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Abstract—With flexibility in optical layer, Elastic Optical
Network (EON) has been considered as a competitive candidate
to architect next-generation backbone networks. Routing and
Spectrum Assignment (RSA) is a key problem for the service
provisioning in EONs. The RSA problem is NP-hard even in
elastic optical rings. Numerous heuristics have been proposed,
and they can generally be categorized into two types: Route-First
(RF) and Spectrum-First (SF). Although most previous work
demonstrated by numerical simulations that the SF algorithms
always outperform the RF ones, there is a lack of theoretical
analysis on the reasons causing the performance difference
between the two types of RSA algorithms. In this work, we aim
at proposing a unified theoretical framework for the performance
analysis of RSA algorithms by leveraging conflict graphs, which
offers a new perception on the optimality of RSA algorithms.
To validate the proposed framework, we apply it in elastic
optical rings (with cycle topology), and theoretically analyze
the number of edges of the conflict graphs for RF and SF
algorithms. Different from the literature, we obtain an interesting
observation that neither the RF nor the SF can surpass the other
in elastic optical rings under different traffic distributions, and
their performances have a strong correlation to the edge count of
their conflict graph. This observation provides a new perspective,
i.e. conflict graph, to explore the property of RSA algorithms.

Index Terms—Elastic Optical Networks (EONs), Routing and
Spectrum Assignment (RSA), Conflict Graphs, Rings

I. INTRODUCTION

NOWADAYS, with diverse bandwidth-hungry applications
deployed in the backbone networks, the demands of

traffic bandwidths are growing exponentially. However, current
Wavelength-Division-Multiplexing (WDM) networks, due to
the coarse granularity of channels (typically at 50 or 100 GHz)
[1], have been considered rigid with limited elasticity and
flexibility in optical layer. Whereas the spectrum resources in
optical layer are finite, the desire of developing highly-efficient
and flexible optical networking technologies has stimulated
intensive research interests [2, 3]. Elastic Optical Networks
(EONs), due to the nature of flexible-grid, can achieve ef-
ficient and agile utilization of spectrum resources and have
been considered as promising replacements to architect next-
generation backbone networks [1, 4, 5]. In an EON, the spec-
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trum resources on each fiber link are divided into narrow-band
(i.e., 12.5 GHz or less) Frequency Slices (FSs), with which
the EON can allocate just-enough bandwidths to satisfy each
connection request adaptively [6, 7]. Therefore, the spectrum
utilization can be effectively improved in EONs in contrast to
WDM optical networks.

The critical problem to realize the service provisioning in
EONs is Routing and Spectrum Assignment (RSA) [8]–[11],
i.e., how to find a routing path and assign a block of available
FSs on it to set up a lightpath for each connection request.
Different from Routing and Wavelength Assignment (RWA) in
WDM networks, which uses fixed channel sizes, the RSA has
to deal with various channel sizes due to the flexible grids [10].
Hence, it is more challenging to solve the RSA problem, which
has been proven to be NP-hard even in elastic optical rings
[8, 12]. To this end, numerous heuristic algorithms have been
proposed to solve it time-efficiently. Note that, no matter how
an RSA heuristic operates, it can be categorized into one of
the two types, i.e., Route-First (RF) algorithms and Spectrum-
First (SF) ones. Specifically, RF algorithms solve the routing
subproblem first and then allocate spectrum resources, while
SF ones tackle RSA problem in an opposite way. The details
regarding the two types of RSA heuristics will be discussed
later in Section IV. For a comprehensive survey on heuristic
RSA algorithms, one is suggested to refer to [13].

Apparently, the performance of service provisioning in
EONs would be significantly affected by the used RSA al-
gorithm. Most of current studies in literature [12, 14] demon-
strated by numerical simulations that the performances of SF
algorithms are always better than RF ones. But numerical
results can be easily biased by many factors such as traffic
distributions and EON topologies. Therefore, solid theoretical
works to analyze the two types of RSA algorithms in a united
framework are needed.

In this work, we focus on the performance evaluation of
RSA algorithms rather than proposing new ones. We aim at de-
veloping a unified theoretical framework for the performance
analysis of RSA algorithms by leveraging conflict graph. More
specifically, the conflict graph of an RSA algorithm is an
auxiliary graph that describes the intersections among the
routing paths computed by it. The main contributions of this
work are summarized as follows:
• By leveraging conflict graph, we propose a united frame-

work in which all RSA algorithms (RF and SF) can be
regarded as first solving routing subproblem and then
allocating spectrum resources.

• We show that the performance of an RSA algorithm is
restricted by the number of edges of its conflict graph.
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To validate this framework, we apply it in elastic optical
rings, and theoretically analyze the number of edges
of the conflict graphs of RF and SF algorithms under
concentration and uniform traffic distributions. To the best
of our knowledge, it is the first time that this framework
and this kind of theoretical analysis are proposed.

• Different from the results claimed in the literature, we
obtain an observation that neither the RF nor the SF can
dominate the other in elastic optical rings. In fact, the RF
consumes less spectrum for uniform traffic distribution,
while it is inverse for the concentration distribution.

The rest of this paper is organized as follows. Section
II briefly introduces related work and our motivation. We
formally formulate RSA problem and give the definition
of conflict graph in Section III. Two representative RSA
algorithms selected respectively from the RF and the SF are
discussed in Section IV. In Section V, we propose a unified
theoretical analysis framework for RSA algorithms, and apply
this framework in Section VI to theoretically analyze the
properties of their conflict graphs in elastic optical rings under
two traffic distributions. We conduct simulations in Section VII
to further verify our analysis. Finally, Section VIII summarizes
this paper.

II. RELATED WORK AND MOTIVATION

With the help of efficiency, flexibility, and scalability, EONs
have been considered as promising candidates to support future
Internet cost-efficiently. The RSA [8, 9] is a central problem
for service provisioning in EONs. It can be naturally separated
into two subproblems: lightpath routing and spectrum assign-
ment. Many RSA algorithms have been proposed. Based on
the priority of solving the two subproblems, RSA algorithms
can be generally classified into two types: RF and SF. In
[15], the authors proposed an RSA heuristic that uses the
shortest path with maximum spectrum reuse (SPSR) to solve
the routing subproblem first. Meanwhile, people also proposed
to use a layered approach to design an integrated layered
approach (ILA) RSA algorithm [14], which tried to solve the
spectrum assignment subproblem first. Besides the basic RSA
problem, many variants of the RSA have been proposed in
the literature. In [16]–[18], the authors investigated the RSA
problem for multicast communications. In [19], the authors
took into account the physical-layer security for solving the
RSA problem. A comprehensive survey of RSA algorithms
can be found in [13]. In addition, spectrum fragmentation is a
major obstacle to the efficient utilization of spectrum resources
in EONs [20]. To tackle this problem, many theoretical works
have been proposed [21]–[23]. In [23], the authors put forward
a novel defragmentation scheme that allows both the primary
and the backup lightpaths, to be reallocated during the defrag-
mentation process so as to improve the spectrum utilization.
A comprehensive survey on the spectrum fragmentation can
be founded in [24]. Moreover, virtual network embedding is
also studied in EONs to enhance its performance [25].

For the basic RSA problem in EONs, most studies in
literature [12, 14] claimed that SF algorithms are always better
than RF ones in their numerical simulations. But each RSA

algorithm would have pros and cons, and a united framework
would be desirable to analyze them clearly. To the best of our
knowledge, there has been no previous work on this topic.
On the other hand, RSA problem is a NPC-problem even
in elastic optical rings [12], and the optical rings are widely
deployed for metro networks and some long haul networks.
Thus, a united theoretical analysis in elastic optical rings is
also of theoretical and practical meanings.

In this work, from the point of view of conflict graph, we
unify the two types of RSA algorithms in a same framework,
and focus our work in elastic optical rings to theoretically an-
alyze the performance of two representative RSA algorithms.

III. RSA PROBLEM AND CONFLICT GRAPH

A. Formulation of RSA

In this paper, we use a bidirected graph G(V,E) to represent
the topology of an EON, where V and E denote the sets of
nodes and edges respectively. Each edge in E contains two
directed fiber links (arcs) with one for each direction. A set
of FSs lies on each directed fiber link as shown in Fig. 1.

Fig. 1. FSs and guard-bands in a fiber link of an EON.

TABLE I
NOTATIONS

G(V,E) The underlying EON, where V is the set of nodes, and E is
the set of directed link fibers.

N+ The set of positive natural numbers representing the FS index
set in the spectrum domain lying in each directed fiber link
e ∈ E.

R The set of connection requests in G(V,E).
n = |R|, the number of connection requests.
Ri(si, di) Ri ∈ R representing the i-th connection request,where

si, di ∈ V are the source and destination nodes respectively.
Rw

i The integer weight indicating the number of contiguous FSs
(bandwidth requirement) required by Ri.

Pi The set of all the possible directed lightpaths from si to di
in G(V,E).

Pi Pi ∈ Pi is the directed lightpath selected to Ri.
Wi The set of contiguous FSs assigned to Ri.
Rb

i Rb
i ∈ N+ is the start-index of Wi.

Ra
i Ra

i ∈ N+ is the end-index of Wi.
GB GB ∈ N+ is the number of FSs of the guard-band.
MUFI = maxs∈(∪Wi)

(s), the maximum used FS index.
Ĝ(V̂ , Ê) The conflict graph which is a weighted undirected graph,

where V̂ is the vertex set corresponding to R, and Ê is the
edge set.

v̂i v̂i ∈ V̂ corresponds to Ri.
v̂wi = Rw

i , the vertex weight of v̂i.
Wv̂i The set of contiguous FSs assigned to v̂i.
v̂bi v̂bi ∈ N+ is the start-index of Wv̂i .
v̂ai v̂ai ∈ N+ is the end-index of Wv̂i .

The bandwidth required by a request is measured by a
number of FSs. When a connection request arrives, the EON
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needs to set up a directed lightpath and assigns enough FSs
on it to forward data. For ease of expression, we formally give
some notations in Table I.

Given a set R = {Ri}ni=1 of requests, RSA problem is to
select a lightpath Pi from Pi and assign an appropriate FS set
Wi for each Ri while satisfying the following constraints:
• Bandwidth Requirement Constraint. The number of

FSs assigned to each request should satisfy the bandwidth
requirement, i.e., the cardinality of Wi assigned to Ri

must be equal to its weight:

|Wi| = Rw
i , ∀Ri ∈ R. (1)

• Spectrum Contiguity Constraint. The FSs assigned to
request Ri must be contiguous in N+. Then, Wi can
be expressed as {Rb

i , R
b
i + 1, ..., Ra

i − 1, Ra
i }. This is a

physical layer constraint for all-optical communications.
• Spectrum Continuity Constraint. The set of contiguous

FSs Wi assigned to Ri in each link e ∈ Pi must be the
same.

• Guard Band Constraint. To mitigate mutual interfer-
ence, when Pi and Pj share common directed fiber links,
the distance between Wi and Wj in the spectrum domain
should not be less than GB (as shown in Fig. 1):

distance(Wi,Wj) ≥ GB, ∀Pi ∩ Pj 6= ∅, (2)

where,

distance(Wi,Wj) = min
s ∈Wi, t ∈Wj

(|s− t| − 1) .

Here, it should be noted that the GB can be any non-
negative integers, whose value can be determined accord-
ing to the interference levels [10].

For the objective of the RSA problem, two variants have
been studied in the literature: max-RSA and min-RSA [26].
For the former problem, the focus is on the provisioning over
an EON under limited spectrum resource, and the objective
is to maximize the number of connection requests that can
be served. The latter one has a planning concern and its
objective is to minimize the required spectrum usage to serve
all the connection requests. In this paper, we focus on the
static network planning problem, and it is very common to
assume that the spectrum resources are sufficient in the phase
of network planning [27]. Thus, the objective is to minimize
the maximum used FS index (MUFI), which can be expressed
by Eq. (3). Objective Function:

min

[
max

s∈(∪Wi)
(s)

]
(RSA). (3)

B. Conflict Graph

Conflict graph is a useful tool to analyze RSA algorithms in
the study of optical networks, which is an auxiliary graph to
depict the intersections among the set of lightpaths {Pi}ni=1

selected for {Ri}ni=1. We formally give its definition in the
following.

Definition 1: The conflict graph [28] Ĝ(V̂ , Ê) of an RSA
algorithm is a weighted undirected graph whose vertex set

V̂ represents the set of requests, i.e., R. Any two vertices
v̂i, v̂j ∈ V̂ (represent Ri and Rj respectively) are connected
by an edge ê ∈ Ê, iff Pi intersects with Pj , i.e., Pi ∩Pj 6= ∅
(at least one directed fiber link shared by Pi and Pj).
We denote the weight of vertex v̂i by v̂wi , and v̂wi = Rw

i .
Besides, v̂bi , v̂ai and Wv̂i

have the same meanings as Rb
i , Ra

i

and Wi respectively. If v̂i and v̂j are adjacent in Ĝ, the distance
between Wv̂i and Wv̂j should be no less than GB.

(a) Selected paths. (b) The conflict graph.

Fig. 2. Routing Phase of the RF algorithm.

Figure 2(b) showcases a 4-node conflict graph for the 4
connection requests in Fig. 2(a), where v̂i corresponds to
Ri,∀1 ≤ i ≤ 4. According to the definition, obviously, any
proper spectrum assignment for the conflict graph corresponds
to a proper spectrum assignment for the requests, vice versa.
Thus, the conflict graph embodies all the four constraints
of RSA mentioned above, and is very important to analyze
the RSA problem. Given a set of connection requests R, no
matter how they are routed, we can use the conflict graph to
characterize the intersections among them.

IV. THE ROUTE-FIRST AND SPECTRUM-FIRST
ALGORITHMS

To approach the optimal MUFI, most RSA algorithms
improve their performances from two aspects i.e., routing
phase and spectrum assignment phase. Among them, the
representative RSA algorithms (one for each type) mentioned
above, i.e., SPSR [15] and ILA [14], are used as our bench-
mark algorithms.

A. RF Algorithm

In SPSR algorithm [15], each Ri ∈ R is routed by the
shortest path. A conflict graph Ĝ(V̂ , Ê) is constructed based
on these routing paths, and then a maximum reuse spectrum
allocation (MRSA) algorithm is used. The main idea of MRSA
is to: (1) sort v̂ ∈ V̂ in the descending order of v̂w; (2) select
the vertex v̂i with the biggest weight but not yet assigned
with FSs, and allocate the first available Wv̂i to v̂i (i.e.,
the start-index v̂bi is as small as possible); (3) select those
vertices, which are not yet assigned with FSs and compose an
independent set1 with v̂i, and allocate the first available FS
sets to them; (4) repeat the same process until all vertices in
V̂ are assigned with FS sets.

1An independent set is a set of vertices, no two of which are adjacent in
the conflict graph Ĝ(V̂ , Ê).
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The SPRS algorithm is a typical RSA algorithm, which
gives priority to the routing phase for saving fiber link re-
sources. Thus, we name it as Route-First (RF) algorithm in
our paper. Figures 2 and 3 demonstrate the whole process
of the RF algorithm. The required bandwidths of R1(v1, v5),
R2(v1, v3), R3(v2, v4) and R4(v4, v5) are 3 FSs, 3 FSs, 2 FSs
and 1 FS respectively, and GB = 1. The routing phase and the
conflict graph are shown in Figs. 2(a) and 2(b) respectively.

(a) Step 1.

(b) Step 2.

(c) Step 3.

(d) Step 4.

Fig. 3. Spectrum assignment phase of the RF algorithm.

The spectrum assignment phase is shown in Fig. 3. Accord-
ing to the vertex weights, the vertex order is (v̂1, v̂2, v̂3, v̂4).
First, R1 is assigned the first available W1 = {1, 2, 3}. As
v̂1 is adjacent to the remaining vertices, no vertex composes
an independent set with v̂1. Then, the process continues, and
v̂2 is the vertex with the biggest weight. R2 is assigned with
the first available W2 = {5, 6, 7}. Since v̂4 and v̂2 compose
an independent set, R4 is assigned with the first available
W4 = {5}. Finally, R3 is assigned with W3 = {9, 10}
and the MUFI is 10. The time complexity of routing phase
and spectrum assignment phase of the RF are O(n ∗ |V |2)
and O(n log n+ n2) respectively. Therefore, the overall time
complexity of the RF is O(n ∗ |V |2 + n2).

B. Spectrum-First Algorithm

Given an EON G(V,E), ILA algorithm [14] assumes that
there are F FS indices lying in each fiber link e ∈ E. Thus,
each directed fiber link e can be viewed as parallel directed
edges consisting of {e1, e2, ..., eF }, where ei represents the i-
th FS index in link e and can be used by only one connection
request. Naturally, the EON with F FSs on each fiber link can
be regarded as a layered graph comprising of F identical lay-
ers {G1(V 1, E1), G2(V 2, E2), ..., GF (V F , EF )}, where the
initial topology of each layer is Gi(V i, Ei) = G(V,E).

In ILA algorithm, the requests are first sorted in the descent
order of bandwidths, and then each request Ri(si, di) is
sequentially served in the following manner: (1) find the first
Rw

i FS-contiguous layers in the F -layered network such that

there is at least one common path from si to di in all these
Rw

i layers; (2) route the request by using the shortest common
directed path (may not be the shortest path in the original
network), and assign the corresponding Rw

i FSs; (3) delete
the used edges from these Rw

i layers and repeat the same
procedure until all requests are accommodated. ILA algorithm
is a typical RSA algorithm, which favors the minimization of
FS index when accommodating a request. Thus, we call ILA
Spectrum-First (SF) algorithm.

(a) The request set. (b) Final Accommodations.

Fig. 4. An illustration of the Spectrum-First algorithm.

Figure 4 illustrates the process of the SF algorithm. We
consider an elastic optical ring with 5 nodes in Fig. 4(b), where
each edge contains two directed fiber links, while only the used
ones have been drawn for ease of understanding. The three
requests in Fig. 4(a) should be routed. Here, R1 and R2 are
treated as different requests, and GB = 1. At the beginning,
the EON is viewed as a layered graph and each layer represents
one FS. There are in total 5 layers as shown in Fig. 4(b). First,
R1 is accommodated by the first three layers (purple arrows
from inner to outer), and the corresponding arcs are deleted
from these layers. As the SF algorithm aims at minimizing the
number of FS used, it then uses a longer path rather than the
shortest one to satisfy the request R2. Similar processes are
repeated for R3. Figure 4(b) gives the final accommodations,
where the MUFI is 5. The time complexity of the SF is O

(
n2∗

(|E|+ |V |) + n ∗ |V |2
)

[14], which is bigger than the RF’s.

V. UNIFIED THEORETICAL ANALYSIS FRAMEWORK OF
RSA ALGORITHMS BASED ON CONFLICT GRAPH

Conflict graph is a useful tool to analyze RSA algorithms.
No matter what RSA algorithms is used, we can use the
conflict graph to characterize its routing phase, which has a
decisive impact on its final performance. This point can be
exemplified by the two benchmark algorithms.

For the RF algorithm, the conflict graph is clear, which is
constructed in line with the intersections of the lightpaths at the
routing phase. While the conflict graph for the SF algorithm
may be not clear, because routing and spectrum assignment
phases are integrated together. However, after all connection
requests are accommodated, we can also construct the conflict
graph according to the intersections among the lightpaths. For
example, the conflict graph of Fig. 4(b) is given in Fig. 5. Due
to link directionality, v4v3 and v3v4 represent two distinct fiber
links, and thus R2 does not share any common (directed) fiber
links with R1 and R3. Consequently, v̂2 is not connected to
v̂1 and v̂3 in the conflict graph.
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Fig. 5. The conflict graph of Fig. 4(b).

After sorting all connection requests in the descent order
of bandwidths, the particularity of the SF algorithm is to se-
quentially route each request and assign enough FSs following
the principle of making the start-index of the assigned FS
set minimum. Actually, we can still reconstruct the solution
of the SF algorithm by following a similar way as the RF:
construct the conflict graph Ĝ based on all the computed
routing paths by the SF algorithm and then use a special
spectrum assignment scheme. Now, we have Theorem 1.

Theorem 1: Given a set of requests {Ri}ni=1, let O be the
descent order of bandwidths of requests and Ĝ(V̂ , Ê) be the
conflict graph of the SF algorithm. Following the order O, we
sequentially assign FS set Wv̂i to each v̂i ∈ V̂ by the principle
that makes the start-index v̂bi minimum. The MUFI produced
for Ĝ in such way is equal to that of the SF algorithm.
Proof. We will prove a stronger statement by induction: The
FS set Wv̂i

assigned to each vertex v̂i ∈ V̂ is the same
as the Wi assigned to Ri by the SF algorithm. Without
loss of generality, we suppose that the descent order O
is (R1, R2, ..., Rn) (the corresponding vertex order in Ĝ is
(v̂1, v̂2, ..., v̂n)). At i = 1, it is easy to see that Wv̂i = Wi.
Assuming this inference is true when i = k, where k < n, we
assert Wv̂k+1

= Wk+1. To prove this assertion, we just need
to prove that v̂bk+1 = Rb

k+1.
First we prove Rb

k+1 ≥ v̂bk+1. From the construction of Ĝ,
it is trivial that ∀r ≤ k, the lightpath Pr of Rr intersects
with the lightpath Pk+1 of Rk+1 iff v̂r is adjacent to v̂k+1 in
Ĝ. The FS set Wk+1, whose FS start-index is Rb

k+1, respects
the guard-band constraint with request Rr,∀r ≤ k, whose
lightpath Pr ∩Pk+1 6= ∅. Thus, if we assign Wk+1 to v̂k+1, it
will also satisfy the guard-band constraint with vertex v̂r,∀r ≤
k which is adjacent to v̂k+1 in Ĝ. Therefore, by the minimality
of v̂bk+1, we have Rb

k+1 ≥ v̂bk+1.
With the fact mentioned above, we can also prove Rb

k+1 ≤
v̂bk+1 by the minimality of Rb

k+1 in the similar way. Therefore,
v̂bk+1 = Rb

k+1 and the proof follows.

Here, we illustrate the proof of Theorem 1 by the assigning
FS set to the conflict graph in Fig. 5. Obviously the descent
order O of bandwidths is (v̂1, v̂2, v̂3). Following the order O,
we sequentially assign FS set Wv̂i to each v̂i ∈ V̂ by the
principle that makes the start-index v̂bi minimum. The details
are illustrated as follows. Comparing the FS sets in Figs. 4(b)
and 6, they are indeed the same for each request.

Now, let us review the processes of the RF algorithm and
the SF algorithm again:
• The RF algorithm:

(1) Construct a conflict graph Ĝ based on shortest paths;

Fig. 6. Spectrum assignment of the conflict graph in Fig. 5.

(2) Use MRSA algorithm to optimize the MUFI in Ĝ.
• The SF algorithm, by the equality proved in Theorem 1,

can be also regarded as:
(1) Construct a conflict graph Ĝ based on the routing
paths computed by the SF;
(2) Assign FS sets following the descent order of band-
widths to optimize the MUFI in Ĝ.

In fact, all RSA algorithms can be discussed in the united
framework from conflict graph:
• (i) Construct a conflict graph Ĝ by some way;
• (ii) Assign FS sets by different methods.

Thus, the conflict graphs has a decisive impact on the
final MUFI produced by an RSA algorithm. From the
definition, the edges of a conflict graph actually represent
the incompatibilities among the routing paths of connec-
tion requests. The more edges a conflict graph has, the
more incompatible these routing paths, the bigger the final
MUFI. This point can be observed by comparing the two
conflict graphs in Figs. 2(b) and 5 and their finally MUFIs
in Figs. 3 and 6. Naturally, the final performance of an RSA
algorithm is deeply restricted by the number of edges of its
conflict graph.

VI. FRAMEWORK APPLICATION IN ELASTIC OPTICAL
RINGS

In EONs of some regular topologies such as cycle (i.e.,
optical rings2), the number of edges of its conflict graph can be
theoretically derived. As the edge number of the conflict graph
may reflect some inherently topological characteristics of the
EONs, they are important for analyzing the final performances.
Here, we apply the proposed framework in elastic optical rings,
whose topology is a cycle, and theoretically derive the number
of edges in the conflict graphs built by the RF and the SF.
All the theoretical analyses are derived in odd-cycle elastic
optical rings, in which the number of nodes is odd. These
results can be extended to the even-cycle case (the number of
nodes in the ring is even) by trivial modifications. Besides the
EON topology, the traffic distribution is also another important
factor influencing the final performance. In some literature
like [15], a uniform traffic distribution was adopted, while
[29, 30] assumed that traffics are only concentrated on a
certain part of EON nodes. In this paper, we thus consider
two types of traffic distributions for comparison: concentration
and uniform distributions. First, we give the detail of the two
request distributions.
• Concentration distribution Dc:

Given an odd-cycle bidirectional elastic optical ring
G(V,E) and V = {1, 2, ..., 2M + 1}, whose vertex

2Hereafter, we use the terms cycle and ring interchangeably.
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labels are sorted in the clockwise order, the concentration
distribution Dc means that: for each connection request
R(s, d), s and d (s 6= d) are uniformly generated from
{1, 2, ...,M,M + 1}, i.e., the source and destination are
always concentrated in this semi-cycle.

• Uniform distribution Du:
In an EON G(V,E), the uniform request distribution
Du is that: the s and d (s 6= d) of each connection
request R(s, d) ∈ R are generated from V with uniform
probability. In this case, the requests are generated over
the entire cycle rather than just a semi-cycle.

Since each request is generated according to a traffic distri-
bution (Dc or Du), the edge number |Ê| of conflict graph
Ĝ(V̂ , Ê) can be viewed as a random variable. We denote
by E(|Ê|) the expectation of the number of the edges of
the conflict graph Ĝ(V̂ , Ê). Since |V̂ | = |R| = n, there
are

(
n
2

)
possible edges in Ê. Thus, according to the linearity

of expectation, we have E(|Ê|) =
(
n
2

)
× p, where p is the

probability of any two v̂i and v̂j adjacent in Ĝ, i.e., the
probability of intersecting of the lightpaths of any two request
Ri and Rj .

A. Conflict Graph of the RF algorithm
1) In the concentration distribution Dc:
Theorem 2: Suppose that an EON G(V,E) is an odd-

cycle bidirectional ring with |V | = 2M + 1 and all of
the requests in R generated from the Dc and that Ĝ(V̂ , Ê)
is the conflict graph of RF algorithm, then the E(|Ê|) is(
n
2

) M4 − 7M2 − 6M

3M4 + 6M3 + 3M2
=
(
n
2

)
(
1

3
+ o(1)), where n is the

number of requests (o(1) is an infinitesimal of M ).
Proof. From the above analysis that E(|Ê|) =

(
n
2

)
× p, we

just need to calculate the p of any two requests Ri and Rj .
According to the analysis above, p is the probability that Pi∩
Pj 6= ∅, where Pi and Pj are the shortest paths for Ri and Rj

respectively. Under the concentration distribution, the request
pair (Ri, Rj) has a total of M2(M + 1)2 cases.

We construct a (0-1)-matrixMp
Dc

as shown in Table II. The
top row in Table II represents that all source-destination pairs
are routed on their shortest paths, and the leftmost column
is of the same meaning. One entry ((si, di), (sj , dj)) of this
matrix equals 1 iff the shortest path of (si, di) intersects with

that of (sj , dj). Thus, it is easy to see that p =

∑
Mp
Dc

M2(M + 1)2
,

TABLE II
(0-1)-MATRIXMp

Dc

Ri

Rj . . (sj , dj) . .

. . . . . .

. . . . . .
(si, dj) . . 1 . .

. . . . . .

. . . . . .︸ ︷︷ ︸
(M+1)×M


(M + 1)×M

where
∑
Mp
Dc

represents the sum of all entries in the matrix.

According to the directions of the shortest paths, the entries
((si, di), (sj , dj)) can be separated into four cases: (clock-
wise, clockwise), (clockwise, anti-clockwise), (anti-clockwise,
clockwise) and (anti-clockwise, anti-clockwise). One entry
being 1 must be in either (clockwise, clockwise) or (anti-
clockwise, anti-clockwise) case.

Now, we calculate the number of entries in (clock-
wise, clockwise) being 1 as follows. The total of en-
tries of (clockwise, clockwise) is

(
M+1

2

)2
. For each

(si, di), the amount of (sj , dj) which do not intersect
with it is

(
si
2

)
+
(
M+2−di

2

)
. Therefore, #{entry = 0|in

clockwise} =
∑M

si=1

∑M+1
di=si+1{

(
si
2

)
+
(
M+2−di

2

)
} =

M4 + 6M3 + 17M2 + 12M

12
. Thus, #{entry = 1|in

clockwise} =
(
M+1

2

)2 − M4 + 6M3 + 17M2 + 12M

12
=

M4 − 7M2 − 6M

6
. By symmetry, the number of entries

in (anti-clockwise, anti-clockwise) being 1 is the same as
M4 − 7M2 − 6M

6
.

Hence, p =
M4 − 7M2 − 6M

3M2(M + 1)2
=

M4 − 7M2 − 6M

3M4 + 6M3 + 3M2
=

1

3
+ o(1)

2) In the uniform distribution Du:
Theorem 3: Suppose that an EON G(V,E) is an odd-

cycle bidirectional ring with |V | = 2M + 1 and all of
the requests in R generated from the Du and that Ĝ(V̂ , Ê)
is the conflict graph of RF algorithm, then the E(|Ê|) is(
n
2

) 2M4 +M3

8M4 + 8M3 + 2M2
=
(
n
2

)
(
1

4
+ o(1)), where n is the

number of requests (o(1) is an infinitesimal of M ).
Proof. Similar to the above analysis, we just need to calculate
p, the probability that Pi ∩ Pj 6= ∅, where Pi and Pj are
the shortest paths for Ri and Rj respectively. Under the
uniform distribution, the request pair (Ri, Rj) has a total of
(2M)2(2M + 1)2 cases.

We construct a (0-1)-matrix Mp
Du

as shown in Table III.
The top row in Table III represents that all source-destination
pairs are routed by shortest paths, and the leftmost column
is of the same meaning. One entry ((si, di), (sj , dj)) of this
matrix equals 1 iff the shortest path of (si, di) intersects with
that of (sj , dj).

TABLE III
(0-1)-MATRIXMp

Du

Ri

Rj . . (sj , dj) . .

. . . . . .

. . . . . .
(si, di) . . 1 . .

. . . . . .

. . . . . .︸ ︷︷ ︸
(2M+1)×2M


(2M + 1)× 2M

Similarly, we calculate the number of entries in (clockwise,
clockwise) being 1 as follows. We separate all of the

(
2M+1

2

)
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source-destination pairs (all possible clockwise requests) into
M groups according to the length of their shortest paths (edge
number) from 1 to M (thus, each group consists of 2M + 1
source-destination pairs). For a source-destination pair with a
shortest path of length k, the number of source-destination
pairs with a shortest path of length h intersecting with it
is k + h − 1. Therefore, #{entry = 1|in clockwise} =∑M

k=1 ·{(2M + 1) ·
∑M

h=1(k + h − 1)} = 2M4 +M3. The
number of entries in (anti-clockwise, anti-clockwise) being 1
is also 2M4 +M3.

Hence, p =

∑
Mp
Du

(2M)2(2M + 1)2
=

2 · (2M4 +M3)

(2M + 1)2 · (2M)2
=

2M4 +M3

8M4 + 8M3 + 2M2
=

1

4
+ o(1).

B. Conflict Graph of the SF algorithm

For the SF algorithm, the intersection probability of the
lightpaths Pi and Pj of any two requests Ri and Rj becomes
tricky, because the selection of the lightpaths Pi (Ri) and Pj

(Rj) may be affected by the previously selected lightpaths. In
other words, the intersecting probability of Pi and Pj depends
on not only the EON G(V,E) and the request distribution but
also the current status of the EON.

However, given the underlying EON G(V,E) and traffic
distribution, the edge number of the conflict graph of the SF
algorithm should also follow a certain probability distribution.
This point can be exemplified by the example below.

Example 1: We suppose that the EON G(V,E) is a
ring (cycle) of three nodes. There are three requests R =
{R1, R2, R3}, which follow the uniform distribution Du. For
each connection request Ri(si, di), 1 ≤ i ≤ 3, there are 6
different choices of source-destination pair, each of which oc-

curs with a probability
1

6
. Hence, there are 63 combinations in

total for (R1, R2, R3), each of which occurs with probability
1

63
. Each combination of (R1, R2, R3) corresponds to a fixed

conflict graph under the process of the SF algorithm. Thus,
given an EON and a traffic distribution, the number of the
edges of conflict graph of the SF algorithm should also follow
a certain distribution, which can be approached by the law of
large numbers (LLN) [31].

VII. NUMERICAL RESULTS

In this section, we conduct simulations in elastic optical
rings under the following two scenarios and compare the
performances of the RF and SF algorithms in terms of the
edge numbers of the conflict graphs.

A. Traffic Assumption

1) Traffic Distribution: We utilize the two traffic distribu-
tions introduced above to generate the request set in the two
scenarios below.

• Concentration distribution Dc on elastic optical rings
• Uniform distribution Du on elastic optical rings

2) Bandwidth Setting: In the classical RSA problem and its
resolution algorithms [14, 15], the modulation format is not
taken into account, and all requests are assumed to use the
same modulation format. Similar to the bandwidth settings in
[14, 15], the bandwidth of each request is set in the range
of [α, β], where α and β are two integers. We simulate
each scenario with α = 1, β = 2, 3, 4 respectively, and
GB = 1. Besides, we have also taken into account the
plain RWA case in our simulations. In fact, RWA is actually
a special case of the RSA by setting α = β = 4 and
GB = 0, since one wavelength (50 GHz) in WDM networks
generally takes a size of four FSs (12.5 GHz each). Due to
the high complexity, the theoretical analysis of the Routing,
Modulation and Spectrum Assignment (RMSA) problem [32]
and its associated bandwidth setting with the consideration of
modulation formats (i.e., ) can be investigated in future work.

The number of requests is set as n = 1000 in each
simulation. We repeat each simulation 50 times under the
same circumstance to ensure sufficient statistical accuracy, and
a 95% confidence interval is given to each numerical result.
All the simulations have been run by MATLAB 2015a on a
computer with 3.2 GHz Intel(R) Core(TM) i5-4690S CPU and
8 GBytes RAM.

B. Simulation Scenarios

1) Concentration Distribution on elastic optical rings:
In this scenario, we conduct simulations on 19-cycle, 59-

cycle and 99-cycle elastic optical rings respectively, where
the number denotes the number of nodes in the ring. These
big rings have been used just for sake of theoretical analysis
under extreme cases, where the edge number of the RF’s
conflict graph will converge to the theoretical value calculated
in Section VI-A. According to the bandwidth range and the
vertex number of the rings (cycles), there are 12 simulation
cases as shown in Table IV, which are denoted by labels from
A1 to L1 respectively.

TABLE IV
COMPARISON UNDER CONCENTRATION DISTRIBUTION ON ELASTIC

OPTICAL RINGS

n = 1000 19-cycle 59-cycle 99-cycle
β = 2 A1 E1 I1
β = 3 B1 F1 J1
β = 4 C1 G1 K1

RWA D1 H1 L1

2) Uniform Distribution on elastic optical rings:
In this uniform scenario, we also conduct simulations on 19-

cycle, 59-cycle and 99-cycle optical rings respectively. Similar
to the previous one, there are also 12 cases as shown in Table
V, which are labeled from A2 to L2 respectively.

In the two scenarios, since the number of request n is
fixed as 1000, instead of directly counting the edge number
#{e} of conflict graphs of the two benchmark algorithms,

we use
#{e}(

n
2

) for convenience. Thus, for the RF algorithm,

according to Theorems 2 and 3, the
#{e}(

n
2

) with the growth of
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TABLE V
COMPARISON UNDER UNIFORM DISTRIBUTION ON ELASTIC OPTICAL

RINGS

n = 1000 19-cycle 59-cycle 99-cycle
β = 2 A2 E2 I2
β = 3 B2 F2 J2
β = 4 C2 G2 K2

RWA D2 H2 L2

vertex number on the ring should converge to
1

3
and

1

4
in the

concentration and uniform request distributions respectively.

C. Simulation Results

1) Concentration Distribution on elastic optical rings:

The numerical results of final MUFIs,
#{e}(

n
2

) and runtime

from A1 to L1 of the two benchmark algorithms are demon-
strated in Figs. 7, 8 and 9 respectively.

Regarding the MUFIs, in β = 2, β = 3, β = 4 and
RWA, the means are 699.70, 831.82, 947.74 and 1292.84
respectively for the RF algorithm, while they are 432.46,
523.68, 602.98 and 846.23 respectively for the SF. In other
words, the MUFIs of the RF are 61.80%, 58.84%, 57.17% and
52.78% respectively bigger than the SF’s in the four cases.

With respect to
#{e}(

n
2

) for the RF algorithm, the realistic

values converge to the theoretical value calculated in Theorem

2 as vertex number grows in elastic optical rings, i.e.,
1

3
,

which validates our computing method. For the RF, the mean

values of
#{e}(

n
2

) in 19-, 59- and 99-cycle are 31.14%, 32.10%

and 33.25% respectively while they are 26.34%, 27.41% and
28.06% respectively for the SF. From the analysis above, the
more edges the conflict graph contains, the more incompatible
these requests, and thus the bigger the final MUFI. The
results in Figs. 7 and 8 confirm our assertion that the number
of the edges of conflict graph of an RSA algorithm is a
pivotal determinant of its final performance. Besides, there
is an interesting phenomenon in Fig. 7 that the MUFI seems
independent from the node number in the optical rings. This
can be explained by the theoretical deductions in Theorems 2
and 3 that the node number of optical rings has an infinitesimal
impact on the edge number of the conflict graphs.

Finally, from the aspect of time complexity, the runtime of
the SF steeply soars as the number of nodes increases while
the runtime of the RF always keeps stable and low as shown
in Fig. 9. This shows the drawback of scalability for the SF
algorithm.

2) Uniform Distribution on elastic optical rings:

The numerical results of final MUFIs,
#{e}(

n
2

) and runtime

from A2 to L2 by the two benchmark algorithms are demon-
strated in Figs. 10, 11 and 12 respectively.

As for the MUFIs, in β = 2, β = 3, β = 4 and RWA, for
the RF algorithm, the means are 397.36, 476.83, 558.07 and
771.17 respectively while for the SF 422.46, 516.70, 605.98
and 836.24 respectively. That is the SF’s MUFIs are 6.32%,

β = 2 β = 3 β = 4 RWA
0

200

400

600

800

1,000

1,200

1,400

M
U

FI

SF in 19-cycle
RF in 19-cycle
SF in 59-cycle
RF in 59-cycle
SF in 99-cycle
RF in 99-cycle

Fig. 7. Numerical results of the concentration distribution on elastic optical
rings.

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1

0%

10%

20%

30%

#
{e
} ( n 2

)
Realistic value of SF Realistic value of RF
Theoretical value of RF

Fig. 8.
#{e}(n

2

) in the 12 cases in TABEL IV.

19 59 99

102

103

104

Vertex Number on Cycle

R
un

tim
e

(s
)

RF β = 2 RF β = 3
RF β = 4 RF RWA
SF β = 2 SF β = 3
SF β = 4 SF RWA

Fig. 9. The runtime of the RF and SF algorithms under the concentration
distribution.
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8.36%, 8.58% and 8.44% bigger than the RF’s MUFIs in
respective cases. This results break the notion in the literature
that the SF algorithm is always better than the RF and show
that the superiority of the two benchmark algorithms varies
under different environments.

From aspect of
#{e}(

n
2

) , for the RF algorithm, with the growth

of vertex number of elastic optical rings, the realistic values
converge to the theoretical value calculated in Theorem 3, i.e.,
1

4
which further validate our computing method. For the RF,

the mean value of
#{e}(

n
2

) in 19-, 59- and 99-cycle are 24.05%,

24.70% and 25.00% respectively while for the SF 27.78%,
27.84% and 28.14% respectively. The relations between the
edge numbers of the conflict graphs and the final MUFIs in
Figs. 10 and 11 further prove the importance of reducing the
edge count of conflict graph.

Finally, from the aspect of time complexity, with the growth
of vertices on the elastic optical rings, similar to the above, the
runtime of the SF is quickly climbing while the RF’s runtime
always keeps stable and low. Combing with the results in Fig.
10, it manifests that under the uniform distribution, using the
SF algorithm is not a wise choice since it needs more time
for computation while outputting worse final MUFIs.

β = 2 β = 3 β = 4 RWA
0
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300

400

500

600

700

800
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SF in 59-cycle
RF in 59-cycle
SF in 99-cycle
RF in 99-cycle

Fig. 10. Numerical results of the uniform distribution on elastic optical rings.
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0%

5%

10%

15%

20%

25%

30%

#
{e
} ( n 2

)

Realistic value of SF Realistic value of RF
Theoretical value of RF

Fig. 11.
#{e}(n

2

) in the 12 cases in TABEL V.

19 59 99
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104

Vertex Number on Cycle

R
un

tim
e

(s
)

RF β = 2 RF β = 3
RF β = 4 RF RWA
SF β = 2 SF β = 3
SF β = 4 SF RWA

Fig. 12. The runtime of RF and SF algorithms under the uniform distribution.

To sum up, the conflict graph of an RSA algorithm, which
varies in different simulation environments, has a decisive
impact on the final MUFIs.

VIII. CONCLUSIONS

In this work, we focus on the performance evaluation of
RSA algorithms rather than proposing a new one. To this end,
we developed a unified theoretical analysis framework based
on conflict graph. We showed that all RSA algorithms can be
viewed as first computing routing paths and then constructing
a conflict graph for allocating spectrum resources. Especially,
the performance of an RSA algorithm is restricted by the
edge number of its conflict graph. To validate the proposed
framework, we derived the edge numbers of the conflict graphs
built by the RF and the SF algorithms in elastic optical
rings. Our theoretical analysis together with the numerical
simulations in elastic optical rings show an interesting fact
that the RF saves more spectrum resource than the SF in the
uniform traffic distribution while the result is inverse in the
concentration traffic distribution.

According to the analysis in this paper, we obtained an
important observation that there is no one omnipotent RSA
algorithm which outperforms the others in all circumstances.
This is different from the claims in the literature. Therefore,
the selection of RSA algorithms should take into account the
traffic distribution and the EON topology so that the conflict
graph of the applied RSA algorithm can be as sparse as
possible in order to minimize the MUFI.
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