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Abstract—This work considers a provisioning framework for This framework successfully addresses the challenge due to
inter-datacenter elastic optical networks, which incorpaates pre- setup latency, because the latencies from the joint opdimiz
diction and pre-deployment of virtual network function service tion of resource allocations, lightpath establishment, eNF

chains (VNF-SCs), and designs a new deep learning (DL) model
to realize accurate prediction. Simulation results confirmthat deployment are removed from the setup latency of a vNF-SC,

the new DL model provides higher prediction accuracy than te  While with software-defined networking (SDN), traffic steer
existing approach, and with it, a service provider achievedetter can be accomplished within hundreds of milliseconds [8].

tradeoff between resource utilization and blocking probaliity. Although we designed a DL model based on the long/short-
_ I ndex Terms—_Network_functl_on virtualization, Service chain- term memory based neural network (LSTM-NN) [9] to fore-
ing, Deep leaming, Elastic optical networks (EONS). cast the high-dimensional data of future VNF-SC reqdests
the DL model has not been fully optimized to achieve high
prediction accuracy. This motivates us to redesign the DL
In today’s datacenters (DCs), service providers (SPsydevenodel for realizing more accurate vNF-SC pre-deployment
age IT resource virtualization to realize network functiom this work. Specifically, we propose two modifications to
virtualization (NFV) [1, 2] and deploy various virtual netvk the DL model, which are 1) a novel scheme that encodes the
functions (vNFs) timely over general-purpose serversiches vNF-SC of each request as a feature matrix to better represen
and storages. Meanwhile, the creation of new services afe similarity and difference among vNF-SCs, and 2) the
be further expedited by steering traffic through a series afidition of abstraction and concretion layers in the LSTM-N
VNFs, i.e,, realizing a VNF service chain (vNF-SC) [3]. Onto acquire more accurate predictions. Simulation resinbsvs
the other hand, the rapid growth of data-/bandwidth-iritens that the newly-designed DL model provides higher predictio
and real-time services in the Internet makes the capaciy afccuracy than the one in [6], and with it, an SP can achieve
flexibility of the underlying inter-DC networks essentiarf lower blocking probability in the provisioning phase.
achieving high-performance vNF-SC provisioning. Therefo  The rest of the paper is organized as follows. Section Il
people try to explore the agile bandwidth allocation predd presents the problem formulation that describes the né&twor
by the flexible-grid elastic optical networks (EONSs) [4] angnodel and vNF-SC provisioning framework. The design of the
build inter-DC networks over EONs (IDC-EONSs) [5]. new DL model is explained in Section I, and we discuss the
Note that, in order to realize on-demand and cost-effectivemerical simulations for performance evaluation in Swecti
VNF-SC provisioning in an IDC-EON, an SP needs to properly. Finally, Section V summarizes the paper.
address the challenge due to setup latency [6]. Specifically
the joint optimization of spectrum and IT resource allowasi Il. PROBLEM FORMULATION

in the IDC_E.ON would be c_omplgx and tim.e-consurr.]ing [5], We model the IDC-EON as a directed gra@tlV, E), where
and the relatively long configuration latencies from ligittp V andE are the sets of DC nodes and fiber links, respectively.

establishment [7] and vNF deployment could make real—tin}§ DC node is the abstraction of a DC for vNF deployment

and pn—dertnznd_ ng -SC pdrov!smn(ljng infeasible. H(?nce, M 9nd a bandwidth-variable optical cross-connect (BV-OX@) f
previous study in [6], we designed a pravisioning framewor tablishing inter-DC lightpaths. The IT resource capaoit

with VNF-SC pre-deployment to resolve the challenge. the DC in DC nodes € V is C,. while each fiber linke €

: I.n 'ghe framework, network.op.eratior_\s f(_)r VN'.:'SC PrOtan accommodate frequency slots (FS’). The bandwidth of
visioning are performed periodically in fixed time slotsan FS is assumed to Be.5 GHz, which can carry2.5 Gbps
(TS, where each TS m_cludes two phasés, the pre- raffic throughput [10]. The SP can provisidnh types of vVNFs
deployment and provisioning phases. Each TS starts with the, DCs, where am-th type VNF (., VNF-m) consumes

pre-d_eployment phase, in W.hiCh the SP first uses a dgce£ units of IT resources and handles a peak traffic throughput
learning (DL) model to predict future vNF-SC requests i p Gbps. We represent a VNF-SC &g, fo, - , i’}

the TS and then performs lightpath establishment and vlw:herefk is the k-th VNE in the VNE-SC ands denotes the
deployment accordingly. Next, in the provisioning phase,

the S_P serv_es acFuaI arrival requests_ almost 'mmed'ately bya yNF-sc request is modeled with its source-destinatiom, figindwidth
steering their traffic through the required vNFs in sequenaequirement, arrival time, hold-on time, and VNF sequence.

I. INTRODUCTION



number of vNFs in the longest vNF-SC that can be supportex uncontrollable prediction errors since the differenca a
in the IDC-EON. Then, we can model a dynamic vNF-SGimilarity between two different vYNF-SCs are different.

request ask’ = {s',d’, {1, fo, -+ . fx}', b, £} £, }, wherei

is its unique indexs* and d"' are the source and destination UNF-1 — NF-2 —YNF-3

DC nodes{fi1, f2,-- -, fx}" is the required VNF-SQ' is its

bandwidth requirement in Gpbs, anjl and¢i are its arrival @

time and hold-on time, respectively [6]. VNF-1 VNF-2 VNF-3 VNF-4 None
We consider the IDC-EON as a discrete-time system [6], ff, 1 0 0o 0o 0

where the SP serves VNF-SC requests in fixed TS’, each of fp 017 0 0 0O

which has a duration oAT and includes a pre-deployment fg o 0o 1 0 0

phase followed by a provisioning phase. In the pre-deplayme fp 0 0 0 0

phase, the SP first predicts the vNF-SC requests that willearr
in the provisioning phase based on historical requests avith
DL model. Then, for each predicted request in ascendingrorde )
of arrival time, the SP deploys the required vNFs on DCs and 10 overcome the drawbacks mentioned above, we encode
sets up lightpaths to connect the VNFs in sequence, using th¥NF-SC{/f1, f2,---, fx’} as a feature matri$Cr ar1 in

LBA algorithm developed in [3]. Finally, the SP removes ididis work, with K rows and}M + 1 columns. Here, element
lightpaths and VNFs to improve resource utilization. Neixg, (K, ) equalsl if the k-th VNF in the vNF-SC is am-th type
network system enters the provisioning phase, in which t§&F, and0 otherwise. Thg + 1)-th column corresponds to
SP tries to steer client traffic through pre-deployed vNFs al® unused cases, for correctly modeling the vNF-SCs whose
lightpaths to formulate vNF-SCs immediately upon recajvinl€ngths are shorter thai. Fig. 1 gives an example on the

a VNF-SC request. Here, a request can be blocked if it can¥)F-SC encoding, wheré& = 4 and M = 4. The feature

be served with the pre-deployed resources. In this framewofatrix is for VNF-SCVNF-1—VNF-2—VNF-3. Since the vNF-

the prediction accuracy of the DL model is the key to achieveC Only consists of three VNFs, elemeft5) equalsl to

high performance VNF-SC provisioninige., the best tradeoff indicate that the fourth vNF in the vNF-SC is unused.
between resource utilization and blocking probability. +

Memory ] Memory | [ | sl*t1
cell cell

Fig. 1. Example of vNF-SC encoding.
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I1l. DESIGN OFIMPROVED DL M ODEL R E
= 1+1
i ; . - 3 d
The new DL model follows the similar operation principle RS . U 9 »
proposed in [6]. Specifically, it uses a prediction window ez |2 S 3 ?35’ ‘fﬂ
. . . (<]
whose size isw requests, and a future requeB{*! is : g cell 112\ L cel )2 it
. . . . S ® A+
obtained by analyzing thev + 1 latest historical requests - 1 S A B
(e, Rp = {R', i € [I —w,I]}). Then, R'*! is treated LB e
. . R cell cell |
as the latest historical request and the DL model moves T — T T
the prediction window forward for one requeste( Ry, = Ly Aok Layem Lovors CCloon Quinat

{R!, i € [[ —w+1,I+1]}) to predictR!*2. This procedure
is repeated in each pre-deployment phase until all the stgue Fig- 2. Design of improved LSTM-NN for vNF-SC request préidic.
that will arrive in the subsequent provisioning phase have
been predicted. We propose the following two modifications
to improve the DL model’s prediction accuracy. B. Improved LSTM-NN

i To ensure that the LSTM-NN can adapt to the new encoding
A. Encoding Scheme of VNF-SCs scheme and provide higher prediction accuracy, we redesign

To facilitate accurate prediction in the DL model, we havié as shown in Fig. 2. The input layer takes + 1 latest

to encode the six dimensional parameters in each requleistorical encoded requests as the inpets, Ry = {Ri, i€
R' = {s",d" {f1, f2,- -, [}, b, t%, ¢% } properly. However, [I—w,I]}. As each encoded request contains a feature matrix
we find that the scheme designed for encoding VNF-SCsfor its VNF-SC and five variables/vectors for the remaining
[6] would have scalability issues and introduce uncorditlé parameters, the input layer flattens the feature matrix aa@ |
prediction errors. This is because we assumed that theextor and concatenates it with the remaining parameters to
would be N types of vNF-SCs in the IDC-EON, and encodefbrm a vector. Then, the vectors of all the historical redsies
{f1, f2,-+, fx}" as anN-element vector. In the worst caseare forwarded to the abstraction layer, where the vectas ar
each f, can take any of theM types of vNFs andN analyzed by two fully-connected sub-layers to extract the
can be as large a3/, which clearly would be neither correlations and features in them. Next, after receiving th
efficient nor scalable. Moreover, the encoding scheme malasgputs from the abstraction layer, LSTM-Layerl updates th
the Euclidean distances between any two diffef¥pt¢lement states of its memory cells accordingly and passes the irform
vectors be the samee,, the difference and similarity betweention to be further processed in LSTM-Layer2. The green and
any two different vNF-SCs are the same. This would ledslue dashed arrows in Fig. 2 show how the information gets



transferred and the states get updated, respectively, Mere and resource utilization in the provisioning phase in Figs.
add a random dropout module after each LSTM layer to avoéshd 5, respectively. Here, the traffic load in each figurersefe
over-fitting. After LSTM-Layer2, the concretion layer uses to the number of requests arriving in each TS. We observe
similar structure as that of the abstraction layer to canvehat Improved-DL can provides lower blocking probability
obtained information to predicted request parameteralllyjn than DL, while their results on resource utilization are adtn
the output layer remaps the predicted parameters to a futtle same. This confirms that the provisioning algorithm with
VvNF-SC requeste.g., RI*1. Improved-DL achieves better tradeoff between resource uti

IV, PERFORMANCEEVALUATION lization and blocking probability.

The simulations use the same scheme as that in [6] to gener- 0.75
ate the vNF-SC requests based on the traces for real wide-are S o7l
TCP connections in [11]. We totally generate aroumigd000 § 065l
dynamic vNF-SC requests and @i% and20% of them into 2
the training and testing sets, respectively. The perfooman 5 08
evaluation compares the newly-designed improved DL model 8 055} —k-Improved-DL | |
(Improved-DL) with the DL model (DL) developed in [6]. 05 ‘ ‘ ‘
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S5l [ oL i Fig. 5. Results on resource utilization in provisioning gha

3 V. CONCLUSION

é“’ il We designed a new DL model for realizing more accurate

2 0 VNF-SC pre-deployment in IDC-EONs. Simulation results

Overall  Source Destination vNF-SC Bandwidth Arrival  Hold-on Suggested that the new DL model can provide h|gher predic_

tion accuracy than the existing approach, and with it, an SP
can achieve better tradeoff between resource utilizatimh a

We first compare the prediction loss of Improved-DL an8l0cking probability in the provisioning phase.
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