Deep-NFVOrch: Deep Reinforcement L earning based Service
Framework for Adaptive vNF Service Chainingin IDC-EONs

BaojiaLi, Wei Lu, Zuging Zhu
University of Science and Technology of China, Hefei, Anhui 230027, China, Email: zgzhu@ieee.org

Abstract: By leveraging deep reinforcement learning (DRL), we deflgep-NFVOrch as a novel

service framework with resource pre-deployment to achéelamtive virtual network function (vNF)

service chaining in inter-datacenter elastic optical weks (IDC-EONS).

OCIScodes: (060.1155) All-optical networks; (060.4251) Networkssigament and routing algorithms.
1. Introduction
Nowadays, to expedite the deployment of new services, mktiunction virtualization (NFV) has become increas-
ingly popular in today’s inter-datacenter (Inter-DC) netks. This is because NFV enables service providers (SPs)
to instantiate virtual network functions (VNFs) over gaatgrurpose network elements in D@&s3., servers, switches
and storages. Then, to realize a new service on-demand, aarSétmply organize the required vNFs in the desired
order and steer application traffic through the formed vNvise chain (vNF-SC). Meanwhile, from the network
side, elastic optical networks (EONSs) have been widely iciened for inter-DC networks (IDC-EONS) [1], since they
provide an agile optical layer to adapt to the highly dynatraffic among DCs. Previously, people have studied how
to provision VNF-SCs in IDC-EONS,e., deploying the required vNFs in the DCs and setting up ligtitp in the
IDC-EON to assemble the required vNF-SCs [2]. However, tharlooked a very important issue in practical vNF-
SC provisioning, which is the long latencies from vNF insi@tiion and lightpath establishment. It was estimated that
this issue can make the total setup latency of a VNF-SC rdeelorder of minutes and thus would jeopardize the
quality-of-service (QoS) of network services that haveriagent requirement on setup latency [3].

Therefore, a more reasonable approach is to consider thiesé&amework with pre-deployment [3]. Specifically,
in a periodic manner, the framework uses a deep learning (@ddule to predict future vNF-SC requests, and then
deploys both the required vNFs and related lightpaths inE&EON in advance. Next, when a vNF-SC request
actually comes in, the SP only needs to steer its traffic tjiinahe required vNFs in sequence and thus achieves
immediate service provisioning. Nevertheless, the fraarkwlesigned in [3] is still preliminary in the sense thasit i
not adaptive from two perspectives. Firstly, it invokes-geployment periodically with a fixed intervAIl . However,
for vNF-SC requests whose arrival rate is changing, a fiXed@¢an never lead to optimal service provisioning. This is
because wheAT becomes too long, the usage of pre-deployed resources weatdase statistically, while too short
of a AT would cause frequent and unnecessary network reconfignsatSecondly, the DL-based request predictor
does not collect any feedback during operation, and thusataxdapt to the changing of requests’ arrival pattern.

In this work, we try to resolve the aforementioned issuesdweraging deep reinforcement learning (DRL) to
design “Deep-NFVOrch”, which is a novel service framewdrkttenables adaptive vNF-SC provisioning in IDC-
EONSs. Specifically, we design a DRL module based on asynolusadvantage actor critic (A3C) [4] and use it as
an observer in Deep-NFVOrch to improve adaptivity. Whenraise cycle (.e, including both the pre-deployment
and provisioning phases [3]) ends, the observer collestain performance metrics and uses them as the feedback to
update the length of the next service cydle.(AT), the DL-based request predictor, and its own DNN, for ggtti
better performance metrics next time. The DRL-based obségverages an asynchronous training scheme to ensure
superior learning capability for online operations. Ounglations indicate that Deep-NFVOrch can realize adaptive

Incoming VNF-SC

Requests System Timer
il
\/ ”
e Y (& 3
R "
= Request Handler e < > '+ Predict vYNF-SC requests

_________ AR ! i
1 i - i+ Pre-deploy vNFs and lightpaths |
E Topology i Requests I

T i
. Lightpath 1} VNF i
In-Service i " H oo | Future Requests | DL-based Request
le—>| | Establishment | i Instantiation | d el
VNFs LS e A O T m Next AT Predictor Update AT | Pre-deployment Provisioning
VNF-SC Pre-Deployment T 1
-Senvi - ;
Il.ri]gﬁ?pna"tﬁes Deployed Resourcesl Update AT Service Cycle: AT, ————— 1 t
---------- T e c - - v
i Historical E a__.l:"_"iff'_c__s_t??_"l’_‘g_j Instanth;eetr;z;mance Dgé_;gfvtd > gg i+ Steering traffic :
p VNF-SCs § VNF-SC Provisioning s ®)
_/

(a)

Fig. 1. (a) Architecture of Deep-NFVOrch, and (b) Workindgngiple of Deep-NFVOrch in each service cycle.

VvNF-SC provisioning and simultaneously balance the systerformance on resource usage, network reconfiguration
overhead, and blocking probability, under highly dynamié&vSC requests.

2. Proposed Service Framework

Fig. 2(a) shows the proposed architecture of Deep-NFVQvbich is a periodic system driven with a timer to ensure
adaptive service cycles. Each service cycle,(the duration of th@-th one isAT,) includes a pre-deployment phase
followed by a provisioning phase, as illustrated in Fig.)1(b the pre-deployment phase, the DL-based request pre-
dictor (DL-Predictor) forecasts future vNF-SC requestthim nextAT, according to historical requests, and then the
prediction is sent to the vNF-SC pre-deployment module ctvicionducts lightpath establishment and vNF instanti-
ation in the IDC-EON accordingly. Next, the system moved pirovisioning phase, which takes most of the time
in AT,, and it collects the actual incoming VNF-SC requests toese®pecifically, when a new request arrives, the
request handler records it in the traffic engineering da@BED) and dispatches it to the vVNF-SC provisioning mod-
ule, which steers application traffic through the requirliiFrs in sequence to realize immediate provisioning. Finally
when the provisioning phase is about to end, the DRL-bassedreér (DRL-Observer) collects instant performance
metrics from the vNF-SC provisioning module, and uses theavaluate the provisioning in this service cycle. DRL-
Observer is trained to update its own DNN akifl intelligently based on the performance evaluation. It theewards
the newAT (i.e, ATy 1) to DL-Predictor and the system timer, and lets the systementmthe next service cycle.

We model IDC-EON as a grapB(V,E), whereV andE are the sets of DCs and fiber links, respectively. Each
DC veV containsC, IT resources for vNFs and there dfefrequency slots (FS’) on each lirdcE. Note that, there
are four basic elements in a DRL modet, the agent, action, environment, and reward [4]. The agetmained to
take a proper action based on the environment where it isdrtt@reward that it has obtained, while the action will
change the agent’s environment and thus update its rewariproblem, the agent is DRL-Observer. The action
is to select a proper duratiail,; for the next service cycle at the end of service cyklg, and we assume that
{AT,, VneN} take discrete values within a finite rangel ™" AT™]. The environmens, is the current network
status, which refers to the current IT resource usage dfi@lDCs{ ¢, YveV }, the current spectrum usage of all the
fibers{¢g, VecE}, and the number of arrived vNF-SC requests in this servickeay”. The reward, is calculated
based on instant performance metricstas a - @ — 3 -log[maxpp, 1076)] + y- n% whereg is the average usage of
pre-deployed lightpaths and vNRg, is the blocking probabilitym is the number of network reconfigurations,
the total number of new lightpaths and new vNFs), ang andy are positive constants to normalize the three terms.

e Policy (AT, 1115,) Value v, Real
Sn Actor-Critic Policy n{ATns11Sa} 1™ AT, ., i T - T " Environment
Neural Network i Decision i
Update Value v, Layer-3
s, | P " v Global AC-NN
r \/ Operation
n Training
Agent: DRL-Observer Layer-2 | o ®© © 0@ @ © O | Gradient Gradient
Thread 1 Thread N
i Ne J— [_______ T T // e \
S [N |Copied AC-NNl |Copied AC-NN|
Layer-1 L] Memory | |
Tnii X P L__Cell |
B Environment: Action: ATy 44 T T T
n+l
o Sn Environment #of Requests |T Resource Spectrum Emulated Emulated
______________________ Sn P Utilization ¢} Utilization ¢ Environment Environment
New i ®)
i Environment (c)

Fig. 2. (a) Architecture and operation of Deep-ObservéiSthucture of AC-NN and (c) Asynchronously training scheme

Fig. 2(a) explains the operation principle of DRL-Observex, how to determinéAT,, 1 based on the current
environmentS, and reward,. DRL-Observer consists of three parts, which are an acttic-aeural network (AC-
NN), a training sample buffer, and a module for decidlxig, 1. Here, the AC-NN is trained to tak®, as the input
to generate a policyr(AT,1|Sn), which is the probability of taking each possible valueAdf, .1 under the current
environmentS,. Meanwhile, the AC-NN outputs a valug, which is the expected reward under the assumption that
the policy ism(AT,1|/Sy) and the current environment &, and it is used to estimate the advantage brought by the
selected action €., usingAT, ;1 as the length of the next service cycle). The AC-NN’s strrests shown in Fig. 2(b),
which consists of three layers. Layer-1 is for collectiglt uses a long short-term memory (LSTM) structure to take
the number of arrived requests, while the resource utitinatare collected through two fully-connected structures
Layer-2 concatenates the information passed from Layand | ayer-3 uses the concatenated information to get the
outputs, which are the policg(AT,1|S:) and the value,. Based on the policy provided by the AC-NN, the module

for decidingAT, 1 selects a proper value withjAT ™" AT™|. Then, Deep-NFVOrch gets updated and moves to the
next service cycle. At the end &fT,,, 1, the environment transforms &,,1 and DRL-Observer gets the new reward
rn+1. Next, DRL-Observer records the tuglén, ATy 1,1, Shr1,Vn) @s @ sample in the training sample buffer.

We develop an online training scheme to ensure that DRL-@bsean be trained on-the-fly during the operation of
Deep-NFVOrch. DRL-Observer gets a training sample at tideoérach service cycle, but to avoid causing instability,
we will not update the AC-NN untiM new samples has been obtained. During the update processOb&erver
calculates the reward and updates the AC-NN based on thectadl samples. Here, the reward is actually a long
term reward that summarizes a series of instant rewardspinedt by their discount factors. This is because the
environment changes are not memoryless. In other wordsadtien of selecting\T, 1 affects not onlyS,,1 and
rnr1 but also the subsequent environment states and rewardswviWae, to expedite the training process, we make
the updates asynchronous as in Fig. 2(c). Specifically, witafip separate the operation and training of the AC-NN.
The operation uses a global AC-NN to determixie, while the training threads make copies of the global AC-NN
constantly and let the copied AC-NNs interact with emulaedronments and feedback the obtained gradients to the
global AC-NN asynchronously.

3. Performance Evaluation

The performance evaluation is based on simulations withDi@-EON that uses the 14-node NSFNET topology.
The IDC-EON supports 5 types of vNFs, and these vNFs can fd@nygdes of vNF-SCs, each of which includes
[2,4] vNFs. We generate dynamic vNF-SC requests based on realané@deTCP connection traces [5] in which
the arrival rate of the requests fluctuates as shown in Fag. BIRL-Observer can seledfl, from {1,2,---,10}
hours. As Deep-NFVOrch can determiA@ adaptively, we use the scheme that uses a fiXEds the benchmark.
Specifically, the benchmark possesses every model in Fij.ekcept the DRL-Observer, replacing it with a fixed
setting omAT. Three fixed settings are considered in the simulatioasAT = {1,5,10} hours. The simulations test
different loads by changing the arrived vNF-SC requestspear for a whole simulation from 50 to 200. The overall
resource utilization in Fig. 3(b) refers to the averagdzaatlon of deployed lightpaths and vNFs in a simulation. We
observe that DRL-Observer achieves significantly highsouece utilization than the benchmarks using fidddat
{5,10}, verifying the benefit of makindT adaptive. The resource utilization AT = 1 is the highest, but to achieve
this, it has to invoke network reconfigurations at the higlfresjuency, causing tremendous overhead. The results on
total number of network reconfigurations in Fig. 3(c) confttiis analysis. Here, one reconfiguration is for setting
up a new lightpath or deploying a new vNF. The scheme With= 1 invokes the most reconfigurations, while the
reconfigurations by DRL-Observer are even less than thoseAiT = 5, which suggests that DRL-Observer achieves
the best tradeoff between resource utilization and recortgn overhead. The conclusion can be further verified by
the blocking probability in Fig. 3(d), which indicates tHaRL-Observer achieves much lower blocking probability
than the benchmarks withT = {5,10} and its blocking performance is just slightly worse thart fa\T = 1.

1 100

n
]

—~ T T T
= =
° | [—e—DRL-Observer o ©— DRL-Observer | f |
2 oob— — — Fiod AT o1 1 < —&— Fixed AT =1
€ o8 s T e rxed AT= % || —A—Fixed AT =5 ‘ =) ‘ !
< S —A—Fixed AT =5 2 Z
i) =10t — — — =P S -
g Sosl—— — — 1 Fixed AT = 10 | § 20 [|—*—Fixed AT =10 | g 10 +
= H | T ® o [
%06 3)) ‘
g £ 5 Sl e
¢ 2 g g ‘
@ 04 o o o
2 < ¥ z ! I
2 3 5 3
T 53 2 2 10345| —O— DRL-Observer
Eo2 I I | 2 & [—E—Fixed AT =1
2 04F— — — — A — — — - = ¢ I —A—Fixed AT=5
° —4—Fixed AT =10
0 o | | 4 \ :

T et Y eSORewssperbar . WESCRewestspertor ¥ NFSCReqessperton
(a) (b) (c) (d)

Fig. 3. (a) Dynamic arrival pattern of vYNF-SC requests, (gl resource utilization, (¢) Number of network reconfig

urations, and (d) Request blocking probability.
4, Summary
This work leveraged DRL to design Deep-NFVOrch for realigadaptive VNF-SC provisioning in IDC-EONs. Simu-
lation results confirmed that Deep-NFVOrch can adjust thratiten of service cycles adaptively for properly balancing
the performance tradeoff among resource utilization, ngtweconfiguration overhead, and blocking probability.

References

[1] P.Luetal., IEEE Netw, vol. 29, pp. 36-42, Sept./Oct. 2015.

[2] W. Fanget al., IEEE Commun. Lett., vol. 20, pp. 1539-1542, Aug. 2016.
[3] B.Lietal.,J. Opt. Commun. Netw., vol. 10, pp. D29-D41, Oct. 2018.
[4] V. Mnih etal., inProc. of ICML 2016, pp. 1928-1937, Jun. 2016.

[5] V. Paxson|EEE/ACM Trans. Netw., vol. 2, pp. 316-336, Aug. 1994.

