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Abstract—We propose a novel artificial intelligence (Al) as- InP
sisted framework to realize virtual network (VNT) slicing in an o bjective: Maxmize s profi
inter-datacenter optical network (IDCON), where the infrastruc- + Perform Al-Assisted resource advertising and pricing
ture provider (InP) performs resource advertising and pricing *_ Grant VNE schemes from tenants
based on deep reinforcement learning (DRL) and grants the vi
tual network embedding (VNE) schemes calculated distribuedly Q@ ® - W@ -~
by the tenants. Simulation results confirm that compared wih
the traditional centralized VNT slicing framework, our pro posal Tenant 1 Tenant N
can not only make the InP more profitable but also relieve its + Objective: Minimize its payment . Objective: Minimize its payment
ComDUtatlon CompIeXIty eﬁeCtl_Vely' . A‘i‘logsa-lcula(eVNE scheme with | i Aﬁtlogsa.lculate VNE scheme with
Index Terms—Inter-DC Optlcal netWOka, Virtual network the lowest cost the lowest cost
slicing, Knowledge-defined networking, Artificial intelligence. ° SUHRYNE e B P ° Sl VUE s (o 6P
selectively selectively

@ Notify resource advertising and pricing
[. INTRODUCTION @ Submit VNE scheme to InP
@ Grant VNE scheme: accepted or blocked
Recently, the omnipresent requirements of cloud comput-

ing are demanding an unprecedented amount of data to bg. 1. Proposed framework for distributed tenant-driveNTvslicing.
transferred among datacenters (DCs) [1]. Therefore, thigi-ar
tecture of inter-DC optical networks (IDCONSs) [2] and the

network virtualization schemes in them [3] have received if/\E schemes based on current network status without the
tensive research interests. With network virtualizat®eryice intelligence for forecasting. This would not only comptiea

providers (SPs)ife, tenants) are allowed to lease substraiga awork control and management (NC&M) of the InP but
network (SNT) resources from an infrastructure provideP{l also limit the cost-effectiveness of VNT slicing. For insta,

and build various virtual networks (VNTS) in @ “pay as you is known that the energy efficiency or the cost-effectives

use” manner [4, 5]. This is extremely useful in an IDCONy¢ o |DCON can be improved with network-wide resource

since the InP can allocate bandwidth and IT resources dynatgpqjigation,i.e., consolidating computing tasks on fewer
ically and adaptively to slice VNTs for the tenants and hel.gcS and grooming inter-DC traffic to fewer fiber links [14,

them satisfy the time-varying and diversified demands frof; Nevertheless, in case of VNT slicing, the InP can hardly
their services [6]. Hence, a win-win situation can be agBieV oize the most effective resource consolidation, if ireat
i.e, the InP’s sub_strate resource utilization can be |mprov%q1rect|y forecast future VNT requests from the tenants or
and the tenants’ time-to-market can be reduced. indirectly affect their behaviors on submitting VNT reqtses
Note that, for VNT slicing, the InP of an IDCON usually pe atorementioned issue with existing approaches moti-
needs to 1) select a substrate DC node to host each virtual nggia< s to revisit the problem of VNT slicing in IDCONS.
(VN) of the VNT for satisfying the IT resource requiremenk e itically, inspired by the idea of knowledge-defined net-
(i.e., the node mapping), and 2) reserve sufficient Opt'ca}orking (KDN) [16], we propose to add three new mecha-

spectra on a substrate path to carry each virtual link (Vigisms into the framework of VNT slicing to make it operate
between a VN pair for satisfying the bandwidth requiremesli  gistributed tenant-driven manner and more profitable:
(i.e, the link mapping), which is also known as virtual network

embedding (VNE) [7]. Previously, the problem of VNE has * The InP performs resource advertising a}nd pricing to tell
already been studied intensively in various network sdesar the dtenants deou:] thevl,D\IC_er an((jj fﬁer links ';hat can r?e
and with different optimization objectives [7—10], andateld used to e(ro_] ed t e'(; b dS 'Znh the Cﬁ(;St of using the
network system prototypes have been experimentally demon- C0r"ésponding IT and bandwidth resources

strated in [11-13]. However, all these previous invesigest
[ ] P IHere, the advertised resources might not be all the availahks in the

assumed that the InP is in charge of VNT slicing solelihcon; For the purpose of resource consolidation, the Inf mfwose to
without any involvement of the tenants, and it calculatesde certain resources from advertising.
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« Based on the advertisement from the InP, each tenant /  ViuaNedel Viallodes =
distributedly calculates the VNE scheme for its VNT =~ | °° ‘V"m‘ .. | T L
with the lowest cost, and determines whether the price (°)§V"‘“a'“”ka et i xm ”"“W"DU::"“‘ megua'“"“
is affordable. If yes, it will submit the scheme to the InP. i N\ i

« The InP collects all the requests from the tenants, grant; e Vireden o B BT o
them based on current network status, calculates the profi ,, t‘:ﬁﬁ il
from the VNT slicing, and feeds all the information Link 2 Link 5
into an artificial intelligence (Al) module based on deep
learning to obtain the strategy of the next round of
resource advertising and pricing for maximizing its profit.

As shown in Fig. 1, with the new mechanisms, VNT slicing (@
is realized in a distributed and thus much more time-efficien
way, and the InP would not be directly involved in the
computation of VNE schemes. Hence, the InP’s intelligence
lies in being able to maximize the profit of VNT slicing byrig. 2. Example on distributed tenant-driven VNT slicing) (DCON, (b)
leveraging the Al-assisted resource advising and pricing. Resource advertisement from InP, and (c) VNE schemes ceuhfimyttenants.
this work, based on the framework in Fig. 1, we first lay out
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the network model and design an integer linear programming TABLE |
(ILP) model for each tenant to distributedly calculate tHé¢E/ NOTATIONS FORRESOURCECOSTMODEL
scheme for its VNT with the lowest cost. Then, we study how : :
to perform Al-assisted resource advertising and pricintha Noatafion Explanation
InP for profit maximization. Specifically, we design a deep DCON: ‘ o
reinforcement learning (DRL) based algorithm to help th@ In % thei-th edge node i
. - v; the i-th intermediate node i’
learn thg relation betwee_n the strategy o_f resource aduegti E(v) the set of links that connect to nodec V
and pricing and the profit from VNT slicing. In other words, RZ the amount of available IT resources in the DCugf
the DRL-based algorithm enables the InP to analyze the FE thg ava"gb'e bandwidth on a fiber linke £
tenants’ behaviors on distributed VNE computation for maki 2‘199 NOdetz;]i E Ve Cof the OXC i I it is work
wise decisions on resource advertising and pricing. o © base cost of the DAL 1n;” 1T L1s working -
. . cr, the unit cost of switching capacity of the OXC uf
The rest of the paper is organized as follows. We formulate -% he b f the DC ioZ if it i ki
the problem in Section II. The DRL-based resource advegisi %' the base cost of the DC Iy 1t s workirg
probi ’ - ) - g_ cy. the unit cost of IT resources in the DC irf’
and pricing algorithm is proposed in Section lll. Section | émediate Node of € V-
. . 7
IV evaluates the performance of our proposal. Finally, we ¢I, the base cost of the OXC inf if it is working
summarize the paper in Section V. cl, the unit cost of switching capacity of the OXC irf
Fiber Link e € E:
[I. PROBLEM FORMULATION Ce the base cost of if it is active with traffic
A. Network Model of IDCON Ce the unit cost of bandwidth usage @n
Ce the merged unit cost of bandwidth usage «on

We model the topology of an IDCON as(V, E), where
V and E denotes the sets of nodes and fiber links in it,
respectively. Note that, there are actually two types ofesad . - .- .
the IDCON, as shown in Fig. 2(a). Each of the first type om?gTo assist the resource advertising and pricing, we define a

. . . . few notations for the cost model of resources, which aredist
.ConS'StS of a local DC and an optlca}I switch .(OXC)’ Whlcﬁ]n Table I. Here, for each network element in the IDCQAN.(
is referred to as an edge node and included inV&€t The

second type ones are intermediate nodes, each of which o%l?c’ an OXC or a fiber link), we assume that the cost of using
. . . ' it €onsi f i mponen h f turnin
includes an OXC and is included in s&t. Apparently, we tconsists of a static componeritg, the base cost of trning

haveVE N V! — 0 andVE U VI — V. In the IDCON. each it on) and a dynamic componerite, the one that increases

. . . . linearly with the actual resource usage on it). Note thai;esi
:%cr:Sfr\rﬁ'rssziTcifgo'lﬁgciscﬁﬁgtgagigtfrlitz)irtgglig.:(;\gggfi\?:nnl\?%md e data transmis_sion on fiber linkuses t_)oth the Iink and
slicing, the InP. needs to perform resource advertising aﬂée twq OXCs in its end-nodes, we combine the.un~|t costs of

o L ) G ndwidth usage on them to get the merged unit ¢Qsas
pricing periodically. An example of the resource adventsi
is illustrated in Fig. 2(b), where for cost saving, the InP Co=Cot 3 CE. 4+ 3 ol )
only turns on partial of the network elements in the IDCON (wF: ceBwE)} (ol ceB(wD)}
and advertises the resources on them. Meanwhile, in order to
maximize its profit and encourage the tenants to use substiéfith this cost model, the InP needs to determine its straségy
resources in a balanced manner, the InP needs to price tbsource advertising and pricing for profit maximizationgda
advertised resources properly. In the next section, we wilie strategy can be denoted with the variables defined ireTabl
design a DRL-based algorithm to help the InP achieve thisll. Here, for simplicity, we also get the merged unit price of



bandwidth usage on fiber link, which is Note that, in this process, a VNT request can be blocked due
to insufficient resources in the IDCON. Hence, the granted

VNT requests may be a subset of the submitted ones, and the
set of their indices can be denoted &S. Finally, with K",

Pe=Pet 3 Pi+ > Py @
{’UiE: eGE(v,LE)} {’U{: eGE(viI)}

the InP can calculate its profit from this round of VNT slicing

TABLE Il
VARIABLES DEFINED FORRESOURCEADVERTISING AND PRICING

which is denoted a®. According to Table Il, the strategy of
resource advertising and pricing can be represented wéh th

Variable Definition advertisement matrbA = [{z[;},{z],},{«],}, {y.}] and
) Boolean variable that equals 1 if the OXC in edge noffe the price matrixP = [{Pfi}, {PF}, {Po{i}, {P.},{P.}]. We
0,1 is advertisedi(e,, turned on) by the InP, and 0 otherwise. can see that the prOfVP is actually a function ofA and P,

, Coden b i ek TT{Te DS e 1o {6, p_ (A.P). In the next section, we wil design a DRL
o Boolean variable that equals 1 if the OXC in intermediate ~ based algorithm to let the InP leafh= f(A, P) intelligently.
ot nodev! is advertised by the InP, and 0 otherwise.
Boolean variable that equals 1 if fiber lirnkis advertised TABLE Il

Ye by the InP, and O otherwise. ILP MODEL FORTENANT TO CALCULATE VNE SCHEME OF THEk-TH

E Positive real variable that represents the unit price of VNT REQUEST

051 switching capacity of the OXC in edge nodzé.
P f' Positive real yariable thqt represents the unit price of Variable Definition

B IT resources in the DC in edge nod¢. 500l ble That ST Hah VN o™ v
pl Positive real variable that represents the unit price of i oolean variable that equals 1 1 Ui N Vi 1S

Positive real variable that represents the unit price of

°i  switching capacity of the OXC in intermediate nodg: ’ mapped onto the’-th edge nodes7 in V', and 0 otherwise.
Boolean variable that equals 1 if Vk € £ goes through

Pe bandwidth usage on fiber link. Ye,e! fiber link ¢’ € E, and 0 otherwise.
P Positive real variable that represents the merged unie pic Objective:
€ bandwidth usage on fiber link.
o ] o Minimize PY., w; .- R+
B. Distributed Tenant-driven VNT Slicing o %,AE”E%E e ’
We assume that there af€ pending VNT requests from @)
the tenants. The:-th VNT request can be represented as DD Poyew ~R£,e>
GL(VI,E, P), where V)| and E] are the sets of virtual c€Ej e'el

nodes (VNs) and virtual links (VLs), respectively, a R is ) )

the highest cost that the tenant can afford. Here, each VN4 Mapping Constraints

v,; € Vi has an IT resource requirement & ;, and it ziy <aly, Vi€ VP, v eV,
should be mapped onto an edge nod&ih with sufficient IT

e ) z; 0 =0, Yop. eVl of ¢ VE,
resources in its DC. Note that, for node mapping, a tenant may o = TR T TR

have a location constraint from its services,, its VNs should Z a0 =1, Yup, €V,
only be mapped onto a subset of edge nodes in the IDCON to vFevE,
ensure certain access latency and/or coverage of its servic .
Y g zﬁi, +z; 0 —1< mﬁi,, Vg € Vi, ol € VkEZ

[10]. We denote the subset of the edge nodes thatJyN
can be mapped onto dsﬁ and haverfi. C VE. Each VL |ink Mapping Constraints :
e € Ej has a bandwidth requirement &, ., and it should

’ ’ ’ T !
be mapped onto a substrate path with sufficient bandwidth. Yeer SVers VEE By, € € F,

Based on the resource advertisement from the InP, the tenant ST Yeer — D Ve =Tiy — T,
calculates the VNE scheme for its VNT request with the lowest e eB(wE)~ e E€B(vE)*
cost, as shown in Fig. 2(c). This can be done by leveraging the {ere= (v, v),) €€ EL}, Wb € VE.

ILP model listed in Table IIl. Note that, in Eq. (9 (v)~ and
E(v)™ mean the sets of egress and ingress links to ngde Resource Constraints
respectively. After obtaining the VNE scheme by solving the

. ;o R < RS, Wf evE
ILP, the tenant checks whether the scheme’s cost is afftedab 2w R < B vir €

~ v G EVE
(i.e, not exceeding’). If yes, the tenant will submit the VNE B
scheme and the corresponding payment to the InP. Otherwise, > Yeor-Rp. <R, Ve€E.
it will cancel its VNT request temporarily. e€ By

(©)
®)
(6)

@)

®)

(©)

(10)

(11)

For the VNT requests submitted to the InP, we denote the
set of their indices a®&’. Then, based on the payments from
the tenants and the corresponding resource costs, the InP ?ﬁ Al-
culates the profit from each VNT requesg( payment minus ~*

ASSISTEDRESOURCEADVERTISING AND PRICING

total resource cost), sort the requests in descending ofdee We first design an evaluate functi@(-) that can rank net-

profits from them, and grant them one-by-one in sorted ordarork elements in the IDCON to get the advertisement matrix



A, and then propose a DRL-based algorithm to parameteriespectively. Withl" recursions, the features of each network
Q(+) such that the price matriR can be learned iteratively. element are spread to those thatAreops away from it. Then,

A. Design of Evaluation Function @(~) the evaluation functio®)(A, n4; ©,P) can be formulated as

The evaluation functio)(-) should be able to rank network
elements in the IDCON such that if the InP turns down them in Q(A,n4;0,P) =67 -

the sorted ordeii ¢., maX|m|2|rng(-) each time), its profit can

be maximized. We formulat€(-) as Q(A, ng4; ©,P), which
is a function ofA andn, with parameter® andP, andng is
the network element.g., a DC, an OXC or a fiber link) _to be B, DRL-based Algorithm to Parameterize @(.)
shut down and removed from the upcoming advertisement.
Supposing thatQ(-) has already been parameterized with We propose a DRL-based algorithm with the following
known © and P, the InP can use the simple procedure igrinciple to parameterlz@() i.e., determining® andP.

5o > w<T> O - @ >D 12)

ndGG

where® = {0, : i € [1,9]}.

Algorithm 1 to obtain the advertisement matrix. « States: each state corresponds to a feasile
« Actions: an action is to shut down one network element
Algorithm 1: Determining Advertisement MatriA. with ng at the current statd.
Evaluation FunctiorQ (A, ng4; ©,P) « Rewards: the reward of an action at the current st#te
1 initialize A as turning on all the elements @(V, E); is calculated as:
2 calculate the InP’s profiP based onA andP with the Fr(Ang) = f(A/na,P) — f(A,P), (13)
approach in Section Il;
3P =0 where f(A,P) calculates the InP’s profit, and /ng
4 while P > P’ do means to shut down, at stateA.
5 | PP=P,ng= argm:XQ(Amd; 0,P); Based on Eq. (13), we define anstep-forward function
nqg€
6 shut downn, and updateA accordingly; - D e R
7 | calculate the InP’s profiP based onA andP; y=> fr(AET) i) 43, max [Q(A(”"),nd;G,P)] , (14
s end =0

wheret is the index of the current iteratios, (%) andn|/ ™"

We design a recursive structure [17] f@(.) to capture are the state and action at tttet i)-th iteration, respectively,
the features of each network element, by considering bfd 8 is a constant coefficient. Then, in the DRL, we try to
the characteristics of the IDCON’s topology(V, E) and Minimize the squared regression loss defined as
the element’s relation with other elements in the IDCON. A a ) (1) 2
Specifically, at thet-th recursion, the features af,; are [y’Q(A "a ;@’P)] ’ (15)
represented by &|V F|+|V!|+|E|)-dimensional vectowffd),

. . ! Algorithm 2 sho the procedure of the proposed DRL-
and the recursive relations are defined as follows. gort SOWs b . propos

based algorithm. In each round of training, we first creai@ tw
Jo(0r -+ 02 A+ 03 fo(B1)), naisthe OXCinvf, sats and A (Lines 2-3). The former is to store all the valid
(61 -2, +62- wg(vg)), nq is the DC invf,  training samples, and the latter is the training set with adix
(612l +62- Az 05 fo(Ba)), g is the OXC iny!, Size for an iterationLine 4 initializes AM, and the for-loop
o .ye’+ Os- As+0s- fo(Bs)),  ny is fiber link c, covering Lines 5-21 tries to shut down a network element
in each iteration. Here, to diversify the training samples,
wherefo(z) =z if z > 0, and 0 otherwise, and the parametelgenerate a random numbee [0, 1] (Line 6), and test whether

o) =

> >

{Am, Bm : m € [1,3]} are calculated as follows it is smaller than a preset threshold,. If yes, the action
Ay = g(,1,g>+ Y =iV Y =i, n§;> is randomly selected withilA(*) (Line 8). Otherwise,
€N () na€ECf) the action is determined according to the policyLime 10.
B1 = UEE%(“E)% (Poly + Pay) + IEE'E)"S “Po +CEEZ(“E)"6 “Pe. Then, we getA(“t1) accordingly Line 12) and calculate the
o J - -1 ! corresponding reward ihine 13. Due to then-step-forward
27 nde%@n ma T nde%(vf) nd function in Eq. (14), only when the iteration number is large
By = | > ’ o1 (Po); +’P£j)’+ S 6 PI;+ X 06 Pe thann, {Al*), ”fitin)a f'r(A(t_")vngin))} becomes a valid
vEen@l) T lened T eeBeD) sample. Hence, it is added inioin Line 15. Once there are
A = > &,féﬁ > ('@11)) more than|A| samples il (Line 16), the training setA
(vF:ceB(P)) (v} eeB(])} can be formed by selecting\| samples froml" randomly
B3 = > 04 (PY; + PLy) + > 05 Pa ;. (Line 17), and then the values df©,P} are updated by
(o ceB(TN {of: ceBCf)) performing stochastic gradient descent (SGD) over Eq. (15)

whereN (v) returns the set of OXCs in adjacent nodes of noder A (Line 18). Finally, afterd rounds of trainingAlgorithm
v, and D(v) and O(v) return the DC and OXC in node, 2 determines and returns the values{6f, P}.



Algorithm 2: DRL-based Algorithm to Parameteriz}(-)

1 for each round j € [1, M] do

2 create a sel’ to store valid training samples;

3 create a training seh with a fixed size;

4 | initialize A™) as turning on all elements i6/(V, E);
5 | for eachiteration t € [1,2|VE| + |V + |E|] do
6

7

8

9

generate a random real numkee [0, 1];
if € <T}, then
| selectn!’ randomly inA(®;

else

10 n® = ar O(A® ng4:0,P):
d gmax Q( )nd7 9 )1
ng€At—1)
11 end (b) 14-Node NSFNET Topology
12 get A+ from A®) by removingn.;
13 calculatef,A(A(t),nff)) with Eq. (13); Fig. 3. IDCON topologies used in simulations.
14 if ¢t > (n+1) then
15 (A=)l (A ) T
16 if |T'| > |A] then 450
17 select|A| samples fronT" randomly to 0
form A; Ezzz
18 update{©, P} by performing SGD over izso
Eq. (15) forA; 5200
19 end %150
20 end & 100 —5-Benchmark Algorithm
—0—DRL-based Algorithm
21 end 50
5 10 15 20 25 30 35 40 45

22 end

Number of VNT Requests

23 return {6, P}; (a) Profit of InP

@
o

3]
o

IV. PERFORMANCEEVALUATION

N
o

We conduct numerical simulations to evaluate the proposed
framework with DRL-based resource advertising and pricing
which run on a computer with 4.0 GHz Inter Core i7-6700K
CPU, 16 GB RAM and 11 GB NVIDIA GTX 1080Ti GPU.
The DRL-based algorithm is implemented with TensorFlow
1.4.1. The topology of the IDCON can take either the 8-node
or the NSFNET topologies in Fig. 3. The cost of resources are
uniformly distributed within[10, 30] units in both topologies.
Here, unit stands for a general currency unit. We generate ea Fig. 4. Results in 8-node topology.

VNT request in a way as: 1) the number of VNs is uniformly

distributed within[1, 5], 2) the subset of edge nodes that each

VN is location-constrained within is randomly selected, 3jistribution with meanu and standard deviatios equal to
each VN pair is connected by a VL with a probability of65.7,26.8} and {123,37.4} for the 8-node and NSFNET
0.6, and 4) the highest cost that a tenant can afford is lineatiypologies, respectively, and performs resource adregtia a
proportional to the total number of VNs and VLs, with a slopgreedy manner. Specifically, in the benchmark, by estirgatin
uniformly distributed within[16, 116] and[50, 150] units in the the network element that can be shut down to bring in the
8-node and NSFNET topologies, respectively. maximum profit gain, the InP removes selected network ele-

When training the proposed DRL-based algorithm, we ugeents one-by-one from the upcoming resource advertisement
M = 200 as the maximum number of training rounds, setntil its profit is maximized, and the whole process does not
the number of VNT requests in each round as uniformigonsider any inputs from the tenants’. The simulationsayer
distributed within[5,45], and have|A| = 5 as the number the results fronb independent runs to get each data point.
of training samples. After the training is done, we compare Fig. 4 shows the results on the InP’s profit and the algo-
the proposed DRL-based algorithm with a centralized bendfithms’ average running time for the 8-node topology. We can
mark. The benchmark prices resources according to a norrseé that the proposed DRL-based algorithm achieMes56%

[N
o

N
o

—8—Benchmark Algorithm
—0—DRL-based Algorithm

o

Average Running Time (Seconds)
w
o

3]

10 15 20 25 30 35 40 45
Number of VNT Requests

(b) Running time



400

distributedly by the tenants. Then, for the InP, we designed
a DRL-based resource advertising and pricing algorithm for
profit maximization. Simulation results confirmed that com-
pared with the traditional centralized VNT slicing framewp
our proposal can not only make the InP more profitable but

also relieve its computation complexity effectively. Ineth
—=—Benchmark Algorithm future, we need to further study both the timing and methods
. ~9 DRL-based Algorithm for predicting the tenant demands and their affordableegric

5 10 15 20 25 30 35 40 45
Number of VNT Requests accurately.

(a) Profit of InP

w
o
o

200

Profit of InP (k-units)

=
o
o
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Fig. 5. Results in the 14-node NSFNET topology. [3]
_ _ 4]
more profit than the benchmark in all the cases. Meanwhile,
the DRL-based algorithm also consumes less running tin&g
than the benchmark. Here, to achieve fair comparisons, t é
running time of the DRL-based algorithm includes the tragni
time. This is because with the benchmark, the InP has t6
calculate the VNE schemes for the VNT requests and det
mine the resource advertising scheme in a centralized manne
while with the DRL-based algorithm, it only needs to perform[s]
network advertising according to the trained evaluatiomcfu
tion and grant the VNE schemes from the tenants based on
resource availability. Hence, the results in Fig. 4 vetifgttour (]
proposed framework can not only make the InP more profitable
but also relieve its computation complexity effectively. [10]
Fig. 5 illustrates the results on the InP’s profit and average
running time in the NSFNET topology. We observe the similar
trends as in Fig. 4. Actually, as the IDCON'’s size is largeri1]
the proposed DRL-based algorithm achieves a larger profit
increase over the benchmaile., ~58.40% on average. Since
with the benchmark, the InP does not consider the tenani]
inputs when determining resource advertising and pricing
schemes, its profit in Fig. 5(a) does not exhibit a stabledtrer; 3
Moreover, the centralized scheme of the benchmark does not
scale well with the problem’s size, and thus its running ti n
increases exponentially with the number of VNT requests In
Fig. 5(b). This makes our proposed framework’s advantage on
reduced time complexity much more significant. (15]
V. CONCLUSION [16]
We proposed a novel framework to realize VNT incing[)17
in an IDCON, where the InP performs Al-assisted resource
advertising and pricing and grants the VNE schemes cakxlilat

Research Funds for Central Universities (WK2100060021).

REFERENCES

“Cisco global cloud index: Forecast and methodology1@2021,"
2017, [Online]. Available: https://www.cisco.com/c/aslsolutions/
service-provider/visual-networking-index-vni/indetml.

P. Lu et al., “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter net@grkEEE Netw.,
vol. 29, pp. 3642, Sept./Oct. 2015.

H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-avea survivable
virtual network embedding in optical datacenter netwdrks, Opt.
Commun. Netw.,, vol. 7, pp. 1160-1171, Dec. 2015.

M. Chowdhury and R. Boutaba, “Network virtualizationtag of the
art and research challenge$ZEE Commun. Mag., vol. 47, pp. 20-26,
Jul. 2009.

L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seekingtual
network embedding algorithm via global resource capédityProc. of
INFOCOM 2014, pp. 1-9, Apr. 2014.

M. Bari et al., “Data center network virtualization: A surveyfEEE
Commun. Surveys Tuts., vol. 15, pp. 909-928, Second Quarter 2013.

€f7] L. Gong and Z. Zhu, “Virtual optical network embedding@®XE) over

elastic optical networksJ. Lightw. Technol., vol. 32, pp. 450-460, Feb.
2014.

X. Chenget al., “Virtual network embedding through topology-aware
node ranking,”ACM S GCOMM Comput. Commun. Rev., vol. 41, pp.
38-47, April 2011.

M. Chowdhury, M. Rahman, and R. Boutaba, “Vineyard: Vat net-
work embedding algorithms with coordinated node and linkppieg,”
|IEEE/ACM Trans. Netw., vol. 20, pp. 206-219, Feb. 2012.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel locatioonstrained
virtual network embedding (LC-VNE) algorithms towards eigtated
node and link mapping,]JEEE/ACM Trans. Netw., vol. 24, pp. 3648—
3661, Dec. 2016.

R. Munozet al., “Integrated SDN/NFV management and orchestration
architecture for dynamic deployment of virtual SDN contirmtances
for virtual tenant networks,J. Opt. Commun. Netw., vol. 7, pp. B62—
B70, Nov. 2015.

J. Yin et al., “Experimental demonstration of building and operating
QoS-aware survivable vSD-EONs with transparent res§ign©npt.
Express, vol. 25, pp. 15468-15 480, 2017.

Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206—
A215, Feb. 2018.

W. Fanget al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnectioh<Jpt. Commun.
Netw., vol. 7, pp. 314-324, Mar. 2015.

F. Tso, S. Jouet, and D. Pezaros, “Network and servesures man-
agement strategies for data centre infrastructures: AegtirComput.
Netw., vol. 106, pp. 209-225, Sept. 2016.

A. Mestreset al., “Knowledge-defined networking,ACM S GCOMM
Comput. Commun. Rev., vol. 47, pp. 2-10, Jul. 2017.

1 H. Dai, B. Dai, and L. Song, “Discriminative embedding$ latent

variable models for structured data,” Rroc. of ICML 2016, pp. 2702—
2711, Jun. 2016.



