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Abstract—We propose a novel artificial intelligence (AI) as-
sisted framework to realize virtual network (VNT) slicing i n an
inter-datacenter optical network (IDCON), where the infrastruc-
ture provider (InP) performs resource advertising and pricing
based on deep reinforcement learning (DRL) and grants the vir-
tual network embedding (VNE) schemes calculated distributedly
by the tenants. Simulation results confirm that compared with
the traditional centralized VNT slicing framework, our pro posal
can not only make the InP more profitable but also relieve its
computation complexity effectively.

Index Terms—Inter-DC optical networks, Virtual network
slicing, Knowledge-defined networking, Artificial intelligence.

I. I NTRODUCTION

Recently, the omnipresent requirements of cloud comput-
ing are demanding an unprecedented amount of data to be
transferred among datacenters (DCs) [1]. Therefore, the archi-
tecture of inter-DC optical networks (IDCONs) [2] and the
network virtualization schemes in them [3] have received in-
tensive research interests. With network virtualization,service
providers (SPs) (i.e., tenants) are allowed to lease substrate
network (SNT) resources from an infrastructure provider (InP)
and build various virtual networks (VNTs) in a “pay as you
use” manner [4, 5]. This is extremely useful in an IDCON,
since the InP can allocate bandwidth and IT resources dynam-
ically and adaptively to slice VNTs for the tenants and help
them satisfy the time-varying and diversified demands from
their services [6]. Hence, a win-win situation can be achieved,
i.e., the InP’s substrate resource utilization can be improved
and the tenants’ time-to-market can be reduced.

Note that, for VNT slicing, the InP of an IDCON usually
needs to 1) select a substrate DC node to host each virtual node
(VN) of the VNT for satisfying the IT resource requirement
(i.e., the node mapping), and 2) reserve sufficient optical
spectra on a substrate path to carry each virtual link (VL)
between a VN pair for satisfying the bandwidth requirement
(i.e., the link mapping), which is also known as virtual network
embedding (VNE) [7]. Previously, the problem of VNE has
already been studied intensively in various network scenarios
and with different optimization objectives [7–10], and related
network system prototypes have been experimentally demon-
strated in [11–13]. However, all these previous investigations
assumed that the InP is in charge of VNT slicing solely
without any involvement of the tenants, and it calculates
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Fig. 1. Proposed framework for distributed tenant-driven VNT slicing.

VNE schemes based on current network status without the
intelligence for forecasting. This would not only complicate
the network control and management (NC&M) of the InP but
also limit the cost-effectiveness of VNT slicing. For instance,
it is known that the energy efficiency or the cost-effectiveness
of an IDCON can be improved with network-wide resource
consolidation,i.e., consolidating computing tasks on fewer
DCs and grooming inter-DC traffic to fewer fiber links [14,
15]. Nevertheless, in case of VNT slicing, the InP can hardly
realize the most effective resource consolidation, if it cannot
directly forecast future VNT requests from the tenants or
indirectly affect their behaviors on submitting VNT requests.

The aforementioned issue with existing approaches moti-
vates us to revisit the problem of VNT slicing in IDCONs.
Specifically, inspired by the idea of knowledge-defined net-
working (KDN) [16], we propose to add three new mecha-
nisms into the framework of VNT slicing to make it operate
in a distributed tenant-driven manner and more profitable:

• The InP performs resource advertising and pricing to tell
the tenants about the DCs and fiber links that can be
used to embed their VNTs and the cost of using the
corresponding IT and bandwidth resources1.

1Here, the advertised resources might not be all the available ones in the
IDCON. For the purpose of resource consolidation, the InP may choose to
hide certain resources from advertising.



• Based on the advertisement from the InP, each tenant
distributedly calculates the VNE scheme for its VNT
with the lowest cost, and determines whether the price
is affordable. If yes, it will submit the scheme to the InP.

• The InP collects all the requests from the tenants, grants
them based on current network status, calculates the profit
from the VNT slicing, and feeds all the information
into an artificial intelligence (AI) module based on deep
learning to obtain the strategy of the next round of
resource advertising and pricing for maximizing its profit.

As shown in Fig. 1, with the new mechanisms, VNT slicing
is realized in a distributed and thus much more time-efficient
way, and the InP would not be directly involved in the
computation of VNE schemes. Hence, the InP’s intelligence
lies in being able to maximize the profit of VNT slicing by
leveraging the AI-assisted resource advising and pricing.In
this work, based on the framework in Fig. 1, we first lay out
the network model and design an integer linear programming
(ILP) model for each tenant to distributedly calculate the VNE
scheme for its VNT with the lowest cost. Then, we study how
to perform AI-assisted resource advertising and pricing inthe
InP for profit maximization. Specifically, we design a deep
reinforcement learning (DRL) based algorithm to help the InP
learn the relation between the strategy of resource advertising
and pricing and the profit from VNT slicing. In other words,
the DRL-based algorithm enables the InP to analyze the
tenants’ behaviors on distributed VNE computation for making
wise decisions on resource advertising and pricing.

The rest of the paper is organized as follows. We formulate
the problem in Section II. The DRL-based resource advertising
and pricing algorithm is proposed in Section III. Section
IV evaluates the performance of our proposal. Finally, we
summarize the paper in Section V.

II. PROBLEM FORMULATION

A. Network Model of IDCON

We model the topology of an IDCON asG(V,E), where
V and E denotes the sets of nodes and fiber links in it,
respectively. Note that, there are actually two types of nodes in
the IDCON, as shown in Fig. 2(a). Each of the first type ones
consists of a local DC and an optical switch (OXC), which
is referred to as an edge node and included in setV E . The
second type ones are intermediate nodes, each of which only
includes an OXC and is included in setV I . Apparently, we
haveV E ∩ V I = ∅ andV E ∪ V I = V . In the IDCON, each
DC offers IT resources and each fiber link provides bandwidth,
for VNT slicing. To facilitate distributed tenant-driven VNT
slicing, the InP needs to perform resource advertising and
pricing periodically. An example of the resource advertising
is illustrated in Fig. 2(b), where for cost saving, the InP
only turns on partial of the network elements in the IDCON
and advertises the resources on them. Meanwhile, in order to
maximize its profit and encourage the tenants to use substrate
resources in a balanced manner, the InP needs to price the
advertised resources properly. In the next section, we will
design a DRL-based algorithm to help the InP achieve this.
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Fig. 2. Example on distributed tenant-driven VNT slicing, (a) IDCON, (b)
Resource advertisement from InP, and (c) VNE schemes computed by tenants.

TABLE I
NOTATIONS FORRESOURCECOST MODEL

Notation Explanation

IDCON :
vEi the i-th edge node inV E

vIi the i-th intermediate node inV I

E(v) the set of links that connect to nodev ∈ V
Rc

i the amount of available IT resources in the DC ofvEi
Rb

e the available bandwidth on a fiber linke ∈ E

Edge NodevEi ∈ V E :
ĊE

o,i the base cost of the OXC invEi if it is working
CE

o,i the unit cost of switching capacity of the OXC invEi
ĊE

d,i
the base cost of the DC invEi if it is working

CE
d,i

the unit cost of IT resources in the DC invEi
Intermediate Node vIi ∈ V I :
ĊI

o,i the base cost of the OXC invIi if it is working
CI

o,i the unit cost of switching capacity of the OXC invIi
Fiber Link e ∈ E:
Ċe the base cost ofe if it is active with traffic
Ce the unit cost of bandwidth usage one
C̃e the merged unit cost of bandwidth usage one

To assist the resource advertising and pricing, we define a
few notations for the cost model of resources, which are listed
in Table I. Here, for each network element in the IDCON (i.e.,
a DC, an OXC or a fiber link), we assume that the cost of using
it consists of a static component (i.e., the base cost of turning
it on) and a dynamic component (i.e., the one that increases
linearly with the actual resource usage on it). Note that, since
the data transmission on fiber linke uses both the link and
the two OXCs in its end-nodes, we combine the unit costs of
bandwidth usage on them to get the merged unit costC̃e as

C̃e = Ce +
∑

{vE
i

: e∈E(vE
i
)}

CE
o,i +

∑

{vI
i
: e∈E(vI

i
)}

CI
o,i. (1)

With this cost model, the InP needs to determine its strategyof
resource advertising and pricing for profit maximization, and
the strategy can be denoted with the variables defined in Table
II. Here, for simplicity, we also get the merged unit price of



bandwidth usage on fiber linke, which is

P̃e = Pe +
∑

{vE
i

: e∈E(vE
i
)}

PE
o,i +

∑

{vI
i
: e∈E(vI

i
)}

P I
o,i. (2)

TABLE II
VARIABLES DEFINED FORRESOURCEADVERTISING AND PRICING

Variable Definition

xE
o,i

Boolean variable that equals 1 if the OXC in edge nodevEi
is advertised (i.e., turned on) by the InP, and 0 otherwise.

xE
d,i

Boolean variable that equals 1 if the DC in edge nodevEi
is advertised by the InP, and 0 otherwise.

xI
o,i

Boolean variable that equals 1 if the OXC in intermediate
nodevIi is advertised by the InP, and 0 otherwise.

ye
Boolean variable that equals 1 if fiber linke is advertised
by the InP, and 0 otherwise.

PE
o,i

Positive real variable that represents the unit price of
switching capacity of the OXC in edge nodevEi .

PE
d,i

Positive real variable that represents the unit price of
IT resources in the DC in edge nodevEi .

P I
o,i

Positive real variable that represents the unit price of
switching capacity of the OXC in intermediate nodevIi .

Pe
Positive real variable that represents the unit price of
bandwidth usage on fiber linke.

P̃e
Positive real variable that represents the merged unit price of
bandwidth usage on fiber linke.

B. Distributed Tenant-driven VNT Slicing

We assume that there areK pending VNT requests from
the tenants. Thek-th VNT request can be represented as
Gr

k(V
r
k , E

r
k, P̂

r
k ), where V r

k and Er
k are the sets of virtual

nodes (VNs) and virtual links (VLs), respectively, and̂P r
k is

the highest cost that the tenant can afford. Here, each VN
vrk,i ∈ V r

k has an IT resource requirement ofRr
k,i, and it

should be mapped onto an edge node inV E with sufficient IT
resources in its DC. Note that, for node mapping, a tenant may
have a location constraint from its services,i.e., its VNs should
only be mapped onto a subset of edge nodes in the IDCON to
ensure certain access latency and/or coverage of its services
[10]. We denote the subset of the edge nodes that VNvrk,i
can be mapped onto asV E

k,i and haveV E
k,i ⊆ V E . Each VL

e ∈ Er
k has a bandwidth requirement ofRr

k,e, and it should
be mapped onto a substrate path with sufficient bandwidth.

Based on the resource advertisement from the InP, the tenant
calculates the VNE scheme for its VNT request with the lowest
cost, as shown in Fig. 2(c). This can be done by leveraging the
ILP model listed in Table III. Note that, in Eq. (9),E(v)− and
E(v)+ mean the sets of egress and ingress links to nodev,
respectively. After obtaining the VNE scheme by solving the
ILP, the tenant checks whether the scheme’s cost is affordable
(i.e., not exceedinĝP r

k ). If yes, the tenant will submit the VNE
scheme and the corresponding payment to the InP. Otherwise,
it will cancel its VNT request temporarily.

For the VNT requests submitted to the InP, we denote the
set of their indices asK ′. Then, based on the payments from
the tenants and the corresponding resource costs, the InP cal-
culates the profit from each VNT request (i.e., payment minus
total resource cost), sort the requests in descending orderof the
profits from them, and grant them one-by-one in sorted order.

Note that, in this process, a VNT request can be blocked due
to insufficient resources in the IDCON. Hence, the granted
VNT requests may be a subset of the submitted ones, and the
set of their indices can be denoted asK ′′. Finally, with K ′′,
the InP can calculate its profit from this round of VNT slicing,
which is denoted asP . According to Table II, the strategy of
resource advertising and pricing can be represented with the
advertisement matrixA = [{xE

o,i}, {x
E
d,i}, {x

I
o,i}, {ye}] and

the price matrixP = [{PE
o,i}, {P

E
d,i}, {P

I
o,i}, {Pe}, {P̃e}]. We

can see that the profitP is actually a function ofA andP,
i.e., P = f(A,P). In the next section, we will design a DRL-
based algorithm to let the InP learnP = f(A,P) intelligently.

TABLE III
ILP MODEL FORTENANT TO CALCULATE VNE SCHEME OF THEk-TH

VNT REQUEST

Variable Definition

xi,i′
Boolean variable that equals 1 if thei-th VN vr

k,i
in V r

k
is

mapped onto thei′-th edge nodevE
i′

in V E , and 0 otherwise.

ye,e′
Boolean variable that equals 1 if VLe ∈ Er

k
goes through

fiber link e′ ∈ E, and 0 otherwise.

Objective:

Minimize




∑

vr
k,i

∈V E
k,i

∑

vE
i′

∈V E

PE
d,i′ · xi,i′ · R

r
k,i+

∑

e∈Er
k

∑

e′∈E

P̃e′ · ye,e′ ·R
r
k,e



 .

(3)

Node Mapping Constraints:

xi,i′ ≤ xE
o,i′ , ∀vrk,i ∈ V r

k , vEi′ ∈ V E
k,i, (4)

xi,i′ = 0, ∀vrk,i ∈ V r
k , vEi′ 6∈ V E

k,i, (5)
∑

vE
i′

∈V E
k,i

xi,i′ = 1, ∀vrk,i ∈ V r
k , (6)

xE
o,i′ + xi,i′ − 1 ≤ xE

d,i′ , ∀vrk,i ∈ V r
k , vEi′ ∈ V E

k,i. (7)

Link Mapping Constraints :

ye,e′ ≤ ye′ , ∀e ∈ Er
k, e′ ∈ E, (8)

∑

e′∈E(vE
i′
)−

ye,e′ −
∑

e′∈E(vE
i′
)+

ye,e′ = xi,i′ − xj,i′ ,

{e : e = (vrk,i, v
r
k,j), e ∈ Er

k}, ∀vEi′ ∈ V E .

(9)

Resource Constraints:
∑

vr
k,i

∈V r
k

xi,i′ ·R
r
k,i ≤ Rc

i′ , ∀vEi′ ∈ V E , (10)

∑

e∈Er
k

ye,e′ · R
r
k,e ≤ Rb

e′ , ∀e′ ∈ E. (11)

III. AI- ASSISTEDRESOURCEADVERTISING AND PRICING

We first design an evaluate function̂Q(·) that can rank net-
work elements in the IDCON to get the advertisement matrix



A, and then propose a DRL-based algorithm to parameterize
Q̂(·) such that the price matrixP can be learned iteratively.

A. Design of Evaluation Function Q̂(·)

The evaluation function̂Q(·) should be able to rank network
elements in the IDCON such that if the InP turns down them in
the sorted order (i.e., maximizingQ̂(·) each time), its profit can
be maximized. We formulatêQ(·) as Q̂(A, nd; Θ,P), which
is a function ofA andnd with parametersΘ andP, andnd is
the network element (i.e., a DC, an OXC or a fiber link) to be
shut down and removed from the upcoming advertisement.
Supposing thatQ̂(·) has already been parameterized with
known Θ and P, the InP can use the simple procedure in
Algorithm 1 to obtain the advertisement matrixA.

Algorithm 1: Determining Advertisement MatrixA with
Evaluation FunctionQ̂(A, nd; Θ,P)

1 initialize A as turning on all the elements inG(V,E);
2 calculate the InP’s profitP based onA andP with the

approach in Section II;
3 P ′ = 0;
4 while P > P ′ do
5 P ′ = P , nd = argmax

nd∈A

Q̂(A, nd; Θ,P);

6 shut downnd and updateA accordingly;
7 calculate the InP’s profitP based onA andP;
8 end

We design a recursive structure [17] for̂Q(·) to capture
the features of each network element, by considering both
the characteristics of the IDCON’s topologyG(V,E) and
the element’s relation with other elements in the IDCON.
Specifically, at thet-th recursion, the features ofnd are
represented by a(2|V E |+|V I |+|E|)-dimensional vector̟ (t)

nd ,
and the recursive relations are defined as follows.

̟(t)
nd

=





f0(θ1 · xE
o,i + θ2 ·A1 + θ3 · f0(B1)), nd is the OXC invEi ,

f0(θ1 · xE
d,i + θ2 ·̟

(t−1)

O(vE
i
)
), nd is the DC invEi ,

f0(θ1 · xI
o,i + θ2 ·A2 + θ3 · f0(B2)), nd is the OXC invIi ,

f0(θ1 · ye + θ2 ·A3 + θ3 · f0(B3)), nd is fiber link e,

wheref0(x) = x if x ≥ 0, and 0 otherwise, and the parameters
{Am, Bm : m ∈ [1, 3]} are calculated as follows




A1 = ̟
(t−1)

D(vE
i

)
+

∑

nd∈N(vE
i

)

̟
(t−1)
nd

+
∑

nd∈E(vE
i

)

̟
(t−1)
nd

,

B1 =
∑

vE
j

∈N(vE
i

)

θ4 ·
(

P
E
o,j + P

E
d,j

)

+
∑

vI
j
∈N(vE

i
)

θ5 · P
I
o,j +

∑

e∈E(vE
i

)

θ6 · Pe,

A2 =
∑

nd∈N(vI
i
)

̟
(t−1)
nd

+
∑

nd∈E(vI
i
)

̟
(t−1)
nd

,

B2 =
∑

vE
j

∈N(vI
i
)

θ4 ·
(

P
E
o,j + P

E
d,j

)

+
∑

vI
j
∈N(vI

i
)

θ5 · P
I
o,j +

∑

e∈E(vI
i
)

θ6 · Pe,

A3 =
∑

{vE
i

: e∈E(vE
i

)}

̟
(t−1)

O(vE
i

)
+

∑

{vI
i
: e∈E(vI

i
)}

̟
(t−1)

O(vI
i
)
,

B3 =
∑

{vE
i

: e∈E(vE
i

)}

θ4 ·
(

P
E
o,i + P

E
d,i

)

+
∑

{vI
i
: e∈E(vI

i
)}

θ5 · P
I
o,i,

whereN(v) returns the set of OXCs in adjacent nodes of node
v, andD(v) and O(v) return the DC and OXC in nodev,

respectively. WithT recursions, the features of each network
element are spread to those that areT hops away from it. Then,
the evaluation function̂Q(A, nd; Θ,P) can be formulated as

Q̂(A, nd; Θ,P) = θ⊤7 · f0







θ8 ·
∑

n
′
d
∈G

̟
(T )

n
′
d

, θ9 ·̟
(T )
nd







 , (12)

whereΘ = {θi : i ∈ [1, 9]}.

B. DRL-based Algorithm to Parameterize Q̂(·)

We propose a DRL-based algorithm with the following
principle to parameterizêQ(·), i.e., determiningΘ andP.

• States: each state corresponds to a feasibleA.
• Actions: an action is to shut down one network element
nd at the current stateA.

• Rewards: the reward of an action at the current stateA

is calculated as:

fr(A, nd) = f(A/nd,P)− f(A,P), (13)

where f(A,P) calculates the InP’s profit, andA/nd

means to shut downnd at stateA.

Based on Eq. (13), we define ann-step-forward function

y =

n−1∑

i=0

fr(A
(t+i), n

(t+i)
d

) + β ·max
nd

[
Q̂(A(t+n), nd; Θ,P)

]
, (14)

wheret is the index of the current iteration,A(t+i) andn(t+i)
d

are the state and action at the(t+ i)-th iteration, respectively,
andβ is a constant coefficient. Then, in the DRL, we try to
minimize the squared regression loss defined as

[
y − Q̂(A(t), n

(t)
d

; Θ,P)
]2

. (15)

Algorithm 2 shows the procedure of the proposed DRL-
based algorithm. In each round of training, we first create two
setsΓ and∆ (Lines 2-3). The former is to store all the valid
training samples, and the latter is the training set with a fixed
size for an iteration.Line 4 initializesA(1), and the for-loop
covering Lines 5-21 tries to shut down a network element
in each iteration. Here, to diversify the training samples,we
generate a random numberǫ ∈ [0, 1] (Line 6), and test whether
it is smaller than a preset thresholdTh. If yes, the action
n
(t)
d is randomly selected withinA(t) (Line 8). Otherwise,

the action is determined according to the policy inLine 10.
Then, we getA(t+1) accordingly (Line 12) and calculate the
corresponding reward inLine 13. Due to then-step-forward
function in Eq. (14), only when the iteration number is larger
thann, {A(t−n), n

(t−n)
d , fr(A

(t−n), n
(t−n)
d )} becomes a valid

sample. Hence, it is added intoΓ in Line 15. Once there are
more than|∆| samples inΓ (Line 16), the training set∆
can be formed by selecting|∆| samples fromΓ randomly
(Line 17), and then the values of{Θ,P} are updated by
performing stochastic gradient descent (SGD) over Eq. (15)
for ∆ (Line 18). Finally, afterM rounds of training,Algorithm
2 determines and returns the values of{Θ,P}.



Algorithm 2: DRL-based Algorithm to ParameterizêQ(·)

1 for each round j ∈ [1,M ] do
2 create a setΓ to store valid training samples;
3 create a training set∆ with a fixed size;
4 initialize A

(1) as turning on all elements inG(V,E);
5 for each iteration t ∈ [1, 2|V E |+ |V I |+ |E|] do
6 generate a random real numberǫ ∈ [0, 1];
7 if ǫ ≤ Th then
8 selectn(t)

d randomly inA(t);
9 else

10 n
(t)
d = argmax

nd∈A(t−1)

Q̂(A(t), nd; Θ,P);

11 end
12 getA(t+1) from A

(t) by removingn(t)
d ;

13 calculatefr(A(t), n
(t)
d ) with Eq. (13);

14 if t ≥ (n+ 1) then
15 {A(t−n), n

(t−n)
d , fr(A

(t−n), n
(t−n)
d )} → Γ;

16 if |Γ| ≥ |∆| then
17 select|∆| samples fromΓ randomly to

form ∆;
18 update{Θ,P} by performing SGD over

Eq. (15) for∆;
19 end
20 end
21 end
22 end
23 return {Θ,P};

IV. PERFORMANCEEVALUATION

We conduct numerical simulations to evaluate the proposed
framework with DRL-based resource advertising and pricing,
which run on a computer with 4.0 GHz Inter Core i7-6700K
CPU, 16 GB RAM and 11 GB NVIDIA GTX 1080Ti GPU.
The DRL-based algorithm is implemented with TensorFlow
1.4.1. The topology of the IDCON can take either the 8-node
or the NSFNET topologies in Fig. 3. The cost of resources are
uniformly distributed within[10, 30] units in both topologies.
Here, unit stands for a general currency unit. We generate each
VNT request in a way as: 1) the number of VNs is uniformly
distributed within[1, 5], 2) the subset of edge nodes that each
VN is location-constrained within is randomly selected, 3)
each VN pair is connected by a VL with a probability of
0.6, and 4) the highest cost that a tenant can afford is linearly
proportional to the total number of VNs and VLs, with a slope
uniformly distributed within[16, 116] and[50, 150] units in the
8-node and NSFNET topologies, respectively.

When training the proposed DRL-based algorithm, we use
M = 200 as the maximum number of training rounds, set
the number of VNT requests in each round as uniformly
distributed within [5, 45], and have|∆| = 5 as the number
of training samples. After the training is done, we compare
the proposed DRL-based algorithm with a centralized bench-
mark. The benchmark prices resources according to a normal

(a) 8-Node Topology

(b) 14-Node NSFNET Topology

Fig. 3. IDCON topologies used in simulations.
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Fig. 4. Results in 8-node topology.

distribution with meanµ and standard deviationσ equal to
{65.7, 26.8} and {123, 37.4} for the 8-node and NSFNET
topologies, respectively, and performs resource advertising in a
greedy manner. Specifically, in the benchmark, by estimating
the network element that can be shut down to bring in the
maximum profit gain, the InP removes selected network ele-
ments one-by-one from the upcoming resource advertisement
until its profit is maximized, and the whole process does not
consider any inputs from the tenants’. The simulations average
the results from5 independent runs to get each data point.

Fig. 4 shows the results on the InP’s profit and the algo-
rithms’ average running time for the 8-node topology. We can
see that the proposed DRL-based algorithm achieves∼14.56%
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Fig. 5. Results in the 14-node NSFNET topology.

more profit than the benchmark in all the cases. Meanwhile,
the DRL-based algorithm also consumes less running time
than the benchmark. Here, to achieve fair comparisons, the
running time of the DRL-based algorithm includes the training
time. This is because with the benchmark, the InP has to
calculate the VNE schemes for the VNT requests and deter-
mine the resource advertising scheme in a centralized manner,
while with the DRL-based algorithm, it only needs to perform
network advertising according to the trained evaluation func-
tion and grant the VNE schemes from the tenants based on
resource availability. Hence, the results in Fig. 4 verify that our
proposed framework can not only make the InP more profitable
but also relieve its computation complexity effectively.

Fig. 5 illustrates the results on the InP’s profit and average
running time in the NSFNET topology. We observe the similar
trends as in Fig. 4. Actually, as the IDCON’s size is larger,
the proposed DRL-based algorithm achieves a larger profit
increase over the benchmark,i.e., ∼58.40% on average. Since
with the benchmark, the InP does not consider the tenants’
inputs when determining resource advertising and pricing
schemes, its profit in Fig. 5(a) does not exhibit a stable trend.
Moreover, the centralized scheme of the benchmark does not
scale well with the problem’s size, and thus its running time
increases exponentially with the number of VNT requests in
Fig. 5(b). This makes our proposed framework’s advantage on
reduced time complexity much more significant.

V. CONCLUSION

We proposed a novel framework to realize VNT slicing
in an IDCON, where the InP performs AI-assisted resource
advertising and pricing and grants the VNE schemes calculated

distributedly by the tenants. Then, for the InP, we designed
a DRL-based resource advertising and pricing algorithm for
profit maximization. Simulation results confirmed that com-
pared with the traditional centralized VNT slicing framework,
our proposal can not only make the InP more profitable but
also relieve its computation complexity effectively. In the
future, we need to further study both the timing and methods
for predicting the tenant demands and their affordable prices
accurately.
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