Virtualization of Table Resources in Programmable
Data Plane with Global Consideration

Yuhan Xue, Shengru Lif, Kai Han', Sicheng Zhao!, Huibai HuangT, Shui Yut, Zuging Zhu'
School of Information Science and Technology, University of Science and Technology of China, Hefei, China
School of Information Technology, Deakin University, VIC 3125, Australia
Email: {zqzhu} @ieee.org

Abstract—In this work, we try to address the problem of
memory fragmentation in ternary content addressable memory
(TCAM) in programmable data plane (PDP), by designing and
implementing a novel network hypervisor for PDP, namely,
TPVX. TPVX realizes the virtualization of table resources in
PDP with global consideration, i.e., when mapping tenant flow
tables to physical switches, TPVX considers their table sizes
and the pre-formatted sub-tables in the physical network to
improve TCAM utilization and avoid memory fragmentation.
Our experimental results verify that with TPVX, the utilization
of the table resources in PDP can be improved dramatically
and the extra processing latency due to the newly-introduced
overheads can be maintained well simultaneously.

Index Terms—Network hypervisor, Programmable data plane,
Ternary content addressable memory (TCAM).

I. INTRODUCTION

Recent developments in software-defined networking (SD-
N) and network function virtualization (NFV) have suggested
that data plane programmability would become increasingly
important [1, 2]. Following this trend, people have come
up with proposals like P4 [1] and protocol-oblivious for-
warding (POF) [2] to make data plane more programmable
and depend less on existing network protocols. Meanwhile,
the innovations in semiconductor industry also speed up the
development of programmable data plane (PDP) [3]. With
PDP, emerging applications can offload network functions to
SDN switches by leveraging NFV, for flexible deployment and
enhanced traffic processing performance. However, there is no
free lunch, and such scenarios would put a great pressure on
the table resource management in SDN switches. It is known
that the limited ternary content addressable memory (TCAM)
in switches is one of the intimidating bottlenecks of SDN
development [4]. The problem could become even worse when
it comes to PDP. This is because flow tables with various sizes
would be installed in each SDN switch, and without cautious
table resource management, memory fragmentation can eat up
its TCAM quickly. Therefore, there is a mismatch between the
control plane requirement and data plane capability, which has
to be properly addressed for PDP.

Previously, people have worked on this mismatch and
proposed a few approaches [5-8]. TimeFlip [5] was designed
to realize accurate time-based updates and adjust the life-time
of flow tables adaptively, for increasing TCAM utilization.
Nevertheless, recycling unused flow tables timely would not
relieve the memory fragmentation in TCAM in principle, and

since the insertion and deletion of flow tables actually become
more frequent, the memory fragmentation could be even
worse. In [6], the authors proposed to divide the TCAM in a
switch into small blocks with a fixed width and incorporate a
preprocessing mechanism to activate the blocks on-demand.
Hence, the memory fragmentation in TCAM can be reduced
with the fine-grained operations on it. However, segmentation
and reassembly of flow tables would bring in extra overheads.

As TCAM is also a type of physical resources, its utilization
can be improved by leveraging the idea of resource virtu-
alization. HyPer4 [7] tried to use P4 to virtualize PDP, but
the virtualization scheme would cause noticeable performance
loss in PDP. In [8], we proposed “BigMatch” to design
PVFlow, which enables flow tables with different sizes in
virtual networks (VNTs) to share a matching stage in a
physical POF switch efficiently. Nevertheless, since BigMatch
uses wildcard matching, PVFlow actually sacrifices TCAM
utilization when reducing the memory fragmentation. More
importantly, the studies in [7, 8] only considered how to
virtualize the table resources in one switch with PDP and
embed tenant flow tables locally, but did not tried to address
the problem of table resource virtualization in PDP from the
network perspective, i.e., taking the global information of all
the switches in the network into consideration.

In this paper, we design and implement a novel network hy-
pervisor for PDP, namely, TPVX, to realize the virtualization
of table resources in PDP with global consideration. TPVX
can operate on physical POF switches that support protocol-
independent packet processing and forwarding. When map-
ping tenant flow tables to physical switches, TPVX considers
their table sizes and the pre-formatted physical tables in the
physical network to improve TCAM utilization and avoid
memory fragmentation. Specifically, we leverage the idea of
“Big-Switch” to embed the flow tables of a virtual switch
onto multiple physical switches according to their table sizes.
Our experimental demonstrations indicate that with TPVX,
we can improve the utilization of the table resources in PDP
dramatically, while the extra processing latency due to the
newly-introduced overheads can be maintained well.

The rest of paper is organized as follows. Section II briefly
introduces the background of table resource virtualization in
PDP. The design and implementation of TPVX are described
in Section III. Then, we discuss the experimental demonstra-
tions in Section IV. Finally, Section V summarizes the paper.

II. BACKGROUND AND MOTIVATIONS

In this section, we first introduce the concept of PDP, and
then explain the virtualization scheme for it.

A. Programmable Data Plane

One of the major drawbacks of OpenFlow is that all of
the match fields and actions are defined based on existing
network protocols. Hence, the OpenFlow specifications have
to be updated consistently to include more and more match
fields and actions, which greatly limits the programmability
of the data plane. In order to address this issue, PDP schemes
such as P4 and POF have been considered in the literature
[1, 2]. P4 is a high-level programming language that can be
used to customize network protocols and packet processing
procedures. With P4, the match tables and actions in switches
would not be restricted by existing protocols anymore. Note
that, P4 programs need to be compiled and loaded into target
switches before the actual running of the data plane, and
thus it would be difficult to redefine the packet processing
pipelines during runtime. POF uses a tuple <offset, length>
to refer to a packet field, where offset is the start location of
the field in a packet and length represents its length in bits
[4]. Therefore, POF switches can locate any data in a packet
with the tuple <offset, length>, and then process it with the
protocol-oblivious forwarding instruction set (POF-FIS) [2]
for packet parsing and forwarding.

To this end, we can see that both P4 and POF allows
an operator to define arbitrary packet fields/formats with
various lengths. Fig. 1 provides two intuitive examples to
explain the difference on the organizations of flow tables in
OpenFlow-based data plane and PDP. Since each OpenFlow-
based flow table includes all the match fields supported by
OpenFlow, the sizes of the flow tables in Fig. 1(a) are the
same even though they may care about different match fields.
Hence, after being installed in an OpenFlow switch, the flow
tables only facilitate the matching to the cared fields during
packet forwarding, while the remaining fields are ignored
with wildcards. On the other hand, the PDP switch in Fig.
1(b) uses variable-sized flow tables since there is no need
to include irrelevant match fields. This, however, would lead
to memory fragmentation in the physical tables of the PDP
switch if they are not managed well (i.e., as in Fig. 1(b)).
Therefore, how to efficiently accommodate variable-sized flow
tables in PDP switches to relieve memory fragmentation has
become an important problem to study, which, to the best of
our knowledge, has not been properly addressed yet.

B. Virtualization of PDP

As we have explained in the previous section, table re-
source virtualization can be utilized to address the memory
fragmentation in Fig. 1(b). However, the dilemma is that if
we still try to maintain the “one-to-one” mapping between
virtual switches and physical switches as in normal virtual
network embedding (VNE) problems [9, 10], we can never
ensure that all the tenant flow tables on a virtual switch would
have the same size. Therefore, the memory fragmentation will

Requested Tables

&

OpenFlow Switch

Physical Tables

{ [I
{ 11 witdcard

I Match Field

(a) Flow tables in OpenFlow-based data plane

[
Requested Tables _
I
|
| 7
Physical Tables .

I 277 Memory
[] 7 Fragmentation

) .
PDP Switch [Vatch Field

(b) Flow tables in PDP

Fig. 1. Organizations of flow tables in different data planes.

always exist. Note that, even though we can partition the
TCAM on a PDP switch into sub-tables with different sizes
and try to organize the tenant flow tables nicely to reduce
memory fragmentation [11], predicting the requirements on
different sized flow tables would be necessary but tricky since
the TCAM is usually limited and we can hardly repartition it
during runtime. Therefore, in this work, we will extend the
network virtualization systems developed in [8, 12] to address
the problem of table resource virtualization in PDP from the
network perspective, i.e., leveraging the idea of “Big-Switch”
to embed the flow tables of a virtual switch onto multiple
physical switches according to their table sizes.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first explain the design principle of
TPVX based on Big-Switch, and then elaborate on the im-
plementation to describe its functional modules in details.

A. Design Principle

Fig. 2 shows our design principle of table resource virtual-
ization in PDP with global consideration. The VNE scheme
is illustrated in Fig. 2(a), where TPVX organizes each virtual
switch in the tenant VNT as a Big-Switch and then embeds
it onto multiple PDP switches in the physical network. To
minimize memory fragmentation in the table resources in PDP
switches, TPVX partitions the table resources in different PDP
switches into sub-tables with different sizes, as shown in Fig.
2(b), and installs the tenant flow tables in them according
to the table sizes. Meanwhile, for the case in which the
size of a tenant flow table does not match with any of the
table sizes in the PDP switches, we design a table padding
scheme to pad enough wildcard bits to it for making the

Tenant VNT Virtual Switch 1 Virtual Switch 2 [wildcard
< L | O] B[] Match Field
Virtual Switch 1 Virtual Switch 2] | — [Free Table
Il Table Padding] Table Padding
4 / Big-Switch 1 Big-Switch 2
TPVX Voo [(]
===~ [l C1m
Big-Switch 1 Big-Switch 2] | —
[Uil
PDP Switch 1
)
Physical PDP Switch 1 [—— | PDP Switch 1
Network &5] [| T
foretons . ‘ || \| ——mm
y > ‘:::::I Sub-Tables
&) I I O I
PDP Switch 1 PDP Switch 2 L
(@ Sub-Tables ®) Sub-Tables

Fig. 2. Table resource virtualization in PDP with global consideration.

right table size. After the tenant flow tables having been
installed in the PDP switches, they can be used to process
the traffic running in the tenant VNT. Specifically, the PDP
switches in a Big-Switch will cooperate to achieve cross-
switch traffic processing. Meanwhile, to minimize the extra
latency due to the cross-switch processing, we redesign the
internal connections of each Big-Switch and make the PDP
switches in it form a complete graph.

Note that, the concept of Big-Switch has also been realized
in OpenVirteX (OVX) [13], but our design here is different
from OVX in three aspects: 1) OVX is based on OpenFlow
and thus does not support PDP switches, while our TPVX is
designed to operate on PDP switches; 2) OVX cannot partition
a physical switch to use the table resources on it to carry
multiple virtual switches, while TPVX does not have such
restriction; and 3) OVX makes each physical switch store all
the flow tables of its Big-Switch, which causes unnecessary
flow table duplications, while TPVX only stores a tenant flow
table once in a physical switch with the proper table size.

B. Packet Format and Packet Processing Procedure

In this work, we assume that all the PDP switches in
the physical network are POF switches [14]. In order to
facilitate network virtualization, we define two types of flow
tables in each POF switch, i.e., the control tables and tenant
tables. The control tables are used to dispatch packets from/to
hosts to enter/leave the corresponding tenant VNTSs, which are
initialized during switch initialization and updated every time
when a new tenant VNT has been created. While the tenant
tables are the flow tables from the SDN controller of a tenant
VNT, and they will be installed in different POF switches
according to their table sizes, as explained in Fig. 2(b).

The packet processing procedure in a POF switch is shown
in Fig. 3. It can be seen that there are two control tables on
each POF switch, i.e., Control Tables 0 and 1. Here, Control
Table 0 is the first flow table that each packet encounters in
a POF switch. It first checks whether the destination MAC
address (DMAC) of the packet matches to a host that is
directly connected to the POF switch. If yes, this is the last
hop of the packet and it will make the POF switch output the

Control Table 0
DMAC matches
to host 2

No Output to host

Yes
Packet from host ?
Insert NV_GT_Header in

No packet
Goto Control Table 1

1)
v

| Parse NV_GT_Header|

Control Table 1

GotoTable Flag
=0x00 2
No
Goto next tenant
table

T

Tenant table is
local 2

No
Update
NV_GT_Header
|

| Goto Tenant Table 0

Update
NV_GT_Header

Goto next tenant
table

Output to remote

switch
I

1.

k2
Match-Action process
in tenant table
|

Tenant Tables

v

Fig. 3. Packet processing procedure in each physical POF switch.

packet to the host. Otherwise, it checks whether the packet is
directly from a host. If yes, it inserts an NV_GT_Header field
before the Ethernet header of the packet, as shown in Fig. 4.

The NV_GT_Header field is used to mark the packet for
its tenant VNT and assist possible subsequent cross-switch
traffic processing. Here, the NV_GT_Header field is designed
to contain 4 bytes, where each of its four subfields uses one
byte. The first subfield is GotoTable Flag, which is used to
indicate that immediately after the control tables, whether the
packet should be processed by the Tenant Table O of its tenant
(i.e., the first tenant table in the pipeline) or not. Note that,
as we have explained above, the table resource virtualization
by TPVX can put the tenant tables that are for the same
virtual switch on different POF switches. This is reason why
GotoTable Flag is needed. Specifically, if the packet will
be processed by the Tenant Table 0 of its tenant after the
control tables, its GotoTable Flag is set to 0x00, and 0xOf
otherwise. The next subfield is Next Table ID, which stores
the ID of the next tenant table if GoroTable Flag is 0xOf.
Note that, to achieve smooth cross-switch traffic processing,
TPVX numbers each tenant table on the same virtual switch
with a unique ID according to their sequence in the pipeline,
when storing them in different POF switches. The remaining
two subfields in NV_GT_Header are Tenant ID and Virtual
Switch ID, respectively, which are used to identify the virtual
switch that the packet is currently being processed in. Since a

POF switch can carry multiple virtual switches’ tenant tables,
we need these two subfields to dispatch the packet to the right
pipeline. When a packet first comes in from a host, we use its
input port on the ingress switch to determine its Tenant ID.
NV_GT_Header is only used when the packet is in a tenant
VNT, and will be removed when it is forwarded to a host.

| NV.GT Header | Ethemet| 1P | Data |

| GotoTable Flag | Next Table ID | TenantID | Virtual Switch ID]

Fig. 4. Packet format used by TPVX for network virtualization.

Back to the procedure in Fig. 3, we can see that Con-
trol Table 0 sends the packet to Control Table 1 after the
processing in it has been done. Control Table 1 first parses
the packet’s NV_GT_Header, and then uses the obtained
information to direct it to the next tenant table in its pipeline.
Specifically, Control Table 1 determines whether the next
tenant table for the packet is on the local switch or not. If
yes, it uses the GotoTable action to send the packet to the
local tenant table. Otherwise, the packet will be forwarded
to the remote switch that contains its next tenant table with
the Output action. Meanwhile, the information in the packet’s
NV_GT_Header gets updated accordingly, and then the packet
will be processed by the tenant tables in its pipeline in
sequence.

C. System Implementation

The system architecture of TPVX is shown in Fig. 5. On the
top of TPVX, there are the tenant controllers, which control
their virtual switches through TPVX. The tenant flow tables
from the controllers are translated by TPVX and installed in
a proper POF switch according to their table sizes. It can be
seen that TPVX mainly consists of two modules, i.e., the table
management and entry management modules.

1) Table Management: The main functionality of this mod-
ule is to install tenant tables with different sizes in suitable
POF switches, by leveraging the idea of Big-Switch. Note that,
in POF, tenant tables are actually installed by the controller
with TableMod messages, and thus TPVX can determine

Tenant Controller
@ POF Protocol

| Tenant Controller

TPVX

Table
Management

Entry Management

Table (Tenant Entry Handler
Statistics

Match Rewriting
-

Action Rewriting

Table
Padding

Table

Handler Control Entry Handler

JL POF Protocol U

POF Switch POF Switch POF Switch Host

Big-Switch

Fig. 5. System architecture of TPVX.

where to install tenant tables based on the table size in their
TableMod messages and the following two constraints.

o Sub-table Size Constraint: In this work, we partition
the table resources (i.e., TCAM) in POF switches into
sub-tables that have sizes as 32, 64 and 128 bits, by
considering the size distribution of possible tenant tables.
Hence, each tenant table is mapped to a physical sub-
table by rounding its table size to the nearest sub-table
size to the longer end. Meanwhile, the table padding
process will insert enough wildcard bits at the end of the
tenant table to make its size the same as the sub-table
size.

« Sub-table Capacity Constraint: Since the table resource
in each POF switch is limited, the number of entries
that a physical sub-table can support is also restricted.
Therefore, we implement a table statistics process in the
table management module to record the number of used
entries on each POF switch. When receiving a TableMod
message, TPVX checks the number of required entries
in it and installs the tenant table in a POF switch that has
both proper sub-table size and enough available entries.

After taking care of the two constraints, the table handler in
the table management module dispatches a tenant table to the
selected POF switch in the corresponding Big-Switch. In the
meantime, after processing each TableMod message for a new
tenant table, the table handler instructs the entry management
module to generate and insert corresponding control entries
in the related control tables in the POF switches.

2) Entry Management: This module ensures that the en-
tries in each tenant table can facilitate traffic processing and
forwarding in POF switches correctly. In the tenant entry
handler, we use match rewriting to mask the unnecessary
bits in match fields and make sure that the change on table
sizes caused by the table padding would not affect the field
matching in POF switches. Then, action rewriting handles
the actions and instructions in the entries, especially for the
Output action and the GotoTable instruction. For the cases in
which a packet needs to be forwarded to another virtual switch
or a host, the tenant controller encodes the Output action in
the corresponding entry. Hence, for the Output action, the
action rewriting needs to replace the virtual port ID in the
entry from the tenant controller to the actual physical port ID
on the related POF switch, and for the latter case (i.e., the
next hop is a host), it needs to add a DelField action there
to remove the packet’s NV_GT_Header. On the other hand,
the tenant controller encodes the GofoTable instruction in an
entry to move a packet in its processing pipeline in sequence.
Therefore, since TPVX may disassemble the pipeline and
install the tenant tables in it in different POF switches, the
action rewriting needs to first determine whether the next
tenant table in the pipeline is local and then modify the
GotoTable instruction in the entry accordingly. Specifically,
if the next tenant table is local, action rewriting only needs to
modify the GotoTable instruction to point to the next tenant
table in the local switch. Otherwise, it needs to rewrite the

GotoTable instruction to an Output action to direct the packet
to the next tenant table in a remote switch.

The control entry handler is in charge of the two control
tables on each POF switch to add/remove control entries
in them for tenant VNTs. For instance, when a host in a
tenant VNT first comes online and gets detected by TPVX,
TPVX will use the control entry handler to generate two
control entries for it and install them in the switch that the
host directly connects to. The control entries are for the
traffic from/to the host, i.e., to forward packets correctly and
add/remove NV_GT_Header on them, respectively.

IV. EXPERIMENTAL DEMONSTRATION

To evaluate the performance of our TPVX, we implement
it in a practical network system and conduct experiments. In
the experimental setup, the data plane includes three POF
switches and three hosts (as shown in Fig. 6). Each POF
switch is based on our homemade software POF switch [14]
and runs on a high-performance Linux server. The control
plane, i.e., the tenant controller [15] and TPVX, also runs on
a Linux server. The experiments measure the table resource
usage, data plane latency, and processing latency of TPVX.

A. Table Resource Usage

As shown in Fig. 6, we consider two scenarios in the
experiments. The Single-Switch scenario in Fig. 6(a) is the
benchmark that still maintains the “one-to-one” mapping
between virtual and physical switches (i.e., VS’ and PS’,
respectively), while the Big-Switch scenario in Fig. 6(b) is the
one used in our TPVX, where each VS gets mapped to a Big-
Switch (BS) that includes two PS’. Note that, since we do not
have access to hardware PDP switches that contain TCAM, we
can only emulate the PDP switches with our software POF
switch and allocate certain memory space in it to simulate
TCAM. Here, we assume that the table width of the TCAM
is 40 bits and it can totally carry 4000 entries [11], which
means that the total size of the table resource on a POF switch
is 40 x 4000 = 160 Kbits. Then, the tenant controller tries
to install tenant tables in VS’ in the tenant VNT. Here, we
assume that each tenant table contains 500 entries and its table
size is randomly selected from {32,48, 56, 60,64, 108} bits.
The table sizes are selected according to the sizes of common
match fields and their combinations, such as the MAC address,
IPv4 address, switch port ID, etc. Then, we arrange the POF
switches in different configurations and test how many tenant
tables can be successfully installed in them.

The results on the average number of installed tenant tables
are shown in Fig. 7. Here, the configuration “128/128/128”
means that we use the Big-Switch scenario and the table
resources on the three POF switches are partitioned into sub-
tables with a size of 128 bits. The results indicate that no
matter how we arrange the sub-tables on the POF switches, the
Big-Switch scenario in our TPVX can carry much more tenant
tables than the conventional Single-Switch scenario, with the
same amount of table resources in the physical network. This
confirms that our TPVX can reduce the memory fragmentation

Tenant VNT Tenant VNT

ﬁ Host 3
Bsg/
BS /‘\53 2

A £73
Host 1

Vi/ﬁmsw
ﬁ stsz E %

£5 =2

Host 1 Host 2 Host 2

Physical
Network

Physical

Host 3 Network

>r/ﬁ yri/ﬁHosta

= N
B N T
Host1 ~ PS1 Ps2 Host 2 Host1 ~ PS1 PS 2 Host 2

(a) Single-Switch scenario. (b) Big-Switch scenario.

Fig. 6. Experimental setup.

in the TCAM of physical switches and greatly improve the
utilization on TCAM. Meanwhile, it is interesting to notice
that in the Big-Switch scenario, different arrangements of
the sub-tables on POF switches actually lead to significantly
different performance on the TCAM utilization. Specifically,
since most of the tenant tables in the experiments have a
size that is close to 64 bits, the arrangement of “64/64/128”
achieves the largest number of installed tenant tables. Hence,
the results also suggest that the performance of TPVX cannot
be optimized without a reasonable estimation on the distri-
bution of tenant table sizes, which will be considered in our
future work.

100 - 95.4
90+ 87.2
80

Average Number of Installed Tenant Tables
5
o

Arrangement of Physical Tables

Fig. 7. Results on number of installed tenant tables in the physical network.

B. Packet Processing Latency

As our TPVX actually introduces additional packet pro-
cessing overhead in the data plane, we conduct experiments
to compare the Single-Switch and Big-Switch scenarios in
terms of packet processing latency to quantify the overhead.
The experiments use a commercial traffic analysis equipment
to send and receive packets and apply the standard scheme
in [16] to measure the packet processing latency. Here, we
consider the cases in which each packet experiences different
lengths of processing pipelines (i.e., being processed by
different numbers of tenant tables) end-to-end in its tenant
VNT. There are four experimental schemes:

o Single-Switch 1-Hop means that the tenant tables for each

packet only get installed in one POF switch, with the
Single-Switch scenario.

o Single-Switch 3-Hop means that the tenant tables for each
packet can be finished within three hops at most, with
the Single-Switch scenario.

e Big-Switch 3-Hop means that the tenant tables for each
packet can be finished within three hops at most, with
the Big-Switch scenario.

o Big-Switch Worst means that each of the tenant tables for
the packets leads them to be redirected to a remote POF
switch for processing, with the Big-Switch scenario.

@500 : :
= —— Single-Switch 1-Hop .
2 «@+ Single-Switch 3-Hop .
% 400 Big-Switch 3-Hop ,
| — - Big-Switch Worst w
o Phe
£ P
300 -
-,
g .
& 200 R
] -
g - * * ¢
I Y SOOI SRR SPRSIEE
a 100 W e ¢
o Pt &
© PR
g o0 ‘
< 1 2 3 4 5 6

Length of Processing Pipeline in Tenant Tables

Fig. 8. Results on packet processing latency.

The experimental results are plotted in Fig. 8. As expect-
ed, the packet processing latency of the Big-Switch based
schemes is longer than that of the Single-Switch based ones.
However, the additional overhead is still reasonably small, if
we consider the fact that the transmission latency on links is
also included in the packet processing latency. Meanwhile, we
notice that the latency of Big-Switch Worst increases much
faster than that of Big-Switch 3-Hop, due to the frequent
packet redirections among the POF switches. This suggests
that when laying out the packet processing pipeline of a tenant
VNT with TPVX, one should carefully avoid frequent packet
redirections.

C. Control Plane Latencies for Table Virtualization

Finally, we use cbench [17] to measure the control plane
latencies for table virtualization, i.e., the time used by our
TPVX to process a TableMod or FlowMod message. Here,
we still consider the Single-Switch scenario as the benchmark.
The results are listed in Table I. It can be seen that even though
the Big-Switch scenario increases the control plane latencies
due to the additional operations on the messages, the increases
are still relatively small and would not cause significant
performance degradation on the network virtualization system.

TABLE I
AVERAGE CONTROL PLANE LATENCIES (MSEC)

per TableMod message
0.464
1.081

per FlowMod message
0.600
1.110

Single-Switch
Big-Switch

V. CONCLUSION

In this paper, we designed and implemented TPVX as a
novel network hypervisor for PDP, to realize the virtualization

of table resources in PDP with global consideration. Specifi-
cally, when mapping tenant flow tables to physical switches,
TPVX considered their table sizes and the pre-formatted sub-
tables in the physical network to improve TCAM utilization
and avoid memory fragmentation. Our implementation lever-
aged the idea of “Big-Switch” to embed the tenant tables of
a virtual switch onto multiple physical switches according to
their table sizes. The experimental results confirmed that with
TPVX, we can improve the utilization of the table resources
in PDP dramatically, while the extra processing latency due
to the newly-introduced overheads can be maintained well.

ACKNOWLEDGMENT

This work was supported in part by the NGBWMCN Key
Project under Grant No. 2017ZX03001019-004 and the Key
Project of the CAS (QYZDY-SSW-JSC003).

REFERENCES

[1] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” Comput. Commun. Rev., vol. 44, pp. 87-95, Jul. 2014.

[2] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12-20, Mar./Apr. 2017.

[3] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN.” in Proc. of ACM
SIGCOMM 2013, pp. 99-110, Aug. 2013.

[4] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,” IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275-288, Mar. 2018.

[S] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in Proc. of
INFOCOM 2015, pp. 2551-2559, Apr. 2015.

[6] W. Li, X. Li, and H. Li, “MEET-IP: Memory and energy efficient
TCAM-based IP lookup,” in Proc. of ICCCN 2017, pp. 1-8, Jul. 2017.

[7] D. Hancock and J. Merwe, “HyPer4: Using P4 to virtualize the
programmable data plane,” in Proc. of CoNEXT 2016, pp. 35-49, May
2016.

[8] S.Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: Flow-table virtualiza-
tion in POF-based vSDN hypervisor (PVX),” in Proc. of ICNC 2018,
pp. 1-5, Mar. 2018.

[9] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over

elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450—460, Feb.

2014.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained

virtual network embedding (LC-VNE) algorithms towards integrated

node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648—

3661, Dec. 2016.

L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet

programs to reconfigurable switches,” in Proc. of NSDI 2015, pp. 103—

115, 2015.

S. Li et al., “SR-PVX: A source routing based network virtualization

hypervisor to enable POF-FIS programmability in vSDNs,” IEEE Ac-

cess, vol. 5, pp. 7659-7666, 2017.

A. Al-Shabibi et al., “OpenVirteX: Make your virtual SDNs pro-

grammable,” in Proc. of HotSDN 2014, pp. 25-30, Aug. 2014.

Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstration of high-

throughput protocol oblivious packet forwarding to support software-

defined vehicular networks,” IEEE Access, vol. 5, pp. 24004-24011,

2017.

D. Hu et al, “Flexible flow converging: A systematic case study

on forwarding plane programmability of protocol-oblivious forwarding

(POF),” IEEE Access, vol. 4, pp. 4707-4719, 2016.

S. Bradner. (1999) RFC 2544: Benchmarking methodology for network

interconnect devices. [Online]. Available: https://tools.ietf.org/html/

rfc2544.

POF Cbench Tool. [Online].

USTC-INFINITELAB/pof-cbench

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Available: https://github.com/

