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Abstract: By leveraging deep reinforcement learning (DRL), we designDeep-NFVOrch as a novel
service framework with resource pre-deployment to achieveadaptive virtual network function (vNF)
service chaining in inter-datacenter elastic optical networks (IDC-EONs).
OCIS codes: (060.1155) All-optical networks; (060.4251) Networks, assignment and routing algorithms.

1. Introduction
Nowadays, to expedite the deployment of new services, network function virtualization (NFV) has become increas-
ingly popular in today’s inter-datacenter (Inter-DC) networks. This is because NFV enables service providers (SPs)
to instantiate virtual network functions (vNFs) over general-purpose network elements in DCs,e.g., servers, switches
and storages. Then, to realize a new service on-demand, an SPcan simply organize the required vNFs in the desired
order and steer application traffic through the formed vNF service chain (vNF-SC). Meanwhile, from the network
side, elastic optical networks (EONs) have been widely considered for inter-DC networks (IDC-EONs) [1], since they
provide an agile optical layer to adapt to the highly dynamictraffic among DCs. Previously, people have studied how
to provision vNF-SCs in IDC-EONs,i.e., deploying the required vNFs in the DCs and setting up lightpaths in the
IDC-EON to assemble the required vNF-SCs [2]. However, theyoverlooked a very important issue in practical vNF-
SC provisioning, which is the long latencies from vNF instantiation and lightpath establishment. It was estimated that
this issue can make the total setup latency of a vNF-SC reach the order of minutes and thus would jeopardize the
quality-of-service (QoS) of network services that have a stringent requirement on setup latency [3].

Therefore, a more reasonable approach is to consider the service framework with pre-deployment [3]. Specifically,
in a periodic manner, the framework uses a deep learning (DL)module to predict future vNF-SC requests, and then
deploys both the required vNFs and related lightpaths in theIDC-EON in advance. Next, when a vNF-SC request
actually comes in, the SP only needs to steer its traffic through the required vNFs in sequence and thus achieves
immediate service provisioning. Nevertheless, the framework designed in [3] is still preliminary in the sense that it is
not adaptive from two perspectives. Firstly, it invokes pre-deployment periodically with a fixed interval∆T . However,
for vNF-SC requests whose arrival rate is changing, a fixed∆T can never lead to optimal service provisioning. This is
because when∆T becomes too long, the usage of pre-deployed resources woulddecrease statistically, while too short
of a ∆T would cause frequent and unnecessary network reconfigurations. Secondly, the DL-based request predictor
does not collect any feedback during operation, and thus cannot adapt to the changing of requests’ arrival pattern.

In this work, we try to resolve the aforementioned issues by leveraging deep reinforcement learning (DRL) to
design “Deep-NFVOrch”, which is a novel service framework that enables adaptive vNF-SC provisioning in IDC-
EONs. Specifically, we design a DRL module based on asynchronous advantage actor critic (A3C) [4] and use it as
an observer in Deep-NFVOrch to improve adaptivity. When a service cycle (i.e., including both the pre-deployment
and provisioning phases [3]) ends, the observer collects instant performance metrics and uses them as the feedback to
update the length of the next service cycle (i.e., ∆T ), the DL-based request predictor, and its own DNN, for getting
better performance metrics next time. The DRL-based observer leverages an asynchronous training scheme to ensure
superior learning capability for online operations. Our simulations indicate that Deep-NFVOrch can realize adaptive

(a)

(b)

Request Handler

Incoming vNF-SC 

Requests

vNF-SC Pre-Deployment

Lightpath

Establishment

vNF

Instantiation

Deployed Resources 

Instant Performance 

Metrics

DL-based Request

Predictor

Future Requests 

in Next 
Update 

TED

Topology

In-Service

vNFs

In-Service

Lightpaths

Historical

vNF-SCs vNF-SC Provisioning

Traffic Steering

Requests

Requests

System Timer

DRL-based

Observer

U
p
d
a
te

 

D
N

N

Update 
Service Cycle: t

Provisioning Pre-deployment

• Predict vNF-SC requests

• Pre-deploy vNFs and lightpaths

• Steering traffic

Fig. 1. (a) Architecture of Deep-NFVOrch, and (b) Working principle of Deep-NFVOrch in each service cycle.



vNF-SC provisioning and simultaneously balance the systemperformance on resource usage, network reconfiguration
overhead, and blocking probability, under highly dynamic vNF-SC requests.

2. Proposed Service Framework
Fig. 2(a) shows the proposed architecture of Deep-NFVOrch,which is a periodic system driven with a timer to ensure
adaptive service cycles. Each service cycle (i.e., the duration of then-th one is∆Tn) includes a pre-deployment phase
followed by a provisioning phase, as illustrated in Fig. 1(b). In the pre-deployment phase, the DL-based request pre-
dictor (DL-Predictor) forecasts future vNF-SC requests inthe next∆Tn according to historical requests, and then the
prediction is sent to the vNF-SC pre-deployment module, which conducts lightpath establishment and vNF instanti-
ation in the IDC-EON accordingly. Next, the system moves to the provisioning phase, which takes most of the time
in ∆Tn, and it collects the actual incoming vNF-SC requests to serve. Specifically, when a new request arrives, the
request handler records it in the traffic engineering database (TED) and dispatches it to the vNF-SC provisioning mod-
ule, which steers application traffic through the required vNFs in sequence to realize immediate provisioning. Finally,
when the provisioning phase is about to end, the DRL-based observer (DRL-Observer) collects instant performance
metrics from the vNF-SC provisioning module, and uses them to evaluate the provisioning in this service cycle. DRL-
Observer is trained to update its own DNN and∆T intelligently based on the performance evaluation. It thenforwards
the new∆T (i.e., ∆Tn+1) to DL-Predictor and the system timer, and lets the system move to the next service cycle.

We model IDC-EON as a graphG(V,E), whereV andE are the sets of DCs and fiber links, respectively. Each
DC v∈V containsCv IT resources for vNFs and there areF frequency slots (FS’) on each linke∈E. Note that, there
are four basic elements in a DRL model,i.e., the agent, action, environment, and reward [4]. The agent is trained to
take a proper action based on the environment where it is in and the reward that it has obtained, while the action will
change the agent’s environment and thus update its reward. In our problem, the agent is DRL-Observer. The action
is to select a proper duration∆Tn+1 for the next service cycle at the end of service cycle∆Tn, and we assume that
{∆Tn, ∀n∈N} take discrete values within a finite range[∆T min

,∆T max]. The environmentSn is the current network
status, which refers to the current IT resource usage of all the DCs{φn

v , ∀v∈V}, the current spectrum usage of all the
fibers{ϕn

e , ∀e∈E}, and the number of arrived vNF-SC requests in this service cycle ψn. The rewardrn is calculated
based on instant performance metrics, asrn = α · φ̄ −β · log[max(pb,10−6)]+ γ · 1

m , whereφ̄ is the average usage of
pre-deployed lightpaths and vNFs,pb is the blocking probability,m is the number of network reconfigurations (i.e.,
the total number of new lightpaths and new vNFs), andα, β andγ are positive constants to normalize the three terms.
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Fig. 2. (a) Architecture and operation of Deep-Observer, (b) Structure of AC-NN and (c) Asynchronously training scheme.

Fig. 2(a) explains the operation principle of DRL-Observer, i.e., how to determine∆Tn+1 based on the current
environmentSn and rewardrn. DRL-Observer consists of three parts, which are an actor-critic neural network (AC-
NN), a training sample buffer, and a module for deciding∆Tn+1. Here, the AC-NN is trained to takeSn as the input
to generate a policyπ(∆Tn+1|Sn), which is the probability of taking each possible value of∆Tn+1 under the current
environmentSn. Meanwhile, the AC-NN outputs a valuevn, which is the expected reward under the assumption that
the policy isπ(∆Tn+1|Sn) and the current environment isSn, and it is used to estimate the advantage brought by the
selected action (i.e., using∆Tn+1 as the length of the next service cycle). The AC-NN’s structure is shown in Fig. 2(b),
which consists of three layers. Layer-1 is for collectingSn. It uses a long short-term memory (LSTM) structure to take
the number of arrived requests, while the resource utilizations are collected through two fully-connected structures.
Layer-2 concatenates the information passed from Layer-1,and Layer-3 uses the concatenated information to get the
outputs, which are the policyπ(∆Tn+1|Sn) and the valuevn. Based on the policy provided by the AC-NN, the module



for deciding∆Tn+1 selects a proper value within[∆T min
,∆T max]. Then, Deep-NFVOrch gets updated and moves to the

next service cycle. At the end of∆Tn+1, the environment transforms toSn+1 and DRL-Observer gets the new reward
rn+1. Next, DRL-Observer records the tuple(Sn,∆Tn+1,rn+1,Sn+1,vn) as a sample in the training sample buffer.

We develop an online training scheme to ensure that DRL-Observer can be trained on-the-fly during the operation of
Deep-NFVOrch. DRL-Observer gets a training sample at the end of each service cycle, but to avoid causing instability,
we will not update the AC-NN untilM new samples has been obtained. During the update process, DRL-Observer
calculates the reward and updates the AC-NN based on the collected samples. Here, the reward is actually a long
term reward that summarizes a series of instant rewards multiplied by their discount factors. This is because the
environment changes are not memoryless. In other words, theaction of selecting∆Tn+1 affects not onlySn+1 and
rn+1 but also the subsequent environment states and rewards. Meanwhile, to expedite the training process, we make
the updates asynchronous as in Fig. 2(c). Specifically, we partially separate the operation and training of the AC-NN.
The operation uses a global AC-NN to determine∆T , while the training threads make copies of the global AC-NN
constantly and let the copied AC-NNs interact with emulatedenvironments and feedback the obtained gradients to the
global AC-NN asynchronously.

3. Performance Evaluation
The performance evaluation is based on simulations with an IDC-EON that uses the 14-node NSFNET topology.
The IDC-EON supports 5 types of vNFs, and these vNFs can form 10 types of vNF-SCs, each of which includes
[2,4] vNFs. We generate dynamic vNF-SC requests based on real wide-area TCP connection traces [5] in which
the arrival rate of the requests fluctuates as shown in Fig. 3(a). DRL-Observer can select∆Tn from {1,2, · · · ,10}
hours. As Deep-NFVOrch can determine∆T adaptively, we use the scheme that uses a fixed∆T as the benchmark.
Specifically, the benchmark possesses every model in Fig. 1(a) except the DRL-Observer, replacing it with a fixed
setting on∆T . Three fixed settings are considered in the simulations,i.e., ∆T = {1,5,10} hours. The simulations test
different loads by changing the arrived vNF-SC requests perhour for a whole simulation from 50 to 200. The overall
resource utilization in Fig. 3(b) refers to the average utilization of deployed lightpaths and vNFs in a simulation. We
observe that DRL-Observer achieves significantly higher resource utilization than the benchmarks using fixed∆T at
{5,10}, verifying the benefit of making∆T adaptive. The resource utilization of∆T = 1 is the highest, but to achieve
this, it has to invoke network reconfigurations at the highest frequency, causing tremendous overhead. The results on
total number of network reconfigurations in Fig. 3(c) confirmthis analysis. Here, one reconfiguration is for setting
up a new lightpath or deploying a new vNF. The scheme with∆T = 1 invokes the most reconfigurations, while the
reconfigurations by DRL-Observer are even less than those from∆T = 5, which suggests that DRL-Observer achieves
the best tradeoff between resource utilization and reconfiguration overhead. The conclusion can be further verified by
the blocking probability in Fig. 3(d), which indicates thatDRL-Observer achieves much lower blocking probability
than the benchmarks with∆T = {5,10} and its blocking performance is just slightly worse than that of ∆T = 1.
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Fig. 3. (a) Dynamic arrival pattern of vNF-SC requests, (b) Overall resource utilization, (c) Number of network reconfig-
urations, and (d) Request blocking probability.

4. Summary
This work leveraged DRL to design Deep-NFVOrch for realizing adaptive vNF-SC provisioning in IDC-EONs. Simu-
lation results confirmed that Deep-NFVOrch can adjust the duration of service cycles adaptively for properly balancing
the performance tradeoff among resource utilization, network reconfiguration overhead, and blocking probability.
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