
1

On Incentive-Driven VNF Service Chaining in
Inter-Datacenter Elastic Optical Networks: A

Hierarchical Game-Theoretic Mechanism
Xiaoliang Chen, Member, IEEE, Zuqing Zhu, Senior

Member, IEEE, Roberto Proietti, S. J. Ben Yoo, Fellow, IEEE, Fellow, OSA

Abstract—In this paper, we propose an incentive-driven virtual
network function service chaining (VNF-SC) framework for op-
timizing the cross-stratum resource provisioning in multi-broker
orchestrated inter-datacenter elastic optical networks (IDC-
EONs). The proposed framework employs a non-cooperative hier-
archical game-theoretic mechanism, where the resource brokers
and the VNF-SC users play the leader and the follower games,
respectively. In the leader game, the brokers calculate VNF-
SC service schemes for users and compete for the provisioning
tasks. While in the follower game, the users compete for VNF-
SC services for jointly optimizing the resource cost and the
received quality-of-service. We first elaborate on the modeling
of the follower game, discuss the existence of Nash equilibrium
and propose a mixed-strategy gaming approach enabled by an
auxiliary graph based algorithm to facilitate users selecting the
most appropriate service schemes. Then, under the assumption
that the brokers are aware of the principle of the follower
game, we present the model for the leader game and develop a
time-efficient heuristic algorithm for brokers to compete for the
provisioning tasks. Simulations show that the proposed incentive-
driven VNF-SC framework significantly improves the network
throughput (i.e., > 4.8× blocking reduction) while assisting users
and brokers in achieving higher utilities compared with existing
solutions.

Index Terms—Virtual network function service chaining (VNF-
SC), Inter-datacenter elastic optical networks (IDC-EONs),
Multi-broker, Hierarchical gaming.

I. INTRODUCTION

THE emerging of network function virtualization (NFV)
has been renovating the ways of service provisioning

in telecom and datacom networks [1, 2]. Specifically, NFV
replaces proprietary hardware implementations with virtual
network functions (VNFs) built with commodity hardware to
realize programmable and application-aware network service
(e.g., firewall and deep packet inspection) provisioning. As one
of the most important use cases of NFV, VNF service chaining
(VNF-SC) makes users’ traffic be steered by sequences of
VNFs instantiated in datacenters (DCs) to meet heterogeneous
service requirements [3, 4]. Therefore, the key problem of
VNF-SC is how to efficiently form service function chains
with cross-stratum resource (i.e., bandwidth and IT resources)
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optimization. This is especially true in the context of inter-DC
elastic optical networks (IDC-EONs) with high transmission
capacity and agile spectrum allocation capability [5].

Previously, there had been a number of works focusing on
addressing the problem of VNF placement in both packet [6–
18] and optical networks [19–24]. However, they all assumed
a single decision maker on top of the network and DC con-
trollers to orchestrate the allocation of cross-stratum resources.
Note that, inter-DC networks and DCs are usually managed
by different administrative entities, making the aforementioned
assumption unrealistic since it violates the well-established
principle for autonomous systems (AS’s). Meanwhile, as the
existing schemes all aimed to realize joint resource opti-
mizations for high network throughput, incentives from users
were not considered. For example, some of the VNF-SCs
with low latency requirements may be forced to use long
transmission paths due to load-balancing. On the other hand,
multi-broker based architecture that enables multiple resource
brokers residing in the management plane has been proven to
1) be cost-efficient in facilitating service provisioning in multi-
AS networks and 2) favors both infrastructure operators and
users [25, 26]. In particular, each operator can subscribe to
multiple brokers for resource coordination services to avoid
being dictated by a single decision-maker while users can
receive multiple service schemes calculated by brokers to get
better services.

In this work, we take advantage of the multi-broker based
network orchestration paradigm and propose an incentive-
driven VNF-SC framework for IDC-EONs. We first detail the
architecture of multi-broker based IDC-EON and the principle
of incentive-driven VNF-SC provisioning. Then, the problem
is formally modeled as a non-cooperative hierarchical game,
where the brokers play the leader game to calculate VNF-SC
service schemes for the users and compete for the provisioning
tasks, while after being provided the service schemes, the
users subsequently play the follower game to compete for
spectrum and IT resources. Specifically, we assume that the
utility of each user is related to the resource consumption
cost and the end-to-end latency of its service function chain,
and design a mixed-strategy game-theoretic approach for the
users to decide the most appropriate service schemes to
use. An auxiliary graph based algorithm is also proposed
for calculating approximated equilibrium solutions for the
users. Under the assumption that the brokers are aware of
the information of the follower game, we present the model



2

for the leader game and design a time-efficient heuristic to
enable the brokers determining the best provisioning strate-
gies. Numerical simulations indicate that comparing with the
baseline algorithms, the proposed incentive-driven VNF-SC
provisioning framework can improve the network throughput
while facilitating higher user and broker utilities.

The rest of this paper is organized as follows. In Section II,
we briefly review the related works on NFV. In Section III,
we show the proposed incentive-driven VNF-SC provisioning
framework in multi-broker based IDC-EONs. In Sections IV
and V, we detail the designs for the follower and leader games,
respectively. Simulation results are presented in Section VI.
Finally, in Section VII, we conclude the paper.

II. RELATED WORK

NFV has attracted intensive interests from both academia
and industry since it was proposed. The overviews of NFV
can be found in [2, 27], where the authors explained its
requirements and architectural framework, discussed several
practical use cases and presented surveys of the state-of-the-art
and future directions of this area. The authors of [28, 29] stud-
ied in detail the management and orchestration architecture
for NFV leveraging the software-defined networking (SDN)
technology. One of the most important research problems
of NFV is to investigate how to realize cost-effective VNF
placement [7–18]. In [7], Cohen et al. proposed several near
optimal approximation algorithms to address this problem
without considering the resource constraints. The authors of
[8] introduced an orchestrator-based architecture supported by
a monitoring system for ensuring automatic VNF placement
in DCs. However, they only used a simple algorithm for load-
balancing the utilization of IT resources while the optimization
of bandwidth allocations was not addressed. Moens et al.
studied the problem of VNF placement for a hybrid scenario
where dedicated physical hardware and virtualized service
instances coexist in [9]. In [10, 11], VNF-SC with joint
bandwidth and IT resource optimization in packet domains
was investigated and mixed integer programming models were
designed for solving the offline network planning problem.
To cope with large-scale online VNF-SC, a number of time-
efficient heuristic algorithms have been developed [12–16].
In [17], Liu et al. exploited the benefit of dynamic in-
service VNF-SC readjustment, for which an integer linear
programming model and a column generation based heuristic
algorithm were proposed. The authors of [18] further extended
the design of routing and VNF placement to support multicast
applications.

It is known that optical technologies can facilitate high-
capacity and energy-efficient data transmission which is espe-
cially beneficial for building inter-DC connections. The prob-
lem of VNF placement in wavelength-switched DC networks
was first studied in [5]. Based on the same architecture, Xia et
al. designed a binary integer programming model as well as an
alternative efficient heuristic algorithm to minimize the usage
of optical-electronic-optical (O/E/O) converters in forming
optical service function chains [19]. Zeng and Fang et al.
leveraged the advantage of flexible spectrum allocation from

EON to further considered the scenario of IDC-EONs, and
investigated how to achieve efficient spectrum and IT resource
orchestration with both tree/chain-type VNF arrangements
[20, 21]. The provisioning of VNF graphs in multi-domain
IDC-EONs was then studied in [22]. In [23], we took into
account the heterogeneity of application requirements and the
fairness among users and presented a mixed-strategy gaming
model for realizing incentive-driven VNF-SC provisioning in
IDC-EONs. Lately, by incorporating the recent advances in
machine learning, Li et al. proposed a cognitive VNF-SC
provisioning framework for IDC-EONs which can proactively
consolidate the deployment of VNFs based on the forecast of
the future traffic distribution [24].

Nevertheless, the aforementioned previous works all as-
sumed a single decision-maker for coordinating the resource
allocation in DCs and transport networks, which violates the
autonomy of each administrative domain. Although there have
been a few works reporting distributed designs for virtual
network embedding [30] or VNF-SC [31], these works only
focused on how to calculate the inter-domain service scheme
for each user while the fully distributed architecture employed
hinders the joint optimization regarding the services of mul-
tiple users. In this context, we previously proposed a multi-
broker based architecture that deploys a management plane
consisting of multiple market-driven brokers on top of domain
managers to provide a more realistic and robust mechanism of
operating multi-AS networks [25]. The effectiveness of this
architecture in multi-domain software-defined EONs has been
proved through extensive inter-domain lightpath provisioning
studies [26, 32, 33]. Therefore, it is necessary to exploit how
to realize efficient VNF-SC in IDC-EONs with the assist of
the multi-broker based architecture.

III. INCENTIVE-DRIVEN VNF-SC PROVISIONING
FRAMEWORK

In this section, we first show the principle of VNF-SC
provisioning in IDC-EONs with an illustrative example. Then,
we describe in detail the architecture of a multi-broker based
IDC-EON supporting incentive-driven VNF-SC provisioning.
Finally, we present the formal problem formulation.

A. VNF-SC Provisioning in IDC-EONs

Fig. 1(a) shows an example for VNF-SC provisioning in
IDC-EONs, where user A (e.g., a secondary service provider
or a research institute) requests for a service function chain
consisting of VNF-1 and VNF-2 to steer its traffic from Node
1 to Node 9. Two service schemes labeled by solid and dashed
lines respectively (provided by different brokers), can be used
here. The corresponding spectrum allocation on lightpaths is
given by Figs. 1(b) and (c). Note that, an optical transponder is
required for realizing O/E/O conversion at each intermediate
node where the user’s traffic should be processed by a VNF.
Therefore, the spectrum allocation on each link along path 1-
3-6-9 can be done separately due to the spectrum conversion
capabilities at Nodes 3 and 6, while that on path segment
4-7-9 should follow the spectrum continuity and contiguity
constraints [34, 35] for transparent transmission. We can see
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Fig. 1. Example for incentive-driven VNF-SC provisioning in IDC-EONs:
(a) case description, (b) and (c) spectrum allocation for paths 1-3-6-9 and
1-4-7-9 respectively.

that different service schemes may result in quite different
spectrum and transponder usages. Also, as the VNF processing
capacities of DCs differ, the selection of VNF locations can
significantly impact the quality-of-service of VNF-SCs, e.g.,
end-to-end service latency.

B. Network Architecture

Fig. 2(a) depicts the overall architecture of a multi-broker
based IDC-EON employing the hierarchical SDN control
and management paradigm. The data plane of the IDC-
EON consists of a number of DCs inter-connected by the
EON (either single-domain or multi-domain EON) for high
transmission capacity and flexible bandwidth allocation. In
each DC, various kinds of VNFs can be instantiated. Since
EONs and DCs are usually managed by different operators, a
management plane sitting on top of the domain managers (i.e.,
EON manager and DC manager) is introduced to coordinate
the allocation of cross-stratum resources. More specifically, to
overcome the drawbacks of having a single decision-maker in
the IDC-EON (e.g., violating the autonomy of administrative
domains), we allow multiple brokers (owned by different
administrative entities) to reside in the management plane
and bridge infrastructure operators and users by providing
VNF-SC provisioning services. Basically, brokers can interact
with EON and DC managers to collect information regarding
the network connectivity and resource utilization, calculate
VNF-SC service schemes for users with them, and also
communicate with the managers to accomplish the related
lightpath and VNF configurations. Note that, each user is able
to subscribe to multiple brokers and choose the best service
schemes from them to use. Therefore, as shown in Fig. 2(b),
the service provisioning interactions among brokers and users
actually form a competitive incentive-driven market, where
users compete with each other to pursue better services (e.g.,
lower prices and higher quality-of-service etc.) while brokers
compete by deploying more advanced provisioning strategies
or promising more attractive service commissions for encour-
aging the use of their services. In all, the proposed IDC-EON

architecture enables an incentive-driven service provisioning
framework that can not only benefit infrastructure operators
from not being dictated by a single network orchestrator but
also increase the flexibility of VNF-SC provisioning for users.

Let us recall the example in Fig. 1(a) and consider users A
and B simultaneously. Each user receives two VNF-SC service
schemes, which are labeled by solid (from Broker 1) and
dashed (from Broker 2) lines respectively. The numbers on
the links indicate the resource costs for using them. We note
that although Broker 2 offers service schemes with lower costs,
the users may not unalterably chose its services because this
would induce higher service latencies due to the sharing of the
processing capacities of the VNFs. Therefore, each broker and
user should carefully decide which service schemes to provide
or use in order to achieve higher utilities.

C. Problem Formulation

We consider IDC-EONs consisting of single-domain EONs
and multiple DCs and model them as G(V,E, VD), where V
and E represent the node and fiber link sets in G and VD
(VD ⊆ V ) is the set of nodes which each is attached by a DC
locally 1. Λ is the set of all the types of VNFs instantiated in
VD while Λn is a subset of Λ indicating the types of VNFs
available in DC n (n ∈ VD). A user VNF-SC request can be
denoted as r(s, d,Γ, b, T ), with s and d being the source and
destination nodes, Γ containing the demanded types of VNFs
in sequence, b being the bandwidth requirement in Gb/s and
T representing the service duration. Each request ri ∈ R can
receive multiple service schemes Pi from the set of brokers
Bi it subscribes to. We define the utility that ri can achieve
(similar to the definition of user utility in [36]) by using service
scheme Pi,k ∈ Pi as,

Uψ
−i

i,k =
βi − ci,k

τi +Dψ−i

i,k

, (1)

where βi is the budget of ri, ci,k refers to the payment for
Pi,k, Dψ−i

i,k is the end-to-end latency on the service function
chain given ψ−i as the set of service schemes used by other
requests (ψ−i = ψ \ ψi, where ψi = Pi,k if ri uses Pi,k)
and τi is a parameter conveying the differentiated quality-
of-service requirement on service latency. Specifically, by
counting the costs of spectrum, transponder and IT resource
usages (denoted as SPu, TRu and ITu respectively) of Pi,k,
we obtain ci,k as,

ci,k = (SPu · pSP + TRu · pTR + ITu · pIT ) (1 + δi,k) . (2)

Here, p
SP

,p
TR

and p
IT

represent the unit prices for per period
spectrum, transponder and IT resource usages, δi,k is the
pricing ratio imposed by brokers as the service commission.
Meanwhile, we assume Dψ−i

i,k consists of the signal propaga-
tion time li,k and the processing time of all the VNFs on the
service chain. Let ςn,m be the processing rate of the m-th VNF
in DC n and gn,mi,k be a boolean parameter which equals to
1 when Pi,k uses the m-th VNF in DC n. By modeling the

1The solution proposed in this work can be easily extended to support a
multi-domain EON scenario by allowing brokers calculating service schemes
with multi-domain virtual topologies [26].
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Fig. 2. (a) Proposed broker-based network architecture and (b) interactions among the brokers and users.

processing of each VNF as an M/M/1 model, we can calculate
Dψ−i

i,k as,

Dψ−i

i,k = li,k +
∑
n∈VD

∑
m∈Λn

gn,mi,k
ςn,m − bi −

∑
Pt,j∈ψ−i

gn,mt,j bt
, (3)

s.t. ςn,m − gn,mi,k

bi + ∑
Pt,j∈ψ−i

gn,mt,j bt

 > 0,∀n,m. (4)

Note that, Eq. 4 imposes the constraint that the total data rate
from users should not exceed the processing rate of each VNF
to ensure finite processing time of VNFs. After users having
decided the service schemes to use, the utility of each broker
ν is determined as the service commissions collected from R,
i.e.,

Uν =
∑
ri

χνi c
ν
i

δνi
1 + δνi

, (5)

where χνi is a boolean variable indicating whether ri uses
service scheme Pνi 2.

In this work, we model the problem of incentive-driven
VNF-SC provisioning in IDC-EONs as a noncooperative hi-
erarchical game that consists of a leader game and a follower
game. In the leader game, brokers calculate Pi for each ri ∈ R
and compete for the provisioning tasks. After receiving Pi,
users play the follower game to decide the service schemes to
use for maximizing their utilities defined in Eq. 1. The result
of the follower game decides not only the utilities of users,
but also the utilities of brokers (as shown in Eq. 5). In the next
sections, we will detail the designs for the leader and follower
games.

IV. THE FOLLOWER GAME

In this section, we elaborate on the proposed mixed-strategy
gaming approach for the follower game and present a time-
efficient heuristic algorithm to assist calculating approximate
equilibrium solutions. We first investigate the follower game
as it is the base of the hierarchical game. Specifically, the

2We reuse the notation P but with ν being the superscript to denote Pνi
as the service scheme provided by broker ν. The same applies to cνi and δνi .

TABLE I
REQUEST UTILITIES UNDER DIFFERENT STRATEGY PROFILES.

P2,1 P2,2

P1,1 (80, 80) (80, 140)
P1,2 (140, 80) (60, 60)

optimal strategies of brokers in the leader game depend on
the behaviors of both brokers and users, while the follower
game only involves users provided the service schemes by
brokers.

A. Gaming Approach

Nash equilibrium is one of the most important solution con-
cepts that guide players’ behaviors in noncooperative games.
Conceptually, Nash equilibriums of a game refer to strategy
profiles under which no player can increase its utility by
unilaterally deviating from them. In other words, every player
will follow the strategy indicated by the Nash equilibrium. A
strategy profile ψ∗ is a pure-strategy Nash equilibrium of the
follower game if and only if,

U
(ψ∗)−i

i,k ≥ U
(ψ∗)−i

i,j ,∀Pi,k ∈ ψ∗, j ̸= k. (6)

Recall the example in Fig. 1(a), if we assume that ci,k equals
to the summation of all the numbers along the corresponding
path, β1 = β2 = 100, τ1 = τ2 = 1/15, b1 = b2 = 4,
li,k = 1/10 and ςn,m = 10, ∀i, k, n,m, we can calculate
the utilities of the two users under different strategy profiles
as shown in Table I and easily verify that {P1,1,P2,2} and
{P1,2,P2,1} are two pure-strategy Nash equilibriums of the
game. However, the two pure-strategy Nash equilibriums are
biased, i.e., always being unfair to one of the users. Hence, it
is difficult for the users to decide which equilibrium point to
use in real operations. Moreover, not every game is guaranteed
to have pure-strategy Nash equilibriums and it is often difficult
to prove the existence or calculate them, especially for games
with discrete strategy spaces [37]. On the other hand, mixed-
strategy gaming, where each player mixes up a number of
strategies according to a certain probability distribution other
than playing a fixed strategy, provides a useful insight into
the study of such games [38]. In this work, we investigate
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how to facilitate incentive-driven VNF-SC provisioning with
the mixed-strategy game-theoretic approach.

With mixed-strategy gaming, each ri selects service scheme
Pi,k with a probability xi,k ∈ [0, 1], and its objective in the
follower game becomes maximizing the expected utility, i.e.,

max
x

Ui (x) =
∑
Pi,k

xi,k
∑
ψ−i

Uψ
−i

i,k

∏
Pt,j∈ψ−i

xt,j , (7)

s.t.
∑
Pi,k

xi,k = 1. (8)

Here, we assume that users make decisions independently and
the term

∏
Pt,j∈ψ−i xt,j corresponds to the probability that

other users’ decisions form ψ−i.
The concept of Nash equilibrium is also applicable for

mixed-strategy games, leading to mixed-strategy Nash equi-
librium which is defined as,

Ui
(
x∗i , (x

∗)−i
)
≥ Ui

(
xi, (x

∗)−i
)
, ∀ri, xi ̸= x∗i , (9)

where x∗ is the equilibrium solution. We can further deduce
from Eq. (9) that all the service schemes with non-zero
probabilities (denoted also the support set Si,∀ri) should have
the same maximum expected utility, i.e.,

Ui,k = Ui,j ,∀xi,k, xi,j > 0, (10)

where Ui,k =
∑
ψ−i U

ψ−i

i,k

∏
Pt,j∈ψ−i xt,j . It is easy to verify

that if there exists Pi,k,Pi,j ∈ Si with Ui,k > Ui,j , then
to achieve a higher utility, ri will definitely assign a zero
probability to Pi,j , which contradicts the assumption that
Pi,j ∈ Si.

Theorem 1. A game with finite number of players and strategy
space has at least one mixed-strategy Nash Equilibrium [39].

Theorem 1 actually ensures that the game expressed by
Eqs. (7)-(8) has at least one mixed-strategy Nash equilibrium.
Then, according to [40], we can calculate the Nash equilibrium
with the procedures shown in Algorithm 1. Basically, we first
need to calculate Si for each ri with the iterated-dominance
approach depicted in Lines 2-9, and then solve the equation
set composed by Eqs. (8) and (10) to obtain the probability
of using each service scheme. Again, we use the example
in Fig. 1(a) with the same parameter assumptions made for
Table I to show how mixed-strategy Nash equilibrium can be
calculated. Firstly, we calculate S1 and S2 both containing
two service schemes as neither of the schemes can dominate
the other one. For instance, when x2,1 ≤ 0.25, U1,1 ≥ U1,2,
otherwise, U1,1 < U1,2. Then, according to Eq. (10), we obtain
the following two equations: (1) 80 = 140 · x2,1 + 60 · x2,2,
(2) 80 = 140 · x1,1 + 60 · x1,2. By solving these equations
we finally get the equilibrium strategy and expected utilities
of the two users as, x1,1 = x2,1 = 0.25, x1,2 = x2,2 = 0.75
and U1 = U2 = 80.

Note that, since Eq. (10) involves the enumeration of ψ−i

(|R| +
∑
ri

(Si
2

)
equations in total to solve) and a nonlinear

operation
∏
xt,j , the problem becomes intractable when the

number of requests exceeds three [41]. Therefore, we will
propose a time-efficient heuristic algorithm in the next section
to find approximate equilibrium solutions for the game.

Algorithm 1: Procedures of Calculating Mixed-Strategy Nash
Equilibrium.

1 set S = P , S ′ = ∅;
2 while S ̸= S ′ do
3 S ′ = S;
4 for each ri do
5 enumerate all possible ψ−i with S;

6 calculate max
ψ−i

Uψ
−i

i,k and min
ψ−i

Uψ
−i

i,k , ∀Pi,k ∈ Si;

7 delete Pi,j from Si if max
ψ−i

Uψ
−i

i,j ≤ min
ψ−i

Uψ
−i

i,k , ∃Pi,k;

8 end
9 end

10 solve the equation set composed by Eqs. (8) and (10) to get x;

Algorithm 2: Procedures of Calculating minψ−i Uψ
−i

i,k and

maxψ−i Uψ
−i

i,k .

1 set ψ− = ψ+ = ∅;
2 for each rt(t ̸= i) in the descending order of bt do
3 set ψ− = arg min

ψ=ψ− ∪
Pt,j ,∀j

Dψ
i,k;

4 set ψ+ = arg max
ψ=ψ+

∪
Pt,j ,∀j

Dψ
i,k;

5 end

6 calculate max
ψ−i

Uψ
−i

i,k =
βi−ci,k
D
ψ−
i,k

and min
ψ−i

Uψ
−i

i,k =
βi−ci,k
D
ψ+

i,k

;

B. Heuristic Algorithm

We first design a simple greedy method to accelerate
the iterated-dominance approach in Algorithm 1. Basically,
we aim to obtain the approximations of maxψ−i Uψ

−i

i,k and

minψ−i Uψ
−i

i,k without enumerating ψ−i. This is in turn equiv-
alent to finding ψ−i that leads to the minimum or maximum
Dψ−i

i,k according to the definition of user utility in Eq. (1).
Algorithm 2 shows the principle of the designed method. In
Lines 2-5, we traverse every rt (t ̸= i) to iteratively add
service schemes that correspond to the minimum or maximum
Dψ−i

i,k into ψ− and ψ+ respectively. Here, we sort rt in
the descending order of bt as requests with higher data rate
have more critical impacts on the service latency of ri. The
complexity of Algorithm 2 is O (|P − Pi|). In the rest of the
paper, we refer to Algorithm 1 as the modified one with Lines
5-6 replaced by Algorithm 2. Note that, after having obtained
S, we still need to enumerate ψ−i with service schemes in S
when calculating the expected utility of each ri with Eq. (7).
Therefore, we approximate Ui,k with the expected utilizations
of VNFs as,

Ũi,k =
βi − ci,k

τi + li,k +
∑

n∈VD

∑
m∈Λn

g
n,m
i,k

ςn,m−bi−
∑

Pt,j∈S−i
g
n,m
t,j btxt,j

. (11)

With the above preliminaries, we next discuss how to
calculate approximate mixed-strategy Nash equilibrium for the
follower game. We first construct an auxiliary graph (AG)
to facilitate our algorithm design and Fig. 3(a) shows the
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(a) (b)

Fig. 3. (a) Principle of the auxiliary graph and (b) an example for the case
where mixed-strategy Nash equilibrium does not exist.

principle of the AG. Each node in the AG represents a
service scheme Pi,k ∈ S and two nodes are connected if
the corresponding service schemes share the processing of
the same VNFs in certain DCs. Nodes belonging to the same
request are not connected as a request finally can only use
one service scheme. We assume directed links in the AG and
assign each link a weight that is equal to bi for the reason that
service schemes with higher data rate impact more the utilities
of their adjacent service schemes.

Algorithm 3 shows the detail of the heuristic design based on
the AG. The main idea behind Algorithm 3 is to approximate
the conditions of mixed-strategy Nash equilibrium defined in
Eq. (10) by iteratively adjusting the probability of selecting
each Pi,k according to the connectivity in the AG. Lines 1-
3 are for initialization and we assign equal probabilities to
service schemes of each ri. In each iteration of the optimiza-
tion, we first estimate the expected utility of each Pi,k ∈ Si
with Eq. (11) (Line 6), and calculate its deviation from the
average value of ri (Lines 7-8). The optimization process
terminates when the maximum deviation is less than a preset
threshold η0 (e.g., 0.5%). Otherwise, as shown by Lines 12-
26, for each Pi,k, we increase or decrease the probabilities
of its adjacent service schemes in the AG based on whether
its expected utility is higher or lower than the average. By
doing this, we try to eliminate the utility difference among
the service schemes of a request. Here, we set the step size as
ϵα|Ei−Ũi,k|/Ei , where ϵ and α are both constant parameters,
to achieve adaptive probability adjusting according to the gap
with the equilibrium point, i.e., Ei − Ũi,k = 0, ∀Pi,k ∈ S .
Note that, the iterated dominance approach in Algorithm 1
does not necessarily generate a support S that ensures the
existing of mixed-strategy Nash equilibrium, which can be
seen through the example in Fig. 3(b). Here, although none of
the service schemes is dominated, there is conflict between
r1 and r3. Specifically, x2,1 has to be equal to 0.3 and
0.8 respectively to ensure Ũ1,1 = Ũ1,2 and Ũ3,1 = Ũ3,2.
Hence, the aforementioned optimization process will be stuck
at some point with 0.3 < x2,1 < 0.8, and we need to
remove at least one node from the AG to obtain an equilibrium
solution. Specifically for this example, there are in total six
candidate subsets of S to be considered. However, it is usually
impossible to enumerate and check all the subsets when the
number of service schemes is large. Instead of considering
all subsets of S, we try to generate feasible and promising
subsets by iteratively removing from S the service scheme

that has the largest utility gap compared with the best scheme
of the same request (Line 29). This is actually motivated by the
observation that preferentially removing those service schemes
with relatively low utilities facilitates higher total utility of
the equilibrium solution. Moreover, according to Schelling’s
theory on focal point [42], this operation is also likely to be
accepted by users in practical scenarios since it caters to a focal
point regarding fairness. Finally, in Lines 30-31, we recalculate
S, unify the probability distribution and proceed to the next
optimization process until the optimization goal is reached.
The complexity of Algorithm 3 is O

(
Q |V | |Λ| |P|3

)
.

(a) (b) (c) (d)

Fig. 4. An example for the broker game: AGs constructed based on different
strategy profiles of brokers.

V. THE LEADER GAME

Under the assumption that brokers are aware of the principle
of the follower game, we study the leader game in this section.
Recall that in the leader game, each broker calculates the
most appropriate set of service schemes for users so that its
utility (defined by Eq. (5)) is maximized. We first analyze the
Nash equilibrium of the game. Fig. 4 gives an example of the
leader game. We consider the case where three brokers and
two users compete with each other. Fig. 4(a) shows the AG
incorporating all the feasible service schemes for the two users,
with the number on top of each node representing the utility
that a broker can achieve by getting the corresponding service
scheme accepted. We also show the probability distribution of
user selection (e.g., x1,1 = 0.7) when all these service schemes
are provided to the users. Although providing (P1,1,P2,1)
corresponds to the highest utility expectation according to this
AG, it is not the best provisioning strategy for the brokers,
since different strategies played by the brokers may result in
different AGs (as illustrated in Figs. 4(b)-(d)). For instance,
Fig. 4(b) shows the AG constructed for the case when one bro-
ker provides (P1,2,P2,1) while the other two brokers provide
(P1,1,P2,1). Apparently, P1,1 will be dominated by P1,2 as
none of them provides P2,2, i.e., providing (P1,1,P2,1) yields
lower utility. In fact, there is no pure-strategy Nash equilibrium
in this game. Hence, a mixing of these provisioning strategies
becomes a promising yet practical solution for brokers. Recall
that Pν denotes a feasible provisioning strategy for broker ν
(e.g., Pν = {P1,1,P2,2}) and let x̂Pν be the probability with
which broker ν provides Pν , the utility function of broker ν
in the mixed-strategy game then can be expressed as,

Uν =
∑
Pν

x̂Pν
∑
P−ν

U(P
ν ,P−ν)

ν

∏
Pν′∈P−ν

x̂Pν′

 , (12)

where P−ν =
{
P1, ...,Pν−1,Pν+1, ...,P |B|}. Note that, to

calculate the mixed-strategy Nash equilibrium for the leader
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Algorithm 3: Procedures of Calculating Approximate Nash
Equilibrium.

1 calculate S with Lines 1-9 of Algorithm 1;
2 construct an AG based on service schemes in S;
3 initiate xi,k = 1/ |Si| ,∀Pi,k ∈ S;
4 while 1 do
5 for q = 1 : Q do
6 calculate Ũi,k, ∀Pi,k ∈ S with Eq. (11);
7 calculate Ei =

∑
Pi,k∈Si Ũi,k/ |Si| , ∀ri;

8 calculate ηi = max
Pi,k∈Si

∣∣∣Ũi,k − Ei

∣∣∣ /Ei, ∀ri;
9 if ηi < η0, ∀ri then

10 return;
11 end
12 for each Pi,k ∈ S do
13 if Ũi,k > Ei then
14 for each adjacent node Pt,j of Pi,k in AG do
15 set xt,j = xt,j + ϵα(Ũi,k−Ei)/Ei ;
16 end
17 else if Ũi,k < Ei then
18 for each adjacent node Pt,j of Pi,k in AG do
19 if xt,j > ϵα(Ei−Ũi,k)/Ei then
20 set xt,j = xt,j − ϵα(Ei−Ũi,k)/Ei ;
21 else
22 set xt,j = 0;
23 end
24 end
25 end
26 end
27 set xi,k =

xi,k∑
Pt,j∈Si

xt,j
,∀Pi,k ∈ S;

28 end

29 delete argmax
Pi,k

max
Pi,j∈Si

Ũi,j−Ũi,k

max
Pi,j∈Si

Ũi,j
, ∀ri from S;

30 set S ′ = ∅, recalculate S with Lines 2-9 of Algorithm 1
and restructure the AG accordingly;

31 set xi,k =
xi,k∑

Pt,j∈Si
xt,j

, ∀Pi,k ∈ S;

32 end

game, we need to explore the whole space of strategy profiles,
which is intractable for scenarios with larger numbers of
brokers and users. For example, for a leader game with |B|
brokers, N users and M feasible service schemes for each
user, we need to run Algorithm 3 for O

(
MN |B|) times to

simply calculate all U(P
ν ,P−ν)

ν . In this work, we propose a
time-efficient heuristic algorithm to facilitate brokers achieving
higher utilities.

Algorithm 4 shows the detail of the procedures of calcu-
lating mixed provisioning strategies for broker ν. We first
calculate the space of service schemes containing M schemes
per request in Line 1. Based on the assumption that brokers
know the gaming approach of users, Lines 2-3 run Algorithm 3
to get the probability distribution with which users will select
each of these schemes and construct an AG accordingly. Al-
though the obtained probability distribution might be different

Algorithm 4: Procedures of Calculating Mixed Provisioning
Strategies for Broker ν

1 calculate M service schemes for each ri;
2 run Algorithm 3 to get x and S;
3 construct an AG based on S;
4 calculate the weight of each Pi,k in AG as

ωi,k =
xi,kci,k

maxPi,j ci,j

δi,k
1+δi,k

;

5 P = ∅;
6 while maxω > 0 do
7 Pν = ∅;
8 ϱ = 11x|R|;
9 store Pi,k = arg max

Pt,j∈S
ωt,j in Pν ;

10 ωi,k = ωi,k − C0;
11 ϱi = 0;
12 S ′ = Si − Pi,k;
13 while ϱt > 0,∃rt do
14 ω′

i,k = ωi,k +
∑

Pt,j∈S′
AGPi,k,Pt,j , ∀Pi,k ∈ S&ϱi > 0;

15 store Pi,k = arg max
Pt,j∈S&ϱj>0

ω′
t,j in Pν ;

16 S ′ = {S ′,Si − Pi,k};
17 ϱi = 0;
18 ωi,k = ωi,k − C0 if ωi,k > 0;
19 end
20 P = {P,Pν};
21 end

22 x̂Pν =

exp

θ ∑
Pi,k∈Pν

(ωi,k+C0)


∑

P′ν∈P
exp

θ ∑
Pi,k∈P′ν

(ωi,k+C0)

 ,∀P
ν ∈ P;

from the actual one used by users subsequently, it provides
a useful insight for analyzing the behaviors of users. Then,
we assign each node in the AG a weight that is equal to the
expected utility a broker can achieve by providing it in Line 4.
Instead of enumerating all possible provisioning strategies, the
while-loop covering Lines 6-21 iteratively calculates a set of
most promising provisioning strategies (i.e., P) until all service
schemes in S are visited. Basically, in each loop of calculating
a new provisioning strategy Pν , the algorithm starts with
putting the service scheme with the highest weight in Pν and
updates its weight by subtracting a relatively large constant
C0 from it to encourage the selection of unvisited service
schemes (Lines 9-10). We use another while-loop (Lines 13-
19) to include service schemes for all the requests in Pν .
Here, we build a set S ′ with all the service schemes of already
included requests except for those in Pν . Lines 14-15 select
the service scheme that has the largest total link weight in
the AG with the service schemes from S ′. The reason for
this operation is that by selecting a service scheme that has
the maximum sharing of VNF processing with those in S ′,
we reduce the probability of service schemes in Pν being
dominated. This can be explained by the example in Fig. 4, i.e.,
it is better to provide P2,2 which shares VNF processing with
P1,2 to r2 if the broker has already decided to provide P1,1.
Finally, Line 22 applies the Boltzmann function and generates
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for each provisioning strategy in P a probability according to
its total expected utility. Here, θ is a parameter for adjusting
the shape of the probability distribution, e.g., broker ν will take
uniformly random decisions when θ = 0. The optimal setup
of θ depends on the actual situations of the leader game and
the follower game, such as the number of brokers involved,
the provisioning policies they apply and the number of users,
and therefore is difficult to be formulated. On the other hand,
by analyzing results of historical games and successively
adapting the setup of θ, brokers can potentially learn the most
appropriate provisioning policy. Specifically, let Θ denote the
set containing all the discrete and feasible values of θ, broker
ν can start with the random selection of θ ∈ Θ and archive
the user acceptance ratio (the ratio of the number of users that
accept the service schemes from broker ν to the total number
of users) regarding each selection. After sufficient amount of
repeated games, a ε-greedy approach can be employed, which
makes a random selection of θ with a probability ε and selects
θ corresponding to the highest acceptance ratio otherwise. The
more games broker ν plays, the more accurate approximation
of the optimal θ it can achieve. The complexity of Algorithm
4 is O

(
(Q |V | |Λ|+ |R|) |P|3

)
.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the designed
game-theoretic approaches through numerical simulations.

A. Simulations for the Follower Game

We first assume that users already receive the set of service
schemes from brokers and conduct simulations to investigate
the follower game. Table II summarizes the setup of the pa-
rameters used in the simulations3. We consider two topologies,
i.e., the 14-node NSFNET topology and the 11-node COST239
topology, and apply the same setup of the parameters for both
of the topologies except that VD and the link capacity are
different. In addition, we assume that each VNF-SC request
ri randomly demands two types of VNFs and βi is given based
on the estimation of the resource cost on the longest path for
the request.

We perform simulations to evaluate the accuracy of the
utility estimation method in Eq. 11. Basically, we set the
number of VNF-SC requests as 100, calculate service schemes
for each of the requests and randomly initialize a probability
distribution for them. Then, we compare the utilities calculated
based on Eq. 11 (Uest) with those from Monte Carlo simula-
tions (Usim). Here, in each simulation, we make every request
chose a service scheme based on the generated probability
distribution, and average the results from 10000 independent
simulations to obtain the expected utility of using each service
scheme. Table III presents the results of the estimation error
from Eq. 11 (defined as the relative difference between Uest
and Usim) with the NSFNET topology and different VNF
processing rates ςn,m. We can observe that the proposed
method can achieve relatively good estimations of the utilities
with the largest difference being only 7.54%.

3We tested different setups of the parameters and Table II presents the one
with which the algorithms perform the best.

TABLE II
SIMULATION SETUP.

G(V,E)
14-node NSFNET Topology &
11-node COST239 Topology [35]

VD (NSFNET Topology) Nodes {1, 4, 6, 7, 9, 11, 14}
VD (COST239 Topology) Nodes {2, 4, 5, 6, 9, 10}
Link Capacity (NSFNET Topology) 358 Frequency Slots
Link Capacity (COST239 Topology) 180 Frequency Slots
Λn = Λ VNFs {1, 2, 3, 4, 5, 6}
|Pi| 10
bi [25, 250] Gb/s
τi [0.01, 0.05]
δi,k 0.05[
p
SP

, p
TR

, p
IT

]
[10, 50, 1] Units

[Q, η0, ϵ, α] [300, 0.5%, 0.008, 20]
Θ {0, 5, 10, 15, 20, 25}
ε 0.02

We then investigate the convergence of Algorithm 3 and
Table III shows the iterations of the optimization process
covering Lines 5-28 needed for the algorithm to converge. The
reason why the convergence time increases with the decreasing
of ςn,m is that when the VNF processing rate decreases,
service latencies play more significant roles in determining
the utilities of users (refer to Eqs. 1 and 3), resulting in
service schemes with higher resource costs more unlikely to be
dominated and thereby a larger initial support set S. Note that,
since connection requests in optical networks usually arrive
much slower (e.g., with the time intervals being tens of minutes
or even hours) compared with packet networks, the number of
requests to be processed in batch generally would be much
smaller than 100 in real operations.

TABLE III
RESULTS OF THE ESTIMATION ERROR FROM EQ. 11 AND THE

CONVERGENCE OF Algorithm 3 (NSFNET TOPOLOGY).

ςn,m (Gb/s) 2000 1800 1600 1400 1200

|Uest−Usim|
Usim

(%) 0.49 1.04 2.56 4.36 7.54

Iterations
2100 24600 56400 86700 110100to Converge

Next, we conduct simulations to compare the performance
of the proposed game-theoretic approach for users (VNF-
SC-Game) with those of two baseline algorithms, namely,
VNF-SC-LC and VNF-SC-Random, each of which selects
service schemes with the least resource cost or randomly.
Figs. 5-7 show the simulation results with the NSFNET
topology and different ςn,m. We can observe that VNF-SC-
Game facilitates the highest user utility in all the scenarios,
while VNF-SC-Random performs the worst. This is because
with the designed gaming approach, users can intelligently
adjust the probability of using each service scheme to achieve
a good balance between resource consumptions and end-
to-end latencies. Figs. 5(a)-7(a) also show a clear trend of
performance gain from VNF-SC-Game against the baseline
algorithms when we increase the number of requests or reduce
the processing rate of VNFs. The underlying rationale for this
is that inappropriate selections of service schemes can more
probably result in high service latencies (due to the overuse
of VNFs) or even resource contentions as the IDC-EON gets
more saturated. Results on average resource consumption cost
and end-to-end service latency per request verify the above
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Fig. 5. (a) Request utility, (b) end-to-end service latency and (c) resource consumption cost per request (NSFNET topology, ςn,m = 1600 Gb/s).
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Fig. 6. (a) Request utility, (b) end-to-end service latency and (c) resource consumption cost per request (NSFNET topology, ςn,m = 1400 Gb/s).

20 40 60 80 100
0

20

40

60

80

100

Number of Requests

A
v
e

ra
g

e
 S

e
rv

ic
e
 L

a
te

n
c
y
 (

m
s
e
c
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

20 40 60 80 100
0

5

10

15

20

25

Number of Requests

A
v
e

ra
g

e
 R

e
q
u

e
s
t 

U
ti
lit

y
 (

k
-u

n
it
s
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

20 40 60 80 100
0

100

200

300

400

500

600

700

Number of Requests

A
v
e

ra
g

e
 R

e
s
o

u
rc

e
 C

o
s
t 

(u
n
it
s
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

(a) (b) (c)

Fig. 7. (a) Request utility, (b) end-to-end service latency and (c) resource consumption cost per request (NSFNET topology, ςn,m = 1200 Gb/s).

conjectures. Specifically, we can see that VNF-SC-Game
achieves the lowest service latencies while still maintaining
comparable resource consumptions with those of VNF-SC-
LC. The average service latency from VNF-SC-LC increases
rapidly with the number of requests, especially when the
processing rate of VNFs is low. Meanwhile, VNF-SC-Random
yields the highest resource consumptions and service latencies
since it frequently makes users use relatively long transmission
paths. Fig. 8 plots the probability distribution functions (PDFs)
of request utility from different algorithms when the number
of requests and the processing rate of VNFs are 100 and
1200 Gb/s respectively. Here, we record the utility of every
individual request during the simulations and approximate the
PDFs using the Gaussian kernel density estimation method
[26]. We can observe that compared with VNF-SC-LC and
VNF-SC-Random, VNF-SC-Game is less likely to lead to
service blocks (zero utility). From the angle of user fairness,
VNF-SC-Random performs the best as it corresponds to the
smallest utility variance (i.e., utilities concentrate closely on
the mean value), while the PDF of VNF-SC-LC is the flattest.
We also show the results with the COST239 topology in Fig. 9,
where similar trends can be observed.
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Fig. 8. Distribution of request utility (NSFNET topology, |R| = 100, ςn,m =
1200 Gb/s).

B. Simulations for the Leader Game

We perform dynamic service provisioning simulations
where VNF-SC requests can come and go on-the-fly for the
leader game. All the users are assumed to apply the proposed
mixed-strategy gaming approach (i.e., VNF-SC-Game). The
processing rate of each VNF is uniformly distributed within
[2800, 3200] Gb/s, and the setup for the rest of the parameters
is shown in Table II. We denote brokers that provision ac-



10

20 40 60 80 100
0

5

10

15

Number of Requests

A
v
e

ra
g

e
 R

e
q
u

e
s
t 

U
ti
lit

y
 (

k
-u

n
it
s
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

20 40 60 80 100
0

10

20

30

40

50

60

Number of Requests

A
v
e

ra
g

e
 S

e
rv

ic
e
 L

a
te

n
c
y
 (

m
s
e
c
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

20 40 60 80 100
0

100

200

300

400

500

600

Number of Requests

A
v
e

ra
g

e
 R

e
s
o

u
rc

e
 C

o
s
t 

(u
n
it
s
)

VNF-SC-Game

VNF-SC-LC

VNF-SC-Random

(a) (b) (c)

Fig. 9. (a) Request utility, (b) end-to-end service latency and (c) resource consumption cost per request (COST239 topology, ςn,m = 1200 Gb/s).

TABLE IV
BROKER UTILITIES PER REQUEST (NSFNET TOPOLOGY).

Traffic Load
200 250 300 350 400 450 500(Erlangs)

BR-GM 14.3 15.1 15.4 15.7 16.0 15.7 15.6
BR-LC 11.4 11.5 11.7 11.6 11.4 11.3 11.1
BR-GM 14.0 14.7 15.2 15.9 15.8 15.6 15.5
BR-LB 11.6 11.9 12.0 11.9 11.7 11.5 11.2
BR-GM 12.9 13.1 13.6 13.6 13.7 13.5 13.5
BR-GM 13.2 13.4 13.6 13.7 13.8 13.6 13.4
BR-GM 10.1 9.8 10.1 10.5 10.5 10.7 10.6
BR-LC 7.9 8.3 8.4 8.3 8.3 8.1 7.9
BR-LB 8.4 8.5 8.7 8.6 8.6 8.4 8.4
BR-GM 8.4 9.0 9.2 9.2 9.1 9.0 9.0
BR-GM 8.6 8.7 8.9 9.2 9.1 9.0 9.0
BR-GM 8.8 8.9 8.9 9.1 9.3 9.0 8.9

cording to the gaming strategy in Algorithm 4 as BR-GM and
select BR-LC and BR-LB as the baselines. Specifically, with
BR-LC, brokers provide users service schemes from S with the
least resource costs, while BR-LB employs a load balancing
strategy that aims to balance the occupation of VNFs across
the IDC-EON.

Table IV summarizes the results of broker utility per request
with the NSFNET topology when the numbers of brokers are
2 and 3, respectively. We compare the cases where BR-GM
plays against BR-LC, BR-LB, BR-GM, or the combinations
of them. The results indicate that BR-GM can facilitate much
higher broker utility. We can derive similar observations from
the results of broker utility with the COST239 topology in
Table V, which further verify the superiority of BR-GM. Next,
we evaluate the performance of the multi-broker framework
by comparing it with the conventional single-broker solutions.
Specifically, we employ three brokers with BR-GM for the
multi-broker scheme, while the single-broker schemes incor-
porate BR-LC or BR-LB. Fig. 10(a) plots the results of request
blocking probability with the NSFNET topology, showing that
the multi-broker scheme can achieve in average 6.5× and
4.8× blocking reductions compared with BR-LC and BR-
LB, respectively. This is because the multi-broker scheme
offers more service provisioning options for users and in the
meantime, the game-theoretic design motivates users to use
resources more rationally so that resource bottlenecking is
mitigated. Fig. 10(b) shows the average utility achieved by
each request. As we can see, the multi-broker scheme facili-
tates the highest user utility. The overall user utility decreases
with the traffic load as the VNFs get more saturated which in
turn causes higher end-to-end latencies of VNF-SCs. Fig. 11
shows the results with the COST239 topology. Again, we
can see that the multi-broker scheme can remarkably improve

TABLE V
BROKER UTILITIES PER REQUEST (COST239 TOPOLOGY).

Traffic Load
200 250 300 350 400 450 500(Erlangs)

BR-GM 12.9 13.3 13.6 13.7 13.8 13.7 13.5
BR-LC 10.2 10.6 10.4 10.3 10.1 9.1 9.6
BR-GM 12.8 13.1 13.3 13.9 13.9 13.7 13.5
BR-LB 10.3 10.7 10.5 10.3 10.1 10.0 9.8
BR-GM 11.6 11.8 11.9 12.0 12.0 11.9 11.6
BR-GM 11.4 12.0 12.0 11.9 12.0 11.8 11.7
BR-GM 8.4 8.7 8.7 9.1 9.2 9.3 9.3
BR-LC 7.4 7.3 7.6 7.4 7.3 7.1 6.8
BR-LB 7.4 7.7 7.7 7.5 7.4 7.2 7.1
BR-GM 7.9 7.8 8.0 8.0 8.0 7.9 7.7
BR-GM 7.9 7.9 7.8 8.0 8.1 7.9 7.7
BR-GM 7.4 7.8 7.9 8.1 8.0 7.9 7.8
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Fig. 10. Comparison between multi-broker and single-broker based schemes:
(a) blocking probability and (b) average request utility (NSFNET topology).

the network throughput (i.e., achieving in average 15.7× and
8.6× blocking reductions compared with BR-LC and BR-LB,
respectively) and user utility, verifying the robustness of the
proposed hierarchical game-theoretic mechanism.

VII. CONCLUSION

In this paper, we proposed for the first time an incentive-
driven VNF-SC provisioning framework for multi-broker-
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Fig. 11. Comparison between multi-broker and single-broker based schemes:
(a) blocking probability and (b) average request utility (COST239 topology).

orchestrated IDC-EONs using game theory. We modeled the
problem as a noncooperative hierarchical game where brokers
play the leader game, calculate VNF-SC service schemes for
users and compete for provisioning tasks from them, while
users play the follower game to decide which service schemes
from brokers to use so that their utilities are maximized.
Mixed-strategy game-theoretic approaches were designed both
for brokers and users, with which they could intelligently
adjust the use of bandwidth and IT resources according to
the network status. Simulation results indicated that the pro-
posed VNF-SC provisioning framework could achieve > 4.8×
reduction on request blocking probability while facilitating
higher user and broker utilities compared with the baseline
algorithms.
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