS to reroute the related paths
in the vDC to reconnect the Hadoop cluster. Finally, to verify the effectiveness of the network
orchestration, we run M/R jobs for Teragen in the Hadoop cluster to create 100 MB, 500 MB
and 1 GB random data, and compare the job completion time before and after the VM migration.
Here, Teragen is used because it consumes more bandwidth than WordCount. The results in Fig.
13(e) confirm that the VM migration can reduce the job completion time significantly.

6. Conclusion

We designed and implemented an NSO system that can create and expand vDCs across opti-
cal/packet domains on-demand for M/R optimization. The proposed NSO system was realized
in a small-scale network testbed that includs four optical/packet domains, and we conducted ex-

11.360 ONOS __M/R-EH HITP 539P0OST / HITP/i.1 @ o
11.376 M/R-EH VMM HITP_360QPOST_/ HTTP/1.1 @ -
20.385 VMM M/R-EH HTTP 174HTTP/1.0 200 OK —
20.495 M/R-EH ONOS___HTTP_ 174HTTP/1.0 200 OKi®) ém
(a) 2
Object g"“
Member Key: "Timestamp" o
[Member Key: "Alert message] (1) 200
-Object
‘Member Key: "Info" % 1 2 3 4 5 6 7 8 910
String value: Threshold-Exceeded Alert Time (Seconds)
‘Member Key: "Application" (d)
String value: 193 - org.monit.app - 1.0.0.SNAPSHOT %)
Member Key: " Threshold value" _ | [MBetore v migraton)
Member Key: "Observation location” B &0 Datter v Migrtion
String value: VN4-VN5 ® E
Member Key: "Actual rate" =
String value: 78.3% £
(b) 5
-Object é
-Member Key: "Comand" 8
String value: VM Migr‘ation@ E
‘Member Key: "Location"

String value: VM1 to VM3 100 500 1000
Data Size (MB)
(c) (e)

Fig. 13. Experimental results for network orchestration to avoid bandwidth bottleneck, (a)
control messages collected on M/R-EH, (b) details of the alert message to report bandwidth
usage, (c) details of the message from M/R-EH to VMM for VM migration, (d) process of
VM migration to move Slave2 for M/R optimization, and (e) job completion time.

periments in it to demonstrate the whole operations of the data, control and management planes.
The experimental results verified that application-driven on-demand vDC expansion across op-
tical/packet domains can be achieved for M/R optimization, and after being provisioned with
a vDC, the SP can fully control the vDC network and further optimize the M/R jobs in it with
network orchestration.

7. Funding

NSFC Projects (61701472 and 61771445); CAS Key Project (QYZDY-SSW-JSC003);
NGBWMCN Key Project (20172X03001019-004); China Postdoctoral Science Foundation
(2016M602031); Fundamental Research Funds for the Central Universities (WK2100060021).

References and links

1. P.Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly-efficient data migration and backup for big data applications
in elastic optical inter-datacenter networks,” IEEE Netw. 29, 3642 (2015).

2. A.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Holzle, S. Stuart, and A. Vahdat, “B4: experience with a globally-deployed software defined WAN,” in Proc. of
ACM SIGCOMM, (2013), pp. 3-14.

3. 1. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinated data backup in geo-distributed optical inter-datacenter
networks,” J. Lightw. Technol. 33, 3005-3015 (2015).

4. P.Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud management for profit-driven multimedia cloud
computing,” IEEE Trans. Multimedia 17, 1297-1308 (2015).

5. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the Linux virtual machine monitor,” in Proc. of
OLS, (2007), pp. 225-230.

6. S.Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and C. Guo, “Explicit path control in commodity data
centers: Design and applications,” IEEE/ACM Trans. Netw. 24, 2768-2781 (2016).

7. S. Zhao and D. Medhi, “Application-aware network design for Hadoop MapReduce optimization using software-
defined networking,” IEEE Trans. Netw. Serv. Manag. 14, 804-816 (2017).

8. D. Borthakur, The Hadoop Distributed File System: Architecture and Design (Apache Software Foundation, 2007).

9. H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacenter networks,” in Proc. ACM
SIGCOMM, (2011), pp. 242-253.

10. An introduction to network slicing. [Online] https://www.gsma.com/futurenetworks/wp-content/uploads/2017/11/
GSMA-An-Introduction-to-Network-Slicing.pdf.

11. Network automation and orchestration. [Online] https://www.juniper.net/assets/cn/zh/local/pdf/whitepapers/200054 1-
en.pdf.

12. L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightw. Technol.
32, 450460 (2014).

13. L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algo-
rithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24, 3648-3661 (2016).

14. “Spectral grids for WDM applications: DWDM frequency grid," ITU-T Rec. G.694.1, Feb. 2012.

15. Z. Zhu, W. Lu, L. Zhang, and N. Ansari, “Dynamic service provisioning in elastic optical networks with hybrid
single-/multi-path routing,” J. Lightw. Technol. 31, 15-22 (2013).

16. L. Gong, X. Zhou, X. Liu, W. Zhao, W. Lu, and Z. Zhu, “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw. 5, 836-847 (2013).

17. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Time-varying spectrum allocation policies and blocking
analysis in flexible optical networks,” IEEE J. Sel. Areas Commun. 31, 13-25 (2013).

18. W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, “Joint spectrum and IT resource allocation for efficient vNF service
chaining in inter-datacenter elastic optical networks,” IEEE Commun. Lett. 20, 1539-1542 (2016).

19. P. Lu and Z. Zhu, “Data-oriented task scheduling in fixed- and flexible-grid multilayer inter-DC optical networks:
A comparison study,” J. Lightw. Technol. 35, 5335-5346 (2017).

20. M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding graphs in inter-DC elastic optical net-
works,” J. Lightw. Technol. 34, 3330-3341 (2016).

21. T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson,
A.Lambeth, R. Lenglet, S. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling,
P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang, “Network virtualization in multi-tenant datacenters,” in Proc. of
NSDIL, (2014), pp. 203-216.

22. A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtualization hypervisors for software
defined networking,” IEEE Commun. Surveys Tuts. 18, 655-685 (2016).

23. H. Chen, J. Zhang, Y. Zhao, J. Deng, W. Wang, R. He, W. Zhou, Y. Ji, H. Zhang, Y. Lin, and H. Yang, “Demonstra-
tion of cloud resources integrated provisioning over multi-domain software defined optical networks,” in Proc. of
ECOC, (2014), pp. 1-3.

24. W. Fang, M. Lu, X. Liu, L. Gong, and Z. Zhu, “Joint defragmentation of optical spectrum and IT resources in elastic
optical datacenter interconnections,” J. Opt. Commun. Netw. 7, 314-324 (2015).

25. R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar, “Flowvisor: A network
virtualization layer,” OpenFlow Switch Consortium, Tech. Rep., pp. 1-13 (2009).

26. A. Al-Shabibi, M. Leenheer, M. Gerola, A. Koshibe, G. Parulkar, E. Salvadori, and B. Snow, “OpenVirteX: Make
your virtual SDNs programmable,” in Proc. of ACM HotSDN, (2014), pp. 25-30.

27. S. Li, K. Han, H. Huang, Q. Sun, J. Liu, S. Zhao, and Z. Zhu, “SR-PVX: A source routing based network virtual-
ization hypervisor to enable POF-FIS programmability in vSDNs,” IEEE Access 5, 7659-7666 (2017).

28. R. Vilalta, R. Munoz, R. Casellas, R. Martinez, S. Peng, M. Channegowda, T. Vlachogiannis, R. Nejabati, D. Sime-
onidou, X. Cao, T. Tsuritani, and I. Morita, “Dynamic multi-domain virtual optical network deployment with het-
erogeneous control domains,” J. Opt. Commun. Netw. 7, A135-A141 (2015).

29. A. Hammad, A. Aguado, S. Peng, R. Vilalta, A. Mayoral, R. Casellas, R. Martinez, R. Munoz, R. Nejabati, and
D. Simeonidou, “On-demand virtual infrastructure composition over multi-domain and multi-technology networks,”
in Proc. of OFC, (2016), pp. 1-3.

30. J. Yin, J. Guo, B. Kong, and Z. Zhu, “Demonstration of survivable vSD-EON slicing with automatic data plane
restoration to support reliable video streaming,” in Proc. of OFC, (2017), pp. 1-3.

31. J. Yin, J. Guo, B. Kong, H. Yin, and Z. Zhu, “Experimental demonstration of building and operating QoS-aware
survivable vSD-EONs with transparent resiliency,” Opt. Express 25, 15468—15480 (2017).

32.Z. Zhu, B. Kong, J. Yin, S. Zhao, and S. Li, “Build to tenants’ requirements: On-demand application-driven vSD-
EON slicing,” J. Opt. Commun. Netw. 10, A206-A215 (2018).

33. Y. Lee, G. Bernstein, N. So, T. Kim, K. Shiomoto, and O. de Dios, “Research proposal for cross stratum optimization
(CSO) between data centers and networks," IETF Draft [Online]. https://tools.ietf.org/html/draft-lee-cross-stratum-
optimization-datacenter-00.

34. D. Ceccarelli and Y. Lee, “Framework for abstraction and control of transport networks," IETF Draft [Online].
https://tools.ietf.org/html/draft-ceccarelli-actn-framework-07.

35. Network Function Virtualisation (NFV), Oct. 2014. [Online] https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV_White_Paper3.pdf.

36. D. Cheng, X. Zhou, P. Lama, J. Wu, and C. Jiang, “Cross-platform resource scheduling for Spark and MapReduce
on YARN,” IEEE Trans. Comput. 66, 1341-1353 (2017).

37. S. Tang, B. Lee, and B. He, “Dynamic job ordering and slot configurations for MapReduce workloads,” IEEE Trans.
Serv. Comput. 9, 4-17 (2016).

38

39.

40.

41.

42.

43

44.
45.
46.

47.
48.

49

. Open vSwitch [Online]. http://www.openvswitch.org/.

C. Chen, X. Chen, M. Zhang, S. Ma, Y. Shao, S. Li, M. Suleiman, and Z. Zhu, “Demonstrations of efficient online
spectrum defragmentation in software-defined elastic optical networks,” J. Lightw. Technol. 32, 4701-4711 (2014).
Z. Zhu, C. Chen, S. Ma, L. Liu, X. Feng, and B. Yoo, “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,” J. Lightw. Technol. 33, 1508-1514 (2015).
X. Chen, Z. Zhu, L. Sun, J. Yin, S. Zhu, A. Castro, and B. Yoo, “Incentive-driven bidding strategy for brokers to
compete for service provisioning tasks in multi-domain SD-EONs,” J. Lightw. Technol. 34, 3867-3876 (2016).

L. Sun, X. Chen, and Z. Zhu, “Multi-broker based service provisioning in multi-domain SD-EONs: Why and how
should the brokers cooperate with each other?” J. Lightw. Technol. 35, 3722-3733 (2017).

. The OpenStack Foundation [Online]. https://www.openstack.org/foundation/.

Open Network Operating System (ONOS) [Online]. http://onosproject.org/.

virt-manager [Online]. https://virt-manager.org/.

M. Bolte, M. Sievers, G. Birkenheuer, O. Niehorster, and A. Brinkmann, “Non-intrusive virtualization management
using libvirt,” in Proc. of DATE, (2010), pp. 574-579.

influxDB [Online]. https://www.influxdata.com/.

Y. Wang, P. Lu, W. Lu, and Z. Zhu, “Cost-efficient virtual network function graph (VNFG) provisioning in multido-
main elastic optical networks,” J. Lightw. Technol. 35, 2712-2723 (2017).

. M. Turowski and A. Lenk, “Vertical scaling capability of OpenStack,” in Proc. of ICSOC, (2014), pp. 351-362.

