
Make Big Data Applications More Reliable: Hitless
vSDN Migration to Avoid TCAM Depletion

Sicheng Zhao, Yao Jin, Kai Han, Jie Yin, Zuqing Zhu†

School of Information Science and Technology, University of Science and Technology of China, Hefei, China
†Email: {zqzhu}@ieee.org

Abstract—With network virtualization, an infrastructure
provider can create virtual software-defined networks (vSDNs)
over a shared substrate network and lease them to service
providers (SPs). This enables the SPs to run their Big Data
applications in a short time-to-market, flexible and cost-effective
way. However, in a dynamic network, both the instances of vSDNs
and the traffic in each vSDN can change over time, which would
degrade the optimality of the embedding schemes of vSDNs and
even cause serious reliability issues. Therefore, in this work, we
extend our protocol-oblivious forwarding (POF) based network
virtualization hypervisor (NVH) system (i.e., PVX) to realize
hitless vSDN migration to avoid ternary content addressable
memory (TCAM) depletion. Specifically, we design the PVX
system to realize the vSDN migration that is transparent to the
controllers of vSDNs and would cause zero or very few packet
losses. The proposed PVX is then implemented in a real network
testbed, and we conduct experiments to verify its effectiveness.

Index Terms—Network virtualization, Software-defined net-
work (SDN), Virtual network migration, Protocol-obliviou s for-
warding (POF).

I. I NTRODUCTION

Nowadays, to adapt to the fast development of Big Data ap-
plications, geographically-distributed datacenter (DC)systems
have been built globally to deliver low-latency, high-quality
and non-disruptive services to end users [1]. Meanwhile, the
emerging of network virtualization technologies [2–4] enables
service providers (SPs) to work around the high expenses of
building and operating physical DC systems, and thus their Big
Data applications can be supported in a short time-to-market,
flexible and cost-effective way [5]. Specifically, with network
virtualization, the infrastructure provider (InP) that owns a
substrate network (e.g., a physical geographically-distributed
DC system) can solicit requests from SPs, create logically-
isolated virtual networks (VNTs) over the substrate network
accordingly, and lease the VNTs to the SPs on demand [6].
Note that, to better support the SPs’ Big Data applications,we
expect the VNTs to be software-defined networks (SDNs) such
that enhanced network programmability can be guaranteed for
application-aware network control and management (NC&M).
Therefore, how to design and implement the network virtual-
ization system that can slice virtual SDNs (vSDNs) effectively
becomes an interesting and urgent problem to solve [7, 8].

To effectively slice vSDNs over a shared substrate network,
one generally needs both a virtual network embedding (VNE)
algorithm [9] and a network virtualization hypervisor (NVH)
[10]. The VNE algorithm is responsible for dealing with
the allocation of substrate resources (i.e., switching capacity

and flow-table space on substrate switches (S-SWs), and
bandwidth on substrate links) to the virtual switches (vSWs)
and links in vSDNs, and it has already been studied intensively
in literature [9, 11]. The VNE results are realized by the NVH
for vSDN slicing, which divides the flow-table space of each
S-SW into logic regions accordingly, and serves as a proxy
between the S-SWs and the virtual controllers (vCs) of the
vSDNs for control message translation [10]. Previously, a few
NVH systems have been designed and demonstrated, such as
FlowVisor [12], OpenVirtex (OVX) [13], and PVX [7].

Note that, in a dynamic network environment, both the
instances of vSDNs and the traffic flowing in each vSDN can
change over time. This, however, might make the optimal VNE
results implemented by the NVH not optimal anymore, and
even lead to serious reliability issues [14]. For instance,the
sudden traffic increase in a vSDN can congest the S-SWs on
which it is embedded, and as the S-SWs are actually shared
by multiple vSDNs, the traffic congestion will interrupt the
services of all these vSDNs. Moreover, the ternary content
addressable memory (TCAM) on each S-SW also gets shared
by vSDNs to store the flow-tables on their vSWs, and it can
be used up while the vSWs still have new flow-tables to be
installed. This will cause the flooding ofPacketInmessages to
the related vCs and seriously impact the vSDNs’ services.

The aforementioned reliability issues can be resolved by
invoking vSDN migration to re-balance the resource utilization
in the substrate network dynamically [14]. Fig. 1 provides an
intuitive example on vSDN migration. Here, the original VNE
schemes ofvSDNs1 and 2 makev-SWsb anda′ shareS-SW
3, and then, during network operation, we find that a TCAM
depletion would happen onS-SW3. To resolve the issue, we
can migratev-SW a

′ in vSDN 2 from S-SW3 to S-SW5
to re-balance the TCAM utilization in the S-SWs. Then, the
virtual links (VLs) in vSDN2 also need to be reconfigured to
connectv-SWa

′ to v-SWsb′ andc′. Although the procedure of
vSDN migration is straightforward, to design an NVH that can
support it effectively is still challenging due to two reasons.
First of all, the vSDN migration should be made transparent to
the vSDNs’ vCs because the vCs interact with S-SWs through
the NVH. Hence, if the vSDN migration can be solely handled
by the NVH, simplified vSDN management and fast service
recovery can be achieved. Secondly, we would expect the
vSDN migration to be “hitless” to the traffic in the vSDN,
i.e., very few or even zero packet losses should be caused.
However, to the best of our knowledge, the NVH system that

can successfully address the two challenges mentioned above
has not been designed or demonstrated before.

Migration

S-SW vSW Migration VL Migration

Substrate Network

2

3
1

4

5

6

a a’b b’

c c’

vSDN 2vSDN 1

NVH

Fig. 1. Example on vSDN migration to avoid TCAM depletion.

In this work, we extend the protocol-oblivious forwarding
(POF) based NVH system (i.e., PVX) that we developed in [7]
to realize hitless vSDN migration to avoid TCAM depletion.
Specifically, we add a TCAM monitor in PVX to check the
flow-table usage on each S-SW proactively. When the monitor
determines that a TCAM depletion is about to happen, it will
trigger a vSDN migration, which is transparent to the vSDNs’
vCs and would cause zero or very few packet losses (i.e.,
less than0.5% according to the experimental results). We
implement the proposed NVH system in a real network testbed
and conduct several experiments to verify its effectiveness.

The rest of this paper is organized as follows. Section II
provides a brief survey on the related work. The operation
principle of the proposed NVH system is explained in Section
III, and in Section IV, we discuss the experimental valuations.
Finally, Section V summarizes our work.

II. RELATED WORK

NVH is a key component to realize vSDN slicing, and it
has already been considered in a few previous studies [10].
FlowVisor [12] is the first NVH that can realize the slicing of
Openflow-based vSDNs. However, FlowVisor does not support
the creation of vSDNs whose topologies are different from that
of the substrate network, and this greatly restricts the flexibility
of vSDN slicing. OVX [13] inherits the basic architecture of
FlowVisor, but resolves the restriction on vSDNs’ topologies.
Later on, to realize protocol-independent vSDN slices, we
extended OVX to realize PVX [7, 8] and make it support POF,
which is a new SDN protocol that can realize the protocol-
independent data plane [15]. Specifically, the key idea of POF
is to process packet fields as{offset, length} tuples, where
offsetis the start bit-location of a field in the packet andlength
tells the field’s length in bits. Therefore, POF-based switches
can manipulate any bits in a packet without being restrictedby
network protocols, and greatly enhance the programmability of
data plane. Note that, vSDN migration has not been considered
in FlowVisor, OVX and PVX.

Previously, vSDN migration has been investigated in [14,
16]. Nevertheless, both of the studies realized vSDN migration
through the vSDNs’ vCs, which is not very reasonable since
the vCs should not know the resource usage in the substrate
network and thus cannot determine the migration scheme
(i.e., when and where to migrate). More importantly, the
experimental results in [14, 16] indicated that the vSDN
migration mechanisms were not hitless.

III. O PERATION PRINCIPLE

A. System Architecture

Fig. 2 shows the proposed system architecture to support
hitless vSDN migration in PVX. Here, the PVX connects to
all the S-SWs in the POF-based substrate network, and it
works as the SDN controller from the perspective of the S-
SWs. When the virtual network manager (VNMgr) receives a
vSDN request from tenants, it will calculate the VNE scheme
for the vSDN and pass the scheme to the PVX through the
Restful API for implementation. After the vSDN has been
sliced, its vC talks with the vSWs through the PVX for
installing, updating and removing flow-tables. Then, during
network operation, the TCAM monitor in PVX checks the
TCAM usage on each S-SW proactively. If the TCAM monitor
finds that a TCAM depletion is about to happen, it will inform
the VNMgr to calculate the vSDN migration scheme. In our
design, the vSDN migration is handled solely by the PVX
without any participation of the vCs,i.e., the whole process
is made transparent to the vCs.

VNMgr

vC

S-SW

Restful API

POF-based Substrate Network

vSDN Requests

from Tenants

Original

Mapping
New

Mapping

Migration

vSW

PVX

TCAM Monitor

Fig. 2. Architecture of our PVX to support vSDN migration.

The packet format that we design to realize vSDN slicing
with PVX is illustrated in Fig. 3. Specifically, to distinguish
the packets in different vSDNs, PVX inserts aVirtual Network
Header field (6 bytes) before the Ethernet header of each
packet flowing in the vSDNs. TheVirtual Network Header
includes two subfields,i.e., the Tenant ID(4 bytes) andLink
ID (2 bytes) subfields. TheTenant ID indicates the vSDN to
which the packet belongs, while theLink ID identifies the VL
on which the packet is being transmitted.

B. Design of Functional Modules

Fig. 4 illustrates the functional modules designed in the
PVX for realizing hitless vSDN migration.

Flow-Table Database (FT-DB): This module stores the
flow-tables that have been installed in the vSDNs. Note that,
the PVX translates the virtual flow-tables that are from the vCs
and for the vSWs into the flow-tables that can be deployed on
the S-SWs. Here, to realize hitless vSDN migration, FT-DB
stores both types of flow-tables and the flow-entries in them in
the forms ofTableModandFlowMod messages, respectively.
Meanwhile, the mapping relations between the virtual and
substrate flow-tables/flow-entries are also preserved in FT-DB.

Virtual Network Header Ethernet IP Payload

Tenant ID Link ID

Fig. 3. Packet format to realize vSDN slicing with PVX.

VNE Database (VNE-DB): This module stores the map-
ping relations between the vSDNs and the substrate network,
i.e., the node and link mapping results.

TCAM Monitor: This module is responsible for monitoring
the TCAM usages in the S-SWs proactively. Specifically, the
TCAM Monitor allocates a counter for each S-SW to record
the number of installed flow-entries,i.e., the counter gets
incremented by 1 every time when a vC installs a new flow-
entry to the S-SW. Then, when the TCAM Monitor finds that
the value of the counter exceeds a preset threshold, it will
inform the VNMgr to calculate the vSDN migration scheme
for avoiding TCAM depletion.

Migration API: This module implements the vSDN migra-
tion scheme sent from the VNMgr through the Restful API.
Specifically, the Migration API can parse the vSDN migration
scheme stored in the JSON file from the VNMgr, configure
the related S-SWs to implement the scheme, and update the
new network status in FT-DB and VNE-DB when the vSDN
migration has been done.

Flow-Table

Database

VNE

Database
Migration API

TCAM Monitor

PVX

VNMgr
Restful API

Fig. 4. Design of migration-related functional modules in PVX.

C. Design of vSDN Migration Procedure

In this subsection, we use the example in Fig. 5 to ex-
plain our design of the vSDN migration procedure. Here, the
numbers aside the S-SWs and vSWs are the corresponding
port numbers. It can be seen that the vSDN migration aims

to migratevSW b from S-SW2 (i.e., the original mapping)
to S-SW5 (i.e., the new mapping), and in the meantime, the
related VLs should be re-mapped too. The detailed procedure
to achieve this vSDN migration is explained as follows, and
a graphical illustration can be found in Fig. 6.

1

2

8

4
5

a
b

c

Substrate Network

1

2

8

4
5

a

b
c

Substrate Network

Migration

6 6

7 7

1
1

1

1

1

11

1
1

1

1 1

11

1

1

1

1
1

22

3

22

2 2
2 2

3 3

3 3

33

2

3

2

22

3 3

d d
• 2 2

4

11

1 12 2

2 2

3 3

4

•

•

•
•

• •
• •

•

• •

•

•
•

•

vSDN

Original Mapping New Mapping

vSDN

1

Fig. 5. An example on vSDN migration.

Step-1 (Changing Mapping Relations):We first change
the mapping relation (i.e., the node and link mapping results)
between the vSDN and the substrate network in VNE-DB.
Note that, link mapping also involves port mapping,i.e., how
to map the ports on vSWs to those on S-SWs. Hence, in this
step, PVX changes the node, link and port mappings. In Fig.
5, the port mappings that need to be changed are marked as
red, while the link mappings are marked as green.

Step-2 (Copying Flow-Tables/Flow-Entries):In this step,
we extract all the flow-tables/flow-entries (i.e., both the virtual
and substrate ones) that are for the vSW(s) and S-SW(s)
involved in the vSDN migration from FT-DB, store them in
the temporary memory in PVX, and delete them from FT-
DB. For instance, for the example in Fig. 5, all the virtual
flow-tables/flow-entries forvSW b and all the substrate ones
for S-SW2 are coped to the temporary memory in PVX. Note
that, we remove the original flow-tables/flow-entries in FT-DB
after copying them to avoid dual-entries, since we will insert
the new ones in FT-DB in subsequent steps.

Step-3 (Installing Flow-Tables/Flow-Entries on New S-
SWs): In this step, PVX realizes the migration of vSW(s).
Note that, the virtual flow-tables/flow-entries on the vSW(s)
(e.g., vSW b in Fig. 5) to be migrated has already been
extracted and stored in the temporary memory, and they will
not change during the vSDN migration. Hence, the PVX
installs the substrate flow-tables/flow-entries on the new S-
SW(s) by passing the corresponding virtual ones through
the De-virtualization Module in PVX. The De-virtualization
Module was developed in our previous work [7], and it can
translate virtual flow-tables/flow-entries to substrate ones ac-
cording to the mapping relations recorded in VNE-DB. Then,
the obtained substrate flow-tables/flow-entries are installed on
the new S-SW(s) (e.g., S-SWs4 and 5 in Fig. 5) by PVX.

Step-4 (Updating Flow-Entries on Related S-SWs):In
the previous steps, PVX only tries to realize the new mapping
results in the substrate network, but does not remove the
original mapping results in it. Hence, we incorporate the
“make-before-break” scenario [17] to realize hitless vSDN

migration. In other words, if there is traffic flowing in the
vSDN, its routing path(s) in the substrate network would
not be changed until this step. For example, if we assume
that there is a flow running fromvSW a to vSW d in the
vSDN in Fig. 5, its routing path in the substrate network
will stay as 1→2→3→8 until this step. Then, we take this
flow as an example to explain how to update the flow-entries
on S-SWs that carry the neighboring vSWs of vSWb for
vSDN migration. PVX first takes the virtual flow-entries which
contain OUTPUT action with the output port of 1 ofvSW
a out from FT-DB, changes theirFlowEntryCmd (i.e., the
type of operation in aFlowMod message) fromOFPFC-ADD
to OFPFC-MODIFY. Then, the virtual flow-entries are sent
to S-SW1 through the De-virtualization Module, which will
update the substrate flow-entries onS-SW1 to change the
output port of the aforementioned flow from 1 to 2. Next,
the same procedure is applied to the substrate flow-entries on
S-SW3 too, and then the flow will take the routing path of
1→5→4→3→8 in the substrate network.

Step-5 (Removing Flow-Tables/Flow-Entries on Original
S-SWs): In this step, PVX first gets the substrate flow-
tables/flow-entries for the original S-SWs (e.g., S-SW2 in Fig.
5) from its temporary memory, changes theTableModCmdof
the correspondingTableModmessages fromOFPTC-ADDto
OFPTC-DELETE, changes theFlowEntryCmdof the corre-
spondingFlowMod messages fromOFPFC-ADDto OFPFC-
DELETE, and then send all theFlowMod and TableMod
messages to the original S-SWs directly to remove the related
flow-tables/flow-entries there.

Virtual Flow-

Tables/Entries

Substrate Flow-

Tables/Entries

Delete

Delete

Copy

Virtual Flow-

Tables/Entries

POF Southbound API

Original S-SWs

OFPFC_DELETE OFPFC_ADD

Temporary
Memory

OFPTC_DELETE OFPTC_ADD OFPFC_MODIFY

Flow-table
Database

Substrate Flow-

Tables/Entries

PVX

Update

New S-SWs Neighbor vSWs related S-SWs

De-virtualization

Module

Fig. 6. Operations in PVX for vSDN migration.

IV. EXPERIMENTAL VALUATIONS

This section discusses the experimental valuations of our
proposed PVX system and analyzes the results. The PVX
system is implemented in a real network testbed, with which
we perform vSDN migration experiments with live traffic on.
In the testbed, we realize the vCs by extending the POF
controller developed in our previous work [15] and run them
on commodity Linux servers, and each S-SW is implemented
by running our software-based POF switch [15] on a high-
performance Linux server.

a b c

vSDN 1 vSDN 2

Migration

S-SW Flow before Migration Flow after Migration

S-SW 1

S-SW 2 S-SW 3

S-SW 4

S-SW 5S-SW 6

3

3

11

2

1

1

2

1

1

2

2

2

2

Host 1 Host 2

Substrate Network

PVX

a’ b’

Fig. 7. Experimental setup for functionality verification.

A. Verification of Functionalities

We first conduct an experiment to verify that the proposed
PVX system can realize hitless vSDN migration. Fig. 7
shows the experimental setup and scenario that we use for
functionality verification. Here, the PVX system slices two
vSDNs, i.e., vSDNs1 and 2, over the substrate network, and
the VNE schemes are illustrated in Fig. 7.vSW b in vSDN
1 and vSW a

′ in vSDN 2 are both mapped ontoS-SW2.
Note that, since the S-SWs are realized by software-based
POF switches and there is no TCAM in them, we emulate the
behavior of limited TCAM by limiting the maximum number
of flow-entries that can installed in each S-SW below1000.
In the experiment, we first let the vCs ofvSDN1 and 2 install
certain numbers of flow-entries onvSWsb anda′, respectively,
to use all the emulated TCAM onS-SW2. Meanwhile, the
service of a video streaming is running betweenHosts1 and
2 in vSDN1. Then, we try to set up a new flow invSDN2 such
that its vC would install a new flow-entry invSWa

′. Upon
receiving the relatedFlowMod message from the vC, PVX
determines that the TCAM onS-SW2 would be insufficient
and hence, it will trigger a vSDN migration to readjust the
mapping of vSDN 1. Specifically,vSW b will be migrated
from S-SW2 to S-SW6, as shown in Fig. 7.

The procedure of the vSDN migration is illustrated in the
wireshark capture in Fig. 8(a). It can be seen that upon
receiving theFlowMod message from the vC ofvSDN 2,
PVX determines that a vSDN migration would be necessary
since otherwise a TCAM depletion would happen. Hence,
PVX communicates VNMgr to determine the vSDN migration
scheme, and the detailed message VNMgr to PVX to inform
the vSDN migration scheme is shown and explained in Fig.
8(b). Next, PVX starts the vSDN migration according to
the received scheme. Specifically, PVX follows the procedure
discussed in Section III-C to accomplish the vSDN migration.
The time-stamps shown in Fig. 8(a) suggest that the whole
vSDN migration process only takes133 msec. Also, the
messages in Fig. 8(a) indicate that the vSDN migration only
involves the PVX, VNMgr and S-SWs, which means that the
migration is made transparent to the vCs ofvSDN1 and 2.

To verify that the vSDN migration is implemented suc-

(b) Message from VNMgr to PVX to inform the vSDN migration scheme.

…
…

Install a new flow-entry

Send a migration request

to PVX

Install flow-tables/flow-

entries on new S-SWs

Update flow-entries on

S-SW 1

Remove flow-tables/flow-

entries on original S-SWs

Update flow-entries on

S-SW 4

New S-SW

vSW to be migrated

VL to be migrated

New SLs that carry a VL

(a) Messages captured for virtual network migration.

Fig. 8. Messages captured on experiment of functional verification.

0 5 10 15 20 25 30 35 40 45 50
0

1

1.5

2

2.5

B
a
n
d
w

id
th

 (
M

b
p
s
) (a) Measured on S-SW 2

0 5 10 15 20 25 30 35 40 45 50
0

1

1.5

2

2.5

B
a
n
d
w

it
d
h
 (

M
b
p
s
)

Time (seconds)

(b) Measured on S-SW 6

0 5 10 15 20 25 30 35 40 45 50

Time (seconds)

0

1

1.5

2

2.5

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (seconds)

(c) Measured on Host 2

Fig. 9. Bandwidth of video streaming onS-SWs2 and 6 andHost 2.

cessfully in the network testbed and the operation of vSDN
1 would not be impacted by it, we measure the receiving
bandwidth of the video streaming onS-SWs2 and 6 and
Host 2 and show the results in Fig. 9. The results on the
receiving bandwidth onS-SWs2 and 6 suggest that the vSDN
migration is happened att = 25 seconds, while the receiving
bandwidth onHost 2 indicates that the service of the video
streaming runs smoothly end-to-end before, during and after
the vSDN migration. Therefore, the results in Fig. 9 verify that
our PVX has implemented the vSDN migration successfully in
the testbed and the overall process is hitless to the application
traffic flowing in the migrated vSDN.

B. Performance on Packet Losses during Migration

Note that, even though our design of PVX can ensure
hitless vSDN migration, a small amount of packet losses can
still occur in Steps-4and 5 discussed in Section III-C. This
is because the packets transmitted on the original substrate
links can be dropped during the path switching conducted

…

S-SW 1

S-SW 14

10 S-SWs

Migration

vSDN

Substrate Network

Host 1 Host 2S-SW 12

S-SW 13

S-SW 2

…

PVX

a b c

S-SW 11

S-SW Flow before Migration Flow after Migration

2

2

2

2

2

2

3
1

1

1
1

1 3

Fig. 10. Experimental setup for packet loss analysis.

0 10 70 80 90 100

End-to-end Round-Trip Time (RTT) (msec)

0.1

0.2

0.3

0.4

0.5

P
a
c
k
e
t

L
o
s
s
 R

a
te

 (
%

)

6050403020

Fig. 11. Results on packet loss rate during vSDN migration.

for the vSDN migration. More specifically, the probability
of packet losses increases with the average transmission time
of the packets. Hence, we design an experiment to measure
the end-to-end packet loss rate during the vSDN migration
when changing the average round-trip time (RTT) fromHost
1 to Host 2. The experimental setup and scenario are shown
in Fig. 10. This time, we include12 S-SWs in the original
substrate path, and then change the RTT fromHost1 to Host2
artificially with Netem (i.e., a tool for network traffic control).
Next, in each experiment, we use iPerf to generate a UDP flow
from Host1 to Host2 for 10 seconds, let the PVX to invoke a
vSDN migration as shown in Fig. 10 att = 5 seconds,i.e., the
vSW on S-SW11 gets re-mapped toS-SW13, and measure

the packet loss rates for different RTT in iPerf.
Fig. 11 shows the experiment results on packet loss rate

versusRTT. It can be seen that in the worst case (i.e., the
RTT is 100 msec), the packet loss rate is still below0.5%. In
our future work, we will try to further optimize the design and
implementation of our PVX to reduce the packet loss rate.

C. Performance on Migration Latency

Finally, we evaluate the PVX’s performance on migration
latency,i.e., the time used to accomplish the vSDN migration.
Specifically, we define the migration latency as the time
period from when PVX receives the vSDN migration scheme
from the VNMgr to when the scheme has been successfully
implemented in the substrate network. The experimental setup
and scenario are showed in Fig. 12. Here, we further stress
our PVX system to let it 1) migrate multiple vSDNs simulta-
neously, and 2) move hundreds of flow-entries on each vSDN
during the vSDN migration. Three experiments are conducted
to migrate 1, 2, and 3 vSDNs simultaneously, and to realize
fair comparisons, we make sure that the total number of flow-
entries that are moved in each experiment is the same.

a b c d a’’ b’’ c’’ d’’b’ c’ d’a’

PVX

Migration

Substrate Network

S-SW 6 S-SW 5

S-SW 4

S-SW 3S-SW 2

S-SW 1

S-SW

vSDN 1 vSDN 2 vSDN 3

Fig. 12. Experimental setup for migration latency analysis.

0 100 200 600 700 800 900 1000

Total Number of Flow-Entries to be Moved

50

100

150

200

250

300

350

400

450

500

M
ig

ra
ti
o
n
 L

a
te

n
c
y
 (

m
s
)

Migrating One vSDN

Migrating Two vSDNs

Migrating Three vSDNs

500400300

Fig. 13. Results on migration latency.

Fig. 13 shows the results on migration latency for different
experimental scenarios. We observe that no matter how many
vSDNs that we migrate simultaneously, the migration latency
generally increases linearly with the number of flow-entries to
be moved. As expected, the migration latency also increases
with the number of vSDNs. In the worst case scenario, when
there are three vSDNs to be migrated simultaneously and the
total number of flow-entries to be moved is1000, our PVX
system takes∼ 450 msec to accomplish the vSDN migration.

V. CONCLUSION

In this work, we realized hitless vSDN migration in PVX
to avoid TCAM depletion. Specifically, we added a TCAM
monitor in PVX to check the flow-table usage on each S-SW
proactively. When the monitor determined that a TCAM de-
pletion is about to happen, it would trigger a vSDN migration.
The whole process was made transparent to the vSDNs’ vCs
and would cause zero or very few packet losses. We imple-
mented the proposed NVH system in a real network testbed
and conducted several experiments to verify its effectiveness.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Project
61371117, the Key Project of the CAS (QYZDY-SSW-
JSC003), and the NGBWMCN Key Project under Grant No.
2017ZX03001019-004.

REFERENCES

[1] P. Lu et al., “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[3] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[4] J. Yin et al., “Experimental demonstration of building and operating
QoS-aware survivable vSD-EONs with transparent resiliency,” Opt.
Express, vol. 25, pp. 15 468–15 480, 2017.

[5] H. Huang et al., “Embedding virtual software-defined networks over
distributed hypervisors for vDC formulation,” inProc. of ICC 2017, pp.
1–6, May 2017.

[6] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[7] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[8] S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: flow-table virtualization
in POF-based vSDN hypervisor (PVX),” inProc. of ICNC 2018, pp. 1–
5, Mar. 2018.

[9] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingvirtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[10] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for software defined networking,” IEEE Com-
mun. Surveys Tuts., vol. 18, pp. 655–685, First Quarter 2016.

[11] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[12] R. Sherwoodet al., “FlowVisor: A network virtualization layer,”Open-
Flow Switch Consortium, Tech. Rep, pp. 1–13, 2009.

[13] A. Al-Shabibi et al., “OpenVirteX: Make your virtual SDNs pro-
grammable,” inProc. of ACM HotSDN 2014, pp. 25–30, Aug. 2014.

[14] S. Lo, M. Ammar, E. Zegura, and M. Fayed, “Virtual network migration
on real infrastructure: A PlanetLab case study,” inProc. of IFIP 2014,
pp. 1–9, Jun. 2014.

[15] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[16] P. Pisaet al., “OpenFlow and Xen-based virtual network migration,” in
Proc. of IFIP 2010, pp. 170–181, Jun. 2010.

[17] M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic,” J. Lightw. Technol., vol. 32, pp. 1014–1023,
Mar. 2014.

