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Abstract—This work considers a provisioning framework for
inter-datacenter elastic optical networks, which incorporates pre-
diction and pre-deployment of virtual network function service
chains (vNF-SCs), and designs a new deep learning (DL) model
to realize accurate prediction. Simulation results confirm that
the new DL model provides higher prediction accuracy than the
existing approach, and with it, a service provider achievesbetter
tradeoff between resource utilization and blocking probability.

Index Terms—Network function virtualization, Service chain-
ing, Deep learning, Elastic optical networks (EONs).

I. I NTRODUCTION

In today’s datacenters (DCs), service providers (SPs) lever-
age IT resource virtualization to realize network function
virtualization (NFV) [1, 2] and deploy various virtual network
functions (vNFs) timely over general-purpose servers, switches
and storages. Meanwhile, the creation of new services can
be further expedited by steering traffic through a series of
vNFs, i.e., realizing a vNF service chain (vNF-SC) [3]. On
the other hand, the rapid growth of data-/bandwidth-intensive
and real-time services in the Internet makes the capacity and
flexibility of the underlying inter-DC networks essential for
achieving high-performance vNF-SC provisioning. Therefore,
people try to explore the agile bandwidth allocation provided
by the flexible-grid elastic optical networks (EONs) [4] and
build inter-DC networks over EONs (IDC-EONs) [5].

Note that, in order to realize on-demand and cost-effective
vNF-SC provisioning in an IDC-EON, an SP needs to properly
address the challenge due to setup latency [6]. Specifically,
the joint optimization of spectrum and IT resource allocations
in the IDC-EON would be complex and time-consuming [5],
and the relatively long configuration latencies from lightpath
establishment [7] and vNF deployment could make real-time
and on-demand vNF-SC provisioning infeasible. Hence, in our
previous study in [6], we designed a provisioning framework
with vNF-SC pre-deployment to resolve the challenge.

In the framework, network operations for vNF-SC pro-
visioning are performed periodically in fixed time slots
(TS’), where each TS includes two phases,i.e., the pre-
deployment and provisioning phases. Each TS starts with the
pre-deployment phase, in which the SP first uses a deep
learning (DL) model to predict future vNF-SC requests in
the TS and then performs lightpath establishment and vNF
deployment accordingly. Next, in the provisioning phase,
the SP serves actual arrival requests almost immediately by
steering their traffic through the required vNFs in sequence.

This framework successfully addresses the challenge due to
setup latency, because the latencies from the joint optimiza-
tion of resource allocations, lightpath establishment, and vNF
deployment are removed from the setup latency of a vNF-SC,
while with software-defined networking (SDN), traffic steering
can be accomplished within hundreds of milliseconds [8].

Although we designed a DL model based on the long/short-
term memory based neural network (LSTM-NN) [9] to fore-
cast the high-dimensional data of future vNF-SC requests1,
the DL model has not been fully optimized to achieve high
prediction accuracy. This motivates us to redesign the DL
model for realizing more accurate vNF-SC pre-deployment
in this work. Specifically, we propose two modifications to
the DL model, which are 1) a novel scheme that encodes the
vNF-SC of each request as a feature matrix to better represent
the similarity and difference among vNF-SCs, and 2) the
addition of abstraction and concretion layers in the LSTM-NN
to acquire more accurate predictions. Simulation results show
that the newly-designed DL model provides higher prediction
accuracy than the one in [6], and with it, an SP can achieve
lower blocking probability in the provisioning phase.

The rest of the paper is organized as follows. Section II
presents the problem formulation that describes the network
model and vNF-SC provisioning framework. The design of the
new DL model is explained in Section III, and we discuss the
numerical simulations for performance evaluation in Section
IV. Finally, Section V summarizes the paper.

II. PROBLEM FORMULATION

We model the IDC-EON as a directed graphG(V,E), where
V andE are the sets of DC nodes and fiber links, respectively.
A DC node is the abstraction of a DC for vNF deployment
and a bandwidth-variable optical cross-connect (BV-OXC) for
establishing inter-DC lightpaths. The IT resource capacity of
the DC in DC nodev ∈ V is Cv, while each fiber linke ∈ E

can accommodateF frequency slots (FS’). The bandwidth of
an FS is assumed to be12.5 GHz, which can carry12.5 Gbps
traffic throughput [10]. The SP can provisionM types of vNFs
in the DCs, where anm-th type vNF (i.e., vNF-m) consumes
cm units of IT resources and handles a peak traffic throughput
of bm Gbps. We represent a vNF-SC as{f1, f2, · · · , fK},
wherefk is thek-th vNF in the vNF-SC andK denotes the

1A vNF-SC request is modeled with its source-destination pair, bandwidth
requirement, arrival time, hold-on time, and vNF sequence.



number of vNFs in the longest vNF-SC that can be supported
in the IDC-EON. Then, we can model a dynamic vNF-SC
request asRi = {si, di, {f1, f2, · · · , fK}

i
, bi, tia, t

i
h}, wherei

is its unique index,si and di are the source and destination
DC nodes,{f1, f2, · · · , fK}

i is the required vNF-SC,bi is its
bandwidth requirement in Gpbs, andtia and tih are its arrival
time and hold-on time, respectively [6].

We consider the IDC-EON as a discrete-time system [6],
where the SP serves vNF-SC requests in fixed TS’, each of
which has a duration of∆T and includes a pre-deployment
phase followed by a provisioning phase. In the pre-deployment
phase, the SP first predicts the vNF-SC requests that will arrive
in the provisioning phase based on historical requests witha
DL model. Then, for each predicted request in ascending order
of arrival time, the SP deploys the required vNFs on DCs and
sets up lightpaths to connect the vNFs in sequence, using the
LBA algorithm developed in [3]. Finally, the SP removes idle
lightpaths and vNFs to improve resource utilization. Next,the
network system enters the provisioning phase, in which the
SP tries to steer client traffic through pre-deployed vNFs and
lightpaths to formulate vNF-SCs immediately upon receiving
a vNF-SC request. Here, a request can be blocked if it cannot
be served with the pre-deployed resources. In this framework,
the prediction accuracy of the DL model is the key to achieve
high performance vNF-SC provisioning,i.e., the best tradeoff
between resource utilization and blocking probability.

III. D ESIGN OFIMPROVED DL M ODEL

The new DL model follows the similar operation principle
proposed in [6]. Specifically, it uses a prediction window
whose size isw requests, and a future requestRI+1 is
obtained by analyzing thew + 1 latest historical requests
(i.e., Rh = {Ri, i ∈ [I − w, I]}). Then,RI+1 is treated
as the latest historical request and the DL model moves
the prediction window forward for one request (i.e., Rh =
{Ri, i ∈ [I −w+1, I+1]}) to predictRI+2. This procedure
is repeated in each pre-deployment phase until all the requests
that will arrive in the subsequent provisioning phase have
been predicted. We propose the following two modifications
to improve the DL model’s prediction accuracy.

A. Encoding Scheme of vNF-SCs

To facilitate accurate prediction in the DL model, we have
to encode the six dimensional parameters in each request
Ri = {si, di, {f1, f2, · · · , fK}

i
, bi, tia, t

i
h} properly. However,

we find that the scheme designed for encoding vNF-SCs in
[6] would have scalability issues and introduce uncontrollable
prediction errors. This is because we assumed that there
would beN types of vNF-SCs in the IDC-EON, and encoded
{f1, f2, · · · , fK}i as anN -element vector. In the worst case,
each fk can take any of theM types of vNFs andN
can be as large asMK , which clearly would be neither
efficient nor scalable. Moreover, the encoding scheme makes
the Euclidean distances between any two differentN -element
vectors be the same,i.e., the difference and similarity between
any two different vNF-SCs are the same. This would lead

to uncontrollable prediction errors since the difference and
similarity between two different vNF-SCs are different.

vNF-1 vNF-2 vNF-3

vNF-1 vNF-2 vNF-3 vNF-4 None

f1 1 0 0 0 0

f2 0 1 0 0 0

f3 0 0 1 0 0

f4 0 0 0 0 1

Fig. 1. Example of vNF-SC encoding.

To overcome the drawbacks mentioned above, we encode
a vNF-SC{f1, f2, · · · , fK} as a feature matrixSCK,M+1 in
this work, with K rows andM + 1 columns. Here, element
(k,m) equals1 if the k-th vNF in the vNF-SC is anm-th type
vNF, and0 otherwise. The(M +1)-th column corresponds to
the unused cases, for correctly modeling the vNF-SCs whose
lengths are shorter thanK. Fig. 1 gives an example on the
vNF-SC encoding, whereK = 4 and M = 4. The feature
matrix is for vNF-SC:vNF-1→vNF-2→vNF-3. Since the vNF-
SC only consists of three vNFs, element(4, 5) equals1 to
indicate that the fourth vNF in the vNF-SC is unused.
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Fig. 2. Design of improved LSTM-NN for vNF-SC request prediction.

B. Improved LSTM-NN

To ensure that the LSTM-NN can adapt to the new encoding
scheme and provide higher prediction accuracy, we redesign
it as shown in Fig. 2. The input layer takesw + 1 latest
historical encoded requests as the inputs,e.g., R̂h = {R̂i, i ∈
[I−w, I]}. As each encoded request contains a feature matrix
for its vNF-SC and five variables/vectors for the remaining
parameters, the input layer flattens the feature matrix as a long
vector and concatenates it with the remaining parameters to
form a vector. Then, the vectors of all the historical requests
are forwarded to the abstraction layer, where the vectors are
analyzed by two fully-connected sub-layers to extract the
correlations and features in them. Next, after receiving the
outputs from the abstraction layer, LSTM-Layer1 updates the
states of its memory cells accordingly and passes the informa-
tion to be further processed in LSTM-Layer2. The green and
blue dashed arrows in Fig. 2 show how the information gets



transferred and the states get updated, respectively. Here, we
add a random dropout module after each LSTM layer to avoid
over-fitting. After LSTM-Layer2, the concretion layer usesa
similar structure as that of the abstraction layer to convert
obtained information to predicted request parameters. Finally,
the output layer remaps the predicted parameters to a future
vNF-SC request,e.g., RI+1.

IV. PERFORMANCEEVALUATION

The simulations use the same scheme as that in [6] to gener-
ate the vNF-SC requests based on the traces for real wide-area
TCP connections in [11]. We totally generate around50, 000
dynamic vNF-SC requests and put80% and20% of them into
the training and testing sets, respectively. The performance
evaluation compares the newly-designed improved DL model
(Improved-DL) with the DL model (DL) developed in [6].
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Fig. 3. Comparison of prediction loss on testing set.

We first compare the prediction loss of Improved-DL and
DL, and Fig. 3 shows the results on normalized prediction
losses verified with the testing set for different parameters.
The overall prediction loss from Improved-DL is smaller than
that of DL. The reduction is mainly achieved by reducing
the prediction loss on vNF-SCs significantly, which verifies
the effectiveness of the proposed vNF-SC encoding scheme.
Meanwhile, since the new encoding scheme and Improved-DL
work together to extract more information from the historical
vNF-SC requests, the prediction errors on other parameters
also get reduced.
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Fig. 4. Results on blocking probability in provisioning phase.

Then, we conduct simulations on dynamic vNF-SC pro-
visioning to further evaluate our proposal. The simulations
still use an IDC-EON with the 14-node NSFNET topology
[12], and their settings are similar to those in [6]. We apply
two DL models in the pre-deployment phases for request
prediction, and then plot the results on blocking probability

and resource utilization in the provisioning phase in Figs.4
and 5, respectively. Here, the traffic load in each figure refers
to the number of requests arriving in each TS. We observe
that Improved-DL can provides lower blocking probability
than DL, while their results on resource utilization are almost
the same. This confirms that the provisioning algorithm with
Improved-DL achieves better tradeoff between resource uti-
lization and blocking probability.
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Fig. 5. Results on resource utilization in provisioning phase.

V. CONCLUSION

We designed a new DL model for realizing more accurate
vNF-SC pre-deployment in IDC-EONs. Simulation results
suggested that the new DL model can provide higher predic-
tion accuracy than the existing approach, and with it, an SP
can achieve better tradeoff between resource utilization and
blocking probability in the provisioning phase.
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