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Abstract—This paper demonstrates, for the first time to our
knowledge, hierarchical learning framework for inter-domain
service provisioning in software-defined elastic optical networking
(SD-EON). By using a broker-based hierarchical architecture,
the broker collaborates with the domain managers to realize
efficient global service provisioning without violating the privacy
constrains of each domain. In the proposed hierarchical learning
scheme, machine learning-based cognition agents exist in the
domain managers as well as in the broker. The proposed system
is experimentally demonstrated on a two-domain seven-node
EON testbed for with real-time optical performance monitors
(OPMs). By using over 42000 datasets collected from OPM units,
the cognition agents can be trained to accurately infer the Q-
factor of an unestablished or established lightpath, enabling
an impairment-aware end-to-end service provisioning with an
prediction Q-factor deviation less than 0.6 dB.

Index Terms—Multi-domain networking, optical networks,
modulations.

1. INTRODUCTION

HE Internet traffic has been growing exponentially driven
by explosive expansions of cloud-based multimedia appli-
cations, which now demand a high-throughput an agile cyber-
infrastructure that can support such dynamic and high-capacity
traffic [1]. While software-define elastic optical networking
(SD-EON) can facilitate flexible optical-layer spectrum man-
agement in single-domain networks [2]-[4], effective end-to-
end service provisioning across multiple autonomous systems
(ASes) still remains challenging. Specifically, subjecting to
administrative constraints, AS managers may keep the detailed
traffic engineering information (e.g., network topology, spec-
trum utilization etc.) confidential, while disclosing only very
limited amount of intra-domain information. Hence, perform-
ing the routing, modulation and spectrum assignment (RMSA)
for inter-domain lightpaths in optically transparent multi-AS
systems with guaranteed quality-of-transmission (QoT) is a
non-trivial task [5], [6].
Current optical network operators usually guarantee the
QoT of lightpaths by considering the worst link conditions
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and allocating large margins to account for the potential
performance degradations during the lifetime of lightpaths.
Thus, accurate QoT estimation models for unestablished light-
paths are essential for enhancing the efficiency of operating
optical networks. Previous works have reported a number of
theoretical models [7]-[11] for QoT estimation. For instance,
in [10], [11], the authors monitored and predicted the optical
signal-to-noise ratio (OSNR) across the optical networks as
an indicator of the QoT. The downside of this approach
is that it ignored other QoT degradation factors, such as
dispersions and crosstalk. In fact, most theoretical models
generally assume that there is only a single kind of impair-
ment presented in the transmission system. However, many
transmission impairments are non-orthogonal and are coupled
to each other. That is to say, due to the highly complex nature
of optical transmission systems and the implicit characteristics
of practical networks (e.g., device conditions, crosstalk etc.), it
is difficult to obtain a universal close-form analytical solution
that correlates the QoT with various impairment, and as a
result, the prediction accuracy of the theoretical models will
be reduced. In that case, during the network planning stage, the
network designer has to assign higher power/OSNR margin to
combat the QoT uncertainty, which would ultimately lower the
network capacity. On the other hand, recent breakthroughs in
artificial intelligence have made it possible to represent high-
dimensional data and approximate complex functions with
machine learning tools, such as deep neural networks (DNNG).
Mo et al. proposed an artificial neural network (ANN) based
transfer learning system to predict the QoT by monitoring the
channel power [12]. In [13], a cognitive tool with random
forest (RF), support vector machine (SVM), and K-Nearest
neighbor (KNN) is demonstrated for accurate QoT estimation.
Other researchers have investigated cognitive QoT estimation
using case-based reasoning (CBR), where the impairment
parameters of an optical network are learned with training
datasets to derive the QoT of a lightpath [14]. Nevertheless,
these models cannot be directly applied to the multi-AS
scenarios as they require access to the state of every optical
component, which definitely violates the autonomy of ASes.

n [15]-[17], we proposed a broker-based multi-domain SD-
EON framework for hierarchical multi-AS management, where
a broker plane was introduced to coordinate the operations of
AS or domain managers through market-driven and incentive-
driven interactions rather than superior-subordinate relation-
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Fig. 1. (a) Broker-based multi-domain provisioning with Hierarchical Cogni-
tion. IXP: internet-exchange point; DM: domain managers; (b) Workflow of
the proposed system.

ships. Compared with the previous distributed management
mechanisms (i.e., peer-to-peer AS networking [18], [19]), the
broker-based architecture can improve the efficiency of inter-
domain service schemes with a semi-centralized provisioning
scheme while also respecting the autonomy of ASes by work-
ing with them according the mutual service level agreements
(SLAs). This architecture is especially beneficial for QoT
estimation in multi-AS systems as it enables the design of
unified multi-domain monitoring and learning frameworks
with optimized inter-AS networking flows.

This paper extends our work in [20] by providing detailed
descriptions and implementations of the proposed hierarchical
learning framework and, more importantly, by presenting an
entirely new set of improved results with QoT prediction
accuracy < 0.6 dB (Q-factor deviation) to support impairment-
aware inter-domain service provisioning in multi-domain SD-
EONSs. The organization of the paper is as follows. Section
II introduces the details of the proposed hierarchical archi-
tecture and framework. Section III covers the experiment
demonstration, which includes testbed implementation, dataset
generation, training of the neural networks, and the impairment

aware service provisioning. Section IV concludes this work.

II. ARCHITECTURE AND FRAMEWORK
A. Broker-based Multi-Domain Architecture

Fig. 1(a) shows the block diagram of the proposed broker-
based multi-domain SD-EON with hierarchical cognitions in
both the broker plane and the domain manager plane. In the
proposed architecture, each domain manager is responsible for
managing a subset of the global optical networks, providing
services such as intra-domain service provisioning, perfor-
mance monitoring, and traffic engineering. A broker plane
lies above the domain manager plane to handle inter-domain
service requests and global optimizations. Through different
service level agreements (SLAs), each domain manager can
provide the broker with an abstracted representation of its
network as well as monitoring data, allowing the broker to
realize global coordination and provisioning.

The operation principle of the proposed framework is
summarized in Fig. 1(b). When a lightpath setup request
arrives, the corresponding domain manager will first determine
whether the destination node belongs to its own domain or
another domain. For an intra-domain request, the domain man-
ager first lists all available path segments between the source
and destination nodes from its database. Then the domain
manager inquires its cognition agent using the performance
monitoring data to get a QoT prediction for each possible
path available. Based on the prediction results, the domain
manager then sets up the lightpath that yields the highest
resource efficiency while satisfying the QoT. As for inter-
domain requests, the domain managers will list all available
path segments between the source/destination node and the
border nodes at the Internet-exchange point (IXP) for the
source/destination domain or among the border nodes for
intermediate domains [11], [21], [22]. In the next step, each
domain manager obtains the QoT predictions associated with
the paths from the cognitive unit. Subsequently, the domain
managers report the information of the path segments, includ-
ing the spectrum utilization and QoT prediction values, to the
broker. The broker can make use of the reported information
as well as the monitoring data from the border nodes to realize
the impairment-aware inter-domain service provisioning. Once
the lightpath is established, the domain managers and the
broker can continuously inquire their cognition unit to track
the status of the lightpaths. In case of a link failure, the
corresponding domain manager can re-initiate the process of
service provisioning to recover lightpaths affected by the link
failure.

Comparing with the conventional orchestrator-based ap-
proach, the proposed scheme shown in Fig. 1 does not require
the detailed knowledge from the network, such as the network
topology or the OPM data at each node, to realize the service
provisioning. Instead, the broker requires only the abstracted
information from the domain managers (i.e., the source/sink
node, the local Q-factor estimation, and available frequency
slots). That is to say, each domain manager is seen as a black
box that may provide certain requests and resources from the
broker’s point-of-view. Based on the provided resources, the
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Fig. 2. Design of Hierarchical QoT predictor. The local Q-factor predictions from the DM plane are sent to the broker plane as the inputs of the Broker-level

QoT predictor

broker can inquire its cognition unit to come up with the best
provisioning plan for a new request. By using this approach,
the broker does not need to know how the provided resources
are implemented inside each domain manager and the privacy
constraints are successfully satisfied.

B. Hierarchical Learning Framework for QoT prediction

Conventional ML-based QoT estimators generally require
complete visibility on the OPM information, which is imprac-
tical to be implemented due to its violation of the privacy
of each domain [12], [23]. Nevertheless, a good inter-domain
QoT can always be guaranteed if two premises, which include
a good local QoT for each domain and a good QoT at
the IXP, were satisfied. Following this unique characteristic,
we can divide the task of inter-domain QoT prediction into
multiple hierarchical subtasks with the broker-based archi-
tecture. Considering the task of the cognitive unit (QoT
predictions), we can use any supervised learning regressive
model (or a multi-class classifier with logistic regression) as
our learning model. Selection of ML models should base on
various practical factors, such as the scale of the provisioned
optical network, the number of accessible datasets, and the
computational capability of the network controllers. For in-
stance, if we are designing a QoT predictor for a complex
optical network with abundant datasets available, it would be
wise to choose a more powerful regressor (such as an deep
neural networks) to obtain a better approximation. On the
other hand, when the scale of the target optical network is
relatively small, simpler ML methods such as artificial neural
network (ANN) or support vector machine (SVM) should
be given higher priorities to avoid overfitting. In this work,
we used artificial neural network (ANN) as our ML block
due to its strong capability to approximate complex nonlinear
functions. As depicted in Fig. 2, the domain manager-level
ANNs elaborate on the information provided by the optical
performance monitors (OPMs) to obtain a list of local Q-factor
prediction values. The input features are parameters that can
precisely reflect the status of an optical link and impairments

while still accessible through affordable OPMs, such as the
modulation formats, the channel utilizations, power level, fiber
span length, or the noise figure (NF) of the node’s pump
EDFA. The domain manager-level ANN then uploads the local
Q-factor prediction list to the broker-level ANNs to calculate
the inter-domain Q-factor predictions. To combat overfitting,
we trained a distinct ANN for each lightpath configuration
between a source and a destination node, forming an ANN-
banks as our QoT predictor. By using this approach, we
can significantly reduce the dimensions of input features and
weighting parameters, which generally lower the probability
of having overfitting according to Vapnik-Chervonenkis theory
[24]. Note that it is also possible to use a single ANN to predict
all the lightpath as shown in [20] because one can derive the
routing paths from the OPM readings. The downside of using
this approach is that the neural network would require too
many samples to be trained properly in real-time.

III. EXPERIMENT
A. Experimental setup

Fig. 3 shows the two-domain seven-node SD-EON network
testbed used to demonstrate the proposed hierarchical learning
method. The first domain has a star-ring architecture that
consists of four nodes, while the second domain has a three-
node ring architecture. Each node is connected to other nodes
by spools of single-mode fiber (SMF) or dispersion shifted
fiber (DSF) of different lengths (15, 20, and 25 km). A 10
GBd 16-QAM coherent transmitter generates the testing signal
used for data training and prediction. This signal is multiplexed
with 20 50 GHz spacing 10 Gb/s dense wavelength division
multiplexing (DWDM) on-off keying (OOK) signals, serving
as the background traffic. The signal at the output of the
multiplexer is injected into the testbed. The optical spectrum
analyzer (OSA)-based OPMs are placed at the inputs of each
node to monitor the optical power and the spectrum occupancy
of background traffics. For measuring the QoT of the testing
signal, we deployed a digital coherent receiver containing a
local oscillator with 100-kHz linewidth, an optical hybrid, two



balanced photodetectors, and one real-time oscilloscope oper-
ating at 50 GS/s. We adopted offline digital signal processing
(DSP) algorithms, including timing recovery, chromatic dis-
persion compensation, adaptive equalization, carrier frequency
and phase recovery, to demodulate the captured signal and
calculate the Q-factor. A 0.2 nm bandwidth optical bandpass
filter (BPF) rejects the power of background traffics before the
digital coherent receiver. Four wavelength selective switches
(WSSs) route, bypass, drop, and attenuate any DWDM signals
with 50 GHz granularity at node A, C, E, and F. The fiber
span losses between each node are compensated using erbium-
doped fiber amplifiers (EDFAs) with constant output power.
For the network control and management, we implemented the
broker and the domain managers with the open network op-
erating system (ONOS) platform [25] running on independent
Linux Servers. The domain managers control the WSSs and
the coherent transceiver in their territory through OpenFlow
agents (OF-AGs, implemented with OpenvSwitches) that are
co-located with the devices. The communications among the
broker, domain managers and OF-AGs are realized with the
RESTful API [26].

B. Dataset Collection and Training

The collection of training and evaluation datasets can be
achieved by enumerating each of the possible routing paths for
the testing signal from node A to node G. We applied random
routing for the background traffic and random attenuations (0
dB - 7 dB for each WSS) for all the signals to purposely
introduce perturbations to the network and allowing to sample
the entire input space of the unknown target function that
correlates the QoT and OPM readings. The launch power of
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each fiber span varies from -7 dBm to 12 dBm depending
on the random applied attenuation and routing at each WSS
node. At each run, we measured the actual Q-factor of the
testing signal at Node G and record this value as the label
of the current dataset. Then, we filtered out the testing signal
using WSSs and recorded the outputs of the OPMs as the
feature of the dataset. The OPM’s reading contains a vector
of 10241 data points from the OSA. It is of great importance
to compress the dimensions of the input feature space to avoid
overfitting [24]. We processed the OPM’s raw data to obtain
the number of background traffic channels and related optical
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power, the power level of the noise floor, and the power
level of the testing signal (although it has been filtered out).
This feature-engineering method reduces the size of the input
feature space from 1024 x 1 to 4x 1 for each OPM. Therefore,

the input of the DM-level estimators consists of N x 4 X 1
samples, where N represents the number of OPMs reside in
the inquired optical path. The broker-level estimators require
(4 +2) x 1 input samples, which includes the two DM-level
QoT estimation results as well as the processed OPM readings
at the IXP. In the next step, we reinserted the testing signal and
recorded a second set of OPM data that contains the testing
signal. These data were used along with the first set of OPM
data to train the neural network. The reason for using these two
sets of OPM data is to make the learning model suitable for
both prediction (of an unestablished lightpath) and monitoring
(of an established lightpath) applications.

We implemented the domain manager-level ANNs and
broker-level ANNs using PyTorch [27]. For benchmarking
purpose, we also implemented an omniscient ANN that can
access all the OPM data of the two domains. Obviously, the
omniscient ANN bank violates the privacy and autonomy of
each domain and its performance represents the upper bound
of the proposed hierarchical estimator. Each neural network
contains only a single fully-connected hidden layer with 25
nodes to reduce its complexities. The nonlinearities for the
second layer is the fanh function [28].

We first collected 3,000 datasets (with and without the
testing signal, 1500 for each) for each intra-domain provi-
sioning path of domain #1 and domain #2. This collection
was achieved by moving the coherent transmitter (for training
domain #2) or the coherent receiver (for training domain #1) to
the location of IXP. Due to the fact that the random attenuation
applied on each WSS followed an exponential distribution,
more samples have a Q-factor biased toward the forward
error correction (FEC) threshold (8.5 dB, 7% HD-FEC). To
overcome this dataset biasing, we applied higher weight on the
less frequent samples and lower weight on the more frequent
samples during the optimization process. 2400 samples have
been used for training and the rest samples are used for evalu-
ation purpose. During each training iteration, we randomly
shuffled the entire dataset to select a new combination of
training and evaluation datasets. Fig. 4(a) shows the in-sample
error and out-of-sample error versus the number of training
iterations for path A-C-B. The in-sample error is defined
as the average squared deviations between the predicted and
actual Q-factors within the training set, while out-of-sample
error represents the average squared Q-factor deviations within
the evaluation set. Note that as training iteration increases,
the in-sample error and out-of-sample error closely align
with each other, which indicates the absence of overfitting.
Once the training is complete, we used the evaluation set to
verify the Q-factor prediction performance for each estimator.
Fig. 4(b) depicts the comparison between the predicted and
measured Q-factors for path A-C-B. An averaged Q-factor
deviation around 0.38 dB is obtained for the estimator. In this
study we choose to use averaged Q-factor deviation as our
evaluation metric as it is equivalent to the commonly used
mean absolute error (MAE) for estimator evaluation [29]. Fig.
4(c) and (d) show the training and evaluation results for one of
domain #2’s estimators (path E-F-G), where an averaged Q-
factor deviation around 0.29 dB is achieved. After the training
and verification for intra-domain QoT estimators, we started
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training the broker-level hierarchical and omniscient ANNs
with 2400 samples per path. The input features of the broker-
level hierarchical ANNs contain the two prediction values
from the domain manager-level ANNSs, as well as the OPM
information from the IXP, forming a 6 X 1 vector. Fig. 5
shows the training and Q-factor prediction performance of the
omniscient and hierarchical estimators for one of the routing
path (A-C-D-E-F-G). Both ANNs converge properly without
overfitting. The Q-factor deviations for the omniscient and
hierarchical estimators are 0.5 and 0.52 dB, respectively. From
Fig. 5 (a) and (b), the hierarchical estimator seems to have a
slower convergence speed and slightly higher out-of-sample
error against the omniscient ANN. These results indicate that
the proposed hierarchical estimator can achieve nearly ideal
QoT prediction performance (with a small penalty) while
supporting the autonomy and privacy of each autonomous
domain. Fig. 6 summarizes the performance of the intra-
and inter-domain ANN banks in terms of absolute Q-factor
deviations as well as their standard deviation. The blue and
red bars in Fig. 6(b) correspond to the Q-factor deviations of
the hierarchical and omniscient QoT estimators, respectively.
It shows that the hierarchical learning based QoT predictor
achieves less than 0.6 dB Q-factor deviation in the worst case
scenario.

C. Impairment-aware Inter-Domain Service Provisioning

Once the performance of the hierarchical learning based
QoT estimators has been verified, we integrated the proposed
hierarchical ANN banks into the SDN controllers on the broker
plane and the domain manager plane. Based on the acquired

knowledge, we demonstrate a use case of impairment-aware
inter-domain service provisioning where a network client
located in domain #1 wants to establish a lightpath from node
A to node G (located in domain #2). First, the client submits
its request to the local domain manager. The domain manager
then asks the broker to initiate the inter-domain RMSA process
shown in Fig. 2(a) and set up a lightpath over node A-B-F-G.
The launch power for the testing signal across the A-B link
was set to -5 dBm by controlling the pump power of node A’s
input EDFA. Fig. 7(a) shows the Wireshark messages captured
from domain manager #1 for the whole procedures of the
provisioning process. The entire inter-domain RMSA process
takes 27 ms to set up a new end-to-end lightpath (excluding
the time taken to physically reconfigure the WSS). Fig. 7(b)
presents the message of Status_Reply that are captured at
domain manager #1. In this message, domain manager #1 is
telling the broker that it has two routing candidates for the
inter-domain lightpath request. The information about DWDM
channel utilization, the domain-level Q-factor prediction, and
the name of the sink node at IXP for each routing candidate is
included in the message. To show the impairment awareness
of the proposed provisioning scheme, we purposely introduced
a time-varying attenuation from 0 dB to 20 dB with a rate
of 1 dB per 60 seconds between node A and node B using
the WSS, and recorded the measured Q-factor at node G.
This attenuation ultimately results in an intra-domain link
failure, which ultimately leads to an inter-domain link failure
between node A and node G. During this process, the domain
manager and broker-level ANN constantly monitor the intra-
and inter-domain Q-factor prediction values and notice the



Q-factor degradation. We plot the evolution of the measured
and predicted Q-factors on Fig. 7(c). It should be noted that
the measured Q-factor only serves as the ground truth results
to benchmark the proposed QoT estimator. As we increase
the attenuation on link A-B, the measured and predicted Q-
factors are reduced due to the presence of more amplified
spontaneous emission (ASE) noise. After six consecutive low-
value Q-factor predictions, the domain manager #1 triggers an
intra-domain rerouting (node A-C-B-F-G) shown in Fig. 7(d)
to re-provision the signal. After re-provisioning, the Q-factor
of the lightpath resumes to 12 - 13 dB because the faulty
link has been bypassed. The mean absolute error between
the estimated Q-factors as well as measured Q-factors was
found to be 0.6 dB, which further confirms the performance
of the proposed hierarchical learning-based QoT estimator. In
conclusion, efficient impairment-aware multi-domain service
provisioning with low prediction error (<0.6 dB) is demon-
strated by using the proposed hierarchical scheme.

IV. CONCLUSION

This paper investigates a hierarchical learning framework
for impairment-aware service provisioning across multiple
autonomous optical domains while respecting the autonomy
and privacy of each domain. The proposed framework taking
various transmission impairments, such as noise, crosstalk,
and distortions into considerations during the provisioning
process to ensure accurate QoT prediction. We implemented
the proposed system on a multi-domain testbed, quantitatively
verified the performance of the hierarchical learning based
QoT estimator and demonstrated its application in a use case
of impairment-aware inter-domain service provisioning.

While the proposed framework offers an efficient provision-
ing scheme, its scalability remains to be fully assessed. Since
the broker-level ANN relies on the predictions from the do-
main manager-level ANNs as inputs, the prediction error from
domain manager-level ANNs might accumulate at the broker-
level ANN, potentially reducing the prediction accuracy of
the inter-domain QoT. As the number of autonomous optical
domains under single broker’s coverage increases, the effect
of error propagation might become more significant. Accuracy
of predictions at each layer and each plane (physical layer
measurements from OPM, predictions by agents in domain
manager and broker plane) as well as efficient and accurate
abstractions going from intra-domain information to inter-
domain big-pictures are important for scalable and effec-
tive multi-domain network operation enhanced by machine
learning. Fault-tolerant and error-tolerant hierarchical learning
methods by spatio-temporal abstraction may play an important
role [30]. Future research will include effective abstractions
and hierarchical learning that mitigate error propagation ef-
fects, multi-broker multi-domain networking, and applications
of game-theories to multi-agent networking.
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