
On Real-time and Self-taught Anomaly Detection in Optical Networks

Using Hybrid Unsupervised/Supervised Learning

X. Chen(1), B. Li(2), M. Shamsabardeh(1), R. Proietti(1), Z. Zhu(2), S. J. B. Yoo(1)

(1) University of California, Davis, Davis, CA 95616, USA. Email: xlichen@ucdavis.edu, sbyoo@ucdavis.edu
(2) University of Science and Technology of China, Hefei, Anhui 230027, China. Email: zqzhu@ieee.org

Abstract This paper proposes a real-time and self-taught anomaly detection scheme for optical networks using

hybrid unsupervised/supervised learning. Evaluations with an experimental dataset demonstrate that the proposed

scheme can successfully identify 100% of the anomalies without any prior knowledge of abnormal network behaviors

while restricting the false positive rate to be only 6.5%.

Introduction

While hard failures (e.g., fiber cuts) can cause imme-

diate service disruptions, anomalies in optical networks

may result from equipment malfunctions, management

software faults and malicious attacks etc., which gradu-

ally degrade the network operations1. Therefore, pow-

erful anomaly detection and localization schemes are

essential for enhancing the availability of optical net-

works. Previous solutions mostly adopted threshold-

based schemes and could not detect anomalies un-

less they had induced significant deviations of network

parameters. On the other hand, thanks to the rapid

advances in machine learning (ML) technology, recent

studies have reported a few cognitive anomaly detec-

tion algorithms based on the learning of network behav-

iors with ML1,2. Nevertheless, these algorithms were

trained with manually featured abnormal network be-

haviors and were unable to detect unknown anoma-

lies. Note that, anomalies usually occur infrequently

(therefore difficult to collect) but exhibit unique patterns

compared with normal network behaviors3. An unsu-

pervised clustering algorithm that directly learns pat-

terns of data by exploiting the similarities among data

instances would become a promising solution to distin-

guish anomalies from normal behaviors.

In this paper, we propose to realize real-time and

self-taught anomaly detection in optical networks us-

ing a hybrid unsupervised/supervised learning scheme.

The proposed scheme first employs an unsupervised

self-learning data clustering module (DCM) to extract

the patterns of the performance monitoring data. Then,

to facilitate real-time anomaly detection, we develop a

self-taught mechanism that trains a supervised learn-

ing deep neural network (DNN) based classifier & re-

gressor with the learned knowledge by the DCM. Eval-

uations with an experimental dataset show that our pro-

posal can identify 100% of the anomalies without any

prior knowledge of their patterns while the false posi-

tive rate is only 6.5%.

Proposed Framework

Fig. 1 shows the proposed framework for real-time

and self-taught anomaly detection in optical networks.

The network manager deploys optical spectrum ana-

lyzers (OSAs) at certain locations in the data plane to
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Fig. 1: Proposed anomaly detection framework.

monitor the signal power of each channel as well as

the noise level. More advanced optical performance

monitoring techniques, e.g., coherent detection, can be

used to measure the quality-of-transmission of signals.

By leveraging the software-defined networking (SDN)

scheme, the network manager is able to collect the

monitoring data remotely and in real time. The moni-

toring data are stored in a database and then sent to

the data preprocessing module (DPM) for feature engi-

neering. Specifically, the DPM may transform, clip or

combine the raw data to generate new data instances

suitable for different anomaly detection purposes, e.g.,

single-point or end-to-end lightpath inspection.

In the learning phase, the features extracted by the

DPM are fed to the unsupervised self-learning data

clustering module (DCM) for pattern analysis. Basi-

cally, the DCM exploits the similarities among data in-

stances and divides the monitoring dataset into multiple

clusters and outliers, i.e., extracting the inherent rules

lying in the big data. Here, outliers refer to isolated or

sparse data instances that cannot form clusters. The

DCM alarms the outliers as anomalies based on a

consensual assumption that network anomalies occur

rarely compared with normal behaviors. Note that, exe-

cuting the DCM every time a new data instance arrives

is time-consuming as the DCM has to revisit all the in-

stances already in the database. To facilitate real-time

anomaly detection, we train a supervised learning DNN

classifier & regressor with the learned patterns by the
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Fig. 2: An example for the principle of DBSCAN.

DCM (i.e., a self-taught mechanism). Then, during on-

line network operations, the DNN is used for predicting

whether new monitoring data are abnormal and clas-

sifying normal instances into existing clusters. Clas-

sified data instances are returned to the DCM for re-

sults verification and for periodical knowledge refresh-

ing. We can see that the DCM does not require any

prior knowledge of abnormal network behaviors as in-

put, and therefore, can potentially detect arbitrary and

unknown types of anomalies. Finally, upon detecting

an abnormal instance, the DNN/DCM raises an alarm

to the SDN controller and also sent the instance for fur-

ther anomaly localization and reasoning. The alarms

enable the SDN controller proactively adjusting the ser-

vice provisioning schemes to mitigate the risk of severe

future service disruptions.

Algorithm Design

We designed the DCM with a density-based clus-

tering algorithm dubbed DBSCAN4. Let S denote the

monitoring dataset and di, j represent the distance (e.g.,

Euclidean distance) between data instances si and s j

(si,s j ∈ S). DBSCAN first defines the ε-neighborhood

of each si as
{

s j ∈ S|di, j ≤ ε
}

, whose size is known

as the density of si (denoted as δi). A data instance

with δi ≥ MinPts is marked as a core node. Then, DB-

SCAN defines s j as a density-reachable node from a

core node si if di, j ≤ ε or there exists a sequence of

core nodes sp, ...,sq such that di,p ≤ ε, ...,dq, j ≤ ε. DB-

SCAN constructs each cluster Sc ⊂ S by starting from

a random unvisited core node and iteratively including

density-reachable nodes from it. The acquired clusters

may afterward be merged if the distances among them

are small. Finally, DBSCAN categorizes data instances

that do not belong to any cluster as outliers. Fig. 2

shows an illustrative example for DBSCAN. We can see

that DBSCAN can detect arbitrary shapes of clusters,

making it a promising scheme for exploring the patterns

of normal and abnormal behaviors in optical networks.

The example in Fig. 2 also indicates that the bor-

der nodes of clusters normally have much lower den-

sities than the core nodes, while the outliers are with

the lowest densities. Inspired by this observation, we

designed a DNN classifier & regressor (Fig. 3) to as-

sist fast and real-time anomaly detection. Specifically,

based on the output of the DCM, we obtain the training

and testing datasets for the DNN by assigning each si
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Fig. 3: Structure of the DNN classifier & regressor for single-
point anomaly detection.

a label consisting of the corresponding cluster ID and

density value. The DNN is trained with the backprop-

agation algorithm which aims to minimize the overall

difference between the outputs of the DNN and the la-

bels of the training data. We used the testing dataset

to verify the prediction accuracy of the DNN. During on-

line network operations, each newly collected data in-

stance ŝi is first evaluated by the DNN instead of go-

ing to the DCM directly. We claim ŝi with high pre-

dicted density (i.e., δ̂i > δ0) to be normal and expand

the database according to the cluster ŝi has been clas-

sified into. Otherwise, we mark ŝi as a suspected point

and invoke the DCM for verification. This way, we sig-

nificantly reduce the number of executions of the time-

consuming DCM. Note that, both the DCM and DNN

classifier & regressor will be periodically refined in the

background with the state-of-art database for refresh-

ing the attained knowledge repository.

The proposed scheme also allows the localization

and reasoning of the detected anomalies. Basically,

we can calculate the distances in each dimension be-

tween an abnormal data instance si and those normal

instances belonging to the neighboring clusters of si.

By analyzing the distance vectors, we can discern from

si either (1) notable deviations in certain dimensions

(e.g., a sudden increase of the noise level at an inter-

mediate node of a lightpath due to the amplifier failure)

or (2) seemingly regular fluctuation of each dimension

but abnormal overall patterns (e.g., a gradual decrease

of the channel power gain at the early stage of the am-

plifier malfunctioning).

Results

We evaluated the performance of the proposed self-

taught anomaly detection scheme with the perfor-

mance monitoring data collected from a seven-node

testbed5. We modified network parameters and config-

urations to emulate various network anomalies such as

EDFA malfunctioning and channel misconfigurations.

We focus on the single-point anomaly detection and

preprocess the experimental dataset to contain 8,249

instances, each of which has 22 dimensions (power

measurements from 21 channels and the noise level).

All the data instances are normalized before evalua-

tions.

Table 1 summarizes the results of the false negative

( fn) and false positive ( fp) rates from the DCM with dif-

ferent setup of ε and MinPts. We can observe a clear



Tab. 1: Results of the false negative ( fn) and false positive
( fp) rates from the DCM (( fn, fp)%).

MinPts

ε
1 2 3

3 22.0, 4.6 54.0, 0.5 92.0, 0.0

5 0.0, 8.8 24.0, 0.6 76.0, 0.0

8 0.0, 11.2 0.0, 0.9 50.0, 0.0

10 0.0, 11.8 0.0, 1.5 14.0, 0.0

12 0.0, 12.4 0.0, 2.1 14.0, 0.0

15 0.0, 13.2 0.0, 3.9 14.0, 0.0
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Fig. 4: (a) Clustering results from the DCM (ε = 2, MinPts = 8),
(b) a comparison between abnormal and normal instances.

trend that fn decreases with MinPts but increases with

ε, while fp behaves oppositely. This is because a larger

value of MinPts means a higher minimum node den-

sity required to form clusters, and therefore facilitates

the successful detection of low-density outliers/anoma-

lies (lower fn). However, increasing MinPts will also in-

crease the probability that normal data instances are

incorrectly identified as anomalies (higher fp). On the

other hand, according to the principle of the DBSCAN

algorithm, node densities increase with ε. Hence, in-

creasing ε encourages the forming of clusters and hin-

ders the capability of differentiating normal and abnor-

mal behaviors. With ε = 2 and MinPts = 8, the DCM

is able to detect all the anomalies while achieving a

false positive rate of only 0.9%. We mapped the origi-

nal 22-dimension dataset into a two-dimension dataset

using the principal components analysis (PCA) tech-

nique and visualized the clustering results from the

DCM in Fig. 4(a) (normal data instances are marked

with dots and we used different colors to distinguish

different clusters). Overall, the DCM obtains 12 normal

clusters and 50 outliers. Note that, due to the transfor-

mation with the PCA, some outliers in Fig. 4(a) seems

to lie inside clusters which are in fact not the real cases.

Fig. 4(b) shows a comparison between abnormal and

Tab. 2: Results of the false negative and false positive rates
from the DNN classifier&regressor (%).

δ̄0 -0.80 -0.82 -0.85 -0.86 -0.87 -0.88

fn 0.0 0.0 1.9 3.9 13.5 50.0

fp 20.6 6.5 4.1 2.0 0.4 0.1

normal instances, where we can intuitively see two dif-

ferent patterns (the abnormal instance has a higher

noise level and three high-powered channels).

Next, we evaluated the performance of the DNN clas-

sifier & regressor. We implemented a DNN with three

hidden layers ([128,128,128]). Based on the clustering

results in Fig. 4(a), the output layer of the DNN con-

tains 14 neurons (1 as the anomaly indicator, another 1

for outputting the predicted node density and the rest

12 for indicating the classification result). We divide

the original dataset into the training and testing sets

with a ratio of 4 : 1. Table 2 shows the results of fn

and fp from the DNN classifier & regressor with differ-

ent values of δ̄0. Here, we use δ̄0 instead of δ0 since

we have normalized the node densities to enable the

DNN to perform classification and regression tasks si-

multaneously. The results indicate that the DNN pre-

cisely predicts low densities for the abnormal instances

and fn decreases with δ̄0 (recall that a data instance

si is detected as abnormal if δi ≤ δ0). As expected,

fp increases with δ̄0. When compared with the DCM,

we can see that the DNN classifier & regressor sig-

nificantly reduces the time-complexity while sacrificing

only slightly the detection accuracy, i.e., still being able

to detect all the anomalies but with a higher fp as 6.5%.

Conclusions

In this paper, we presented a hybrid unsupervised/-

supervised learning scheme to achieve real-time and

self-taught anomaly detection in optical networks. Eval-

uations with an experimental dataset show that the pro-

posed scheme can identify 100% of the anomalies with-

out any prior knowledge of abnormal network behaviors

while the false positive rate was only 6.5%.
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