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Abstract—In multi-domain elastic optical networks with alien
wavelengths, each domain needs to consider intra-domain and
inter-domain alien traffic to estimate and guarantee the required
quality of transmission (QoT) for each lightpath and perform
provisioning operations. This paper experimentally demonstrates
an alien wavelength performance monitoring technique and ma-
chine learning-aided QoT estimation for lightpath provisioning
of intra-inter-domain traffic. Testbed experiments demonstrate
modulation format recognition, QoT monitoring and cognitive
routing for a 160 GBd alien multi-wavelength lightpath. By using
experimental training datasets from the testbed and an artificial
neural network (ANN), we demonstrated an accurate optical
signal to noise (OSNR) prediction with accuracy ∼95% when
using 1, 200 data points.

Index Terms—Multi-Domain Elastic Optical Networks, Alien
Wavelength, Machine Learning.

I. INTRODUCTION

ELASTIC optical networks (EON) make use of dynam-
ic and adaptive provisioning to guarantee efficient and

flexible network resources utilization. To provide the required
level of flexibility and dynamicity, the network control and
management plane needs automated provisioning schemes
with robust quality of transmission (QoT) estimation based
on the actual network link conditions. As analytical models
can only offer rough estimates of the QoT of lightpaths [1], it
becomes necessary to consider high margins to compensate for
model inaccuracies while guaranteeing the target QoT over the
duration of the lightpaths. Such high margins have a negative
impact on the maximum utilization of the network capacity.
Therefore, more accurate situation-aware QoT estimations are
desirable.
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The scenario becomes more complicated when it becomes
necessary to support high-capacity and dynamic traffic de-
mands across multiple autonomous systems (ASes) [1–4]; in
this scenario, lightpaths might neither originate nor end in one
single operator domain, but transparently traverse several of
them. These lightpaths are known as alien wavelengths [5,
6]. Guaranteeing the quality-of-transmission (QoT) of end-
to-end lightpaths is non-trivial across optically transparent
inter-domain networks. Due to administrative constraints, each
AS manager (or domain manager - DM) may disclose only
very limited intra-domain information, making QoT estimation
of inter-domain lightpaths challenging. As a consequence,
previous QoT estimation solutions based on analytical methods
[7] cannot be easily applied since they require full knowledge
of the domains (i.e., topology, links characteristics, etc.).

At the same time, emerging ML-based approaches, like the
ones described in the related work Section II, heavily rely on
the availability of large quantities of performance monitoring
(PM) data to train the cognitive tools responsible for QoT
estimation. As discussed later in Section III, it becomes then
important for each DM to be able to monitor alien wavelengths
traversing the domain. In fact, these alien wavelengths are
parts of the intra-domain traffic and should be considered when
monitoring and learning from the real environment.

In the context of a multi-domain network with orchestration
[3], this paper extends the results published in [8], reporting
the details regarding the alien wavelength PM technique (Sec-
tion IV), as well as a new section with results on machine
learning QoT estimation using a dataset from an experiment
testbed (Section V.B). Overall, the main contributions of this
paper are the following. First, we propose to use per-domain
alien wavelength PM to assist ML-based QoT estimation in
each domain. Second, we report a proof-of-concept experimen-
tal demonstration of alien wavelength PM by a combination
of modulation format identification (MFI) [9] and supervisory
channel (SC) techniques [10]. Third, we use datasets collected
from an experimental testbed to demonstrate accurate training
and QoT OSNR estimations using an ML approach based on
artificial neural networks (ANN). Finally, we use a testbed to
demonstrate a use case example of cognitive RMSA.

The remainder of this paper is organized as follows. Section
II discusses the related work on cognitive optical networking
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Fig. 1. (a) Experimental setup for characterization of the proposed technique. (b) 10 GBd 16-QAM waveform with ASK overmodulation. (c) Electrical
waveform after the APD. (d) Received ASK signal after low-pass filtering (red curve; blue curve is the applied ASK signal at the transmitter). (e) Measured
correlation curve between the Q-factor of the ASK signal and the OSNR for 4-QAM, 8-QAM, and 16-QAM.

with machine learning. Section III introduces the framework
of the multi-domain network architecture with per-domain
cognitive function and broker-based orchestration. Section
IV introduces the working principle of the proposed alien
wavelength PM technique. Section V reports the testbed
experiments. Section VI concludes the paper.

II. RELATED WORK

There has already been a significant amount of work on
cognitive optical networking [11–14] and related applications
of ML tools. For a comprehensive overview of the application
of ML in optical networks, the readers can refer to [15, 16].
Below we briefly discuss a few papers grouped into three
different categories: resource allocation, QoT estimation, and
anomalies detection.

Cognitive resource allocation schemes: In [17], the authors
implemented a neural network to facilitate adaptive bandwidth
allocations in passive optical networks for ensuring users’
quality-of-service. The authors of [18] proposed the use of
ML for accurate blocking probability estimation of optical
networks. In [19], Liu et al. proposed to incorporate neural
network-based traffic prediction in the design of survivable
IP-over-EONs so that resource bottlenecks can be avoided
for potential future failure restorations. In [20], the authors
reported a machine learning assisted resource orchestration
scheme for optical datacenter networks, which can adapt
the datacenter topology configurations dynamically based on
the predicted application demands. More recently, we intro-
duced data analytics to service provisioning of multi-domain
EONs and demonstrated a knowledge-based framework for
autonomous inter-domain traffic engineering [21].

Cognitive QoT estimation schemes: The authors in [22]
proposed the use of machine learning (ML) techniques to
estimate whether a given Routing, Modulation format, and
Spectrum Assignment (RMSA) would meet the desired QoT.
Their approach consisted of training a classifier using a large
dataset with measures obtained over the time. Here, the
classifier should be periodically re-trained to reduce deviations
by constantly collecting and storing the monitored data. A
different approach was presented in [23], where the authors
proposed to continuously monitor the optical layer and use
such data to tune an analytical impairments model used for
QoT estimation. In [24], the authors demonstrated a single
domain ML-based optical signal to noise ratio (OSNR) pre-
dictor in an SDN network.

Cognitive anomaly/QoT degradation detection schemes: Re-
f. [25] analyzed several failure scenarios affecting the quality
of optical connections and proposed two algorithms for detect-
ing significant bit-error-rate changes and identifying failure
patterns. The authors of [26, 27] discussed various types of
real-life network fault use cases and proposed a variation
based proactive fault detection scheme which was shown to be
more efficient than the traditional threshold-based schemes. In
[28], Shahkarami et al. compared different machine learning
algorithms, i.e., support vector machine, random forest and
neural networks, in performing anomaly detection and identi-
fication and discussed the trade-off between model accuracy
and complexity for different methods. In [29], we leveraged
hybrid unsupervised and supervised machine learn approaches
and proposed a self-taught anomaly detection framework,
which could detect unseen anomalies by learning patterns from
monitoring data itself.

Nevertheless, existing works did not consider the multi-
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Fig. 2. (a) A schematic framework of the proposed cognitive multi-domain optical network with observe-analyze-act machine learning cycle and the broker
plane interacting with the multiple domain managers. (b) The operation principle of the proposed framework.

domain scenario with alien wavelengths, which requires care-
ful studies of complex cases involving multiple ASes working
cooperatively with limited information exchange.

III. NETWORK ARCHITECTURE

A. Cognitive Multi-Domain EON Architecture with Alien
Wavelengths

Fig. 1(a) shows a schematic framework of the proposed
cognitive multi-domain EON, which operates according to an
Observe-Analyse-Act cycle [4]. The data plane of each EON
domain contains bandwidth-variable transponders (BVTs) and
bandwidth-variable wavelength selective switches (BV-WSSs).
PM elements are deployed at certain locations for collecting
the network status in real time (Observe). For instance, a
coherent receiver can measure and report the bit-error-rate
(BER) of an active connection. Also, SC PM tools can be
used in each domain to monitor QoT (BER or OSNR) of alien
wavelengths.

Note that the significance of monitoring alien wavelength-
s is two-fold. First, the state of alien wavelengths affects
the performance of intra-domain connections. Second, such
information enables better perceptions of the inter-domain
traffic behavior, facilitating potentially better intra-domain
planning result. DMs apply the software-defined networking
(SDN) paradigm to operate their EON domains [30]. Specif-
ically, SDN controllers residing in the domain control and
management plane can collect PM data and conduct service
provisioning by interacting with SDN agents that collocate
with optical devices. Based on traffic engineering metrics and
the received PM data, DMs can realize domain-level cognitive
service provisioning. For instance, by analyzing the correlation
between the path configurations and QoT, DMs may accurately
predict the QoT of candidate RMSAs solutions (Analyse) and

therefore, set up connections with guaranteed QoT and reduced
margins (Act).

A broker plane on top of DMs coordinates the service pro-
visioning across multiple domains. The broker plane operates
similarly to a DM, but only perceives limited or even no intra-
domain information due to the administrative constraints in
multi-AS systems. DMs can abstract their domains as virtual
topologies consisting of virtual links among edge nodes [31]
and report the QoT estimations of the virtual links as well as
PM data of alien wavelengths measured at each of the edge
nodes. Then, by utilizing a hierarchical learning approach [32],
multi-domain service provisioning with QoT assurance can be
achieved.

Fig. 3. (a) Constellation diagrams. (b) FFT after ()2. (c) FFT after ()4. (d)
FFT after ()8. [9]
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Fig. 4. Testbed. LD: laser diode; IQ: phase/quadrature modulator; MZ: Mach Zehnder modulator; DM: domain manager; Inset (i): MFI monitoring: LO:
local oscillator; ADC: analog to digital converter; DSP: digital signal processing; Inset (ii): SC-PM monitoring: BERT: bit error rate tester; Inset (iii): Alien
wavelengths spectrum.

B. Operation Principle
We summarize the operation principle of the proposed

cognitive multi-domain EON framework with alien wave-
length PM in the workflow in Fig. 1(b). Each DM constantly
conducts PM for both intra-domain connections and alien
wavelengths. A domain-level learning process is then executed
(step a). The learned results can either be used for intra-
domain provisioning (step b) or sent to the broker plane for
learning the performance of inter-domain end-to-end lightpaths
(steps c-d).

In the provisioning phase, upon receiving a lightpath request
(step 1), the DM first determines whether it is for intra- or
inter-domain transmission. If it is an intra-domain request,
the DM immediately tries to calculate an RMSA solution
that satisfies the QoT requirement. Specifically, the DM can
calculate several candidate paths using an RMSA. Then the
DM call the domain-level QoT estimation model to estimate
the QoT of each candidate path solution provided by the
RMSA. The QoT of existing in-service connections, in the
case that each specific candidate RMSA is used, will also
be evaluated. The DM will choose the RMSA solution that
satisfies the QoT requirement and ensures the QoT of existing
connections. On the other hand, if the request is for inter-
domain communication, the request is forwarded to the broker
plane (step 2). To calculate an inter-domain lightpath, the
broker plane requests for intra-domain information from the
related DMs (step 3). Each involved DM, in turn, replies with
several intra-domain candidate lightpaths together with their
estimated QoT (steps 4 and 5). The broker plane aggregates
the received data, builds a multi-domain virtual topology,
and calculates an inter-domain end-to-end RMSA with QoT
guarantee relying on the broker-level QoT estimation model
(step 6, with a hierarchical learning approach [32]). Finally,
each related DM sets up the path segment within its domain
to accomplish the inter-domain provisioning service (step 8).

IV. ALIEN WAVELENGTH MONITORING SYSTEM

As mentioned above, PM of alien wavelengths is essential
for correct estimation of QoT parameters in intra- and inter-

domain lightpath provisioning. In this section, we discuss the
details of an alien wavelength PM system that can be used by
the domains to identify the modulation format and OSNR of
the alien lightpath traversing the domains. The proposed PM
system exploits a combination of two monitoring techniques
which are experimentally demonstrated in the subsequent
sections. This PM system will be used at the ingress and the
egress nodes of a domain, as shown later in Section V.

A. Supervisory Channel
The first PM tool is called supervisory channel (SC). Ref.

[10] reported this technique for QPSK signals. In this paper,
we extend the demonstration for the first time to QAM signals
as well.

Fig. 2(a) shows the experimental setup used to evaluate and
characterize the proposed PM technique. A standard coherent
Tx (Co-Tx) consists of an external cavity laser (ECL), an
I/Q modulator, and an electrical arbitrary waveform generator
(EAWG) generating an optical M-QAM signal at 10 GBd.
As part of the monitoring system, the optical signal is then
fed into a second Mach-Zehnder modulator (MZM) to over-
modulate the coherent signal with a 200 Mb/s ASK signal with
0.1 modulation index. Before the Rx (or at an intermediate
node in the network where monitoring is needed), 10% of
the optical power is tapped to the PM system, whereas the
rest goes into a coherent receiver operating at full speed. The
PM system consists of an avalanche photodiode (APD) and
an analog low-pass filter (LPF) with 200 MHz bandwidth. An
FPGA-based bit error rate tester (BERT) receives the ASK
signal and calculates its BER and Q-factor.

Fig. 2(b) depicts the optical signal captured by the real-time
oscilloscope (RTO). It shows that the low-speed ASK signal
has shaped the envelope of the M-QAM signal. Fig. 2(c) and
(d) present the waveform of the signal after the APD and
LPF, respectively, clearly showing that the ASK symbols can
be extracted from the high-speed M-QAM signal thanks to the
LPF.

We varied the OSNR values using a variable optical attenu-
ator (VOA) and erbium doped fiber amplifier (EDFA) as noise
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loader. We measured the Q-factor of the ASK signal when the
modulation format of the high-speed optical signal is QPSK,
8-QAM, and 16-QAM. An optical spectrum analyzer (OSA)
with 0.1 nm resolution bandwidth is placed before the coherent
receiver to measure the OSNR independently.

Fig. 2(e) shows the measured BER of the ASK signal with
respect to the real OSNR measured by the OSA. When OSNR
is relatively low, the BER is monotonically decreasing with
OSNR. When the OSNR is greater than 20 dB, the BER
experiences a floor due to the perturbation of the multi-level
QAM signals on the ASK signal. Fig. 2(e) also shows the
theoretical curve for reference. At high OSNR values, results
from both modulation formats deviate from the theoretical
model. We attribute this deviation to the amplitude fluctuation
induced by the high-speed M-QAM signal. By recording the
measured BER of the ASK signal and knowing the modulation
index of the ASK signal and modulation format of M-PSK or
M-QAM signal, low-cost OSNR and BER monitoring of the
high-speed M-PSK and M-QAM signals can be achieved.

Fig. 5. MFI output for (a) QPSK and (b) 8PSK signals.

TABLE I
BER VALUES IN THE TESTBED AT INGRESS AND EGRESS NODES

QPSK/8BPSK
Ingress Egress

SC-BER 1E-3 3E-3
Alien λ OSNR 13.5 dB 12.7 dB

B. Modulation Format Recognition

As reported above, the SC technique allows monitoring QoT
parameters (e.g., OSNR and BER) of an alien wavelength
under the assumption that the modulation format is known.

However, in a multi-domain architecture, as described in
Section II, the DM might not have access to this information,
and therefore, a system that allows identifying the modulation
format of alien wavelengths is needed to be able to use the
PM systems proposed in the previous subsection. Such modu-
lation format recognition system can serve other purposes like
training of ML-based QoT estimators.

In Ref. [9], we already experimentally demonstrated a PM
technique based on a blind modulation format identification

(MFI) method. This technique can deliver very high accuracy
(> 99%), even when the OSNR of the incoming signal is < 10
dB. The MFI technique allows identifying the modulation
format by sampling the signal, performing a Fast Fourier
Transform (FFT) of the samples after different power oper-
ations, and finally observing the peak to average ratio of the
Fourier transform. Fig. 3 reproduces simulation results from
[9] for the sake of completeness; the 512-point FFT after
the nonlinear power transformations for different modulation
formats are shown. The signals’ baud rate was 10 GBd, and
the laser linewidth was 100 kHz. After the correct power
operation, a peak tone showed up in the signal’s frequency
spectrum.

By evaluating whether there is a peak tone or not after
certain transformations and comparing the peak tone intensity
against predefined threshold values (i.e., see the peak intensity
difference between QPSK and 16QAM in Fig. 3(d), the MFI
technique can determine the signals’ modulation formats.
Experimental studies reported in [9] demonstrated that the
proposed MFI method could achieve successful identification
rate as high as 99% when the incoming signal OSNR is as
low as 7 dB. The reader can refer to ref. [9] for more details.

V. TESTBED EXPERIMENTS

The goal of the experimental testbed demonstrations dis-
cussed in the following section is threefold. First, Section V.A
shows a proof of concept demonstration of alien wavelength
monitoring by a combination of MFI and SC techniques. Sec-
ond, in Section V.B, we demonstrate the use of experimental
data to train a QoT OSNR estimator using an ML approach
based on ANNs. Finally, Section V.C shows a simple use
case scenario of cognitive RMSA; the scenario illustrates how
the use of a legacy RMSA could lead to underestimating the
physical impairments (saturation and noise loading conditions
in the optically-amplified links), resulting in a connection
failure due to excessively high BER at the receiver.

A. Alien Wavelength Monitoring Experiment

Fig. 4 shows the experimental testbed. An EAWG produces
the analog electrical signals to generate QPSK or 8PSK alien
wavelength signals and an I/Q block modulates 16 WDM
lasers at 10 GBd (160 GBd). After the alien signals are
amplified by an EDFA, they travel toward their destination
network domain. The ingress node has PM capabilities based
on MFI and SC (see also Section IV). The ingress node applies
a low-speed (200 Mb/s) low-modulation-depth SC on the
alien wavelengths to enable PM without significantly affecting
the signals themselves. Insets i) and ii) in Fig. 4 show the
schematic of MFI and SC-PM blocks (please refer to Section
IV and also to [9] for more details). At the ingress node,
an FPGA generating four WDM 10Gb/s signals acts as an
intra-domain traffic source. There are two paths to reach the
egress node with lengths of 25km and 75km, respectively. A
PM block located at the egress node monitors the QoT of the
alien signals going out of the domain.

Fig. 5 (a-b) show the results of the MFI monitoring block
when changing the alien wavelength modulation format. For
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QPSK, Fig. 5(a) shows that after the power of four transfor-
mation, a peak can be observed in the FFT spectrum, which
allows determining that the signal modulation format is QPSK.

When switching the modulation format to 8PSK, the peak
in the FFT spectrum disappeared (see Fig. 5(b)); this allowed
determining that the modulation format was 8PSK. Table I
shows the results of SC monitoring at the ingress and egress
nodes when the alien lightpath is modulated with QPSK and
8PSK and going through the shortest path.

Fig. 6. OSNR distribution of the measured data.

B. ML-aided QoT Estimator Experiment

Applying the alien wavelength PM technique, we demon-
strated alien wavelength monitoring using the testbed of Fig.
4. In this section, we want to demonstrate instead an ANN-
based tool to estimate the OSNR of unestablished lightpaths
given the current network traffic conditions (traffic can be a
combination of intra-domain traffic and alien wavelengths).
Targeting a more realistic network scenario, we extended the
experimental setup in Fig. 4 to a seven-node testbed, like the
one reported in Ref. [32] but assuming all the nodes belonging
to the same domain. By regulating the routing paths and link
loads of the testing lightpaths, we obtained 1,200 PM datasets
to be used for training and testing purposes. Fig. 6 plots the
histogram that shows the distribution of the measured OSNR
for the target lightpaths.

The OSNR estimator makes use of an ANN consisting of
two hidden layers. Fig. 7 shows the detailed structure of the
OSNR estimator. The estimator takes as inputs the power
measurements of all the channels together with the noise level
on each link along the routing path to predict the OSNR of
an end-to-end lightpath. Specifically, we set the length of the
inputs as L(N + 1) + N to accommodate the monitoring
data from all the links at the current time plus an indicator
of N bits representing which of the channels will be used
by the lightpath, where L and N denote the number of fiber
links in the EON and the number of channels on each link,
respectively. We encode the information of routing path setting
all the bits corresponding to links that do not belong to the
path as 0.

Each node j in layer i (i > 1) is fully connected to the
nodes in layer i − 1, and with an activation function f(x) =

max(x, 0) [33], its output value is computed as,

hi,j = f(wT
i−1,j · hi−1 + bi−1,j),

where wi−1,j contains the weights of the edges between node
j and the nodes in layer i− 1, and bi−1,j is the bias.

Here, we can see that node j is a higher-level representation
of the nodes in the lower layer. Therefore, with multiple hidden
layers, we can potentially extract the most useful features
from the initial input data for the final OSNR estimation. The
estimator is trained using the back-propagation method to fine-
tune the values of wi−1,j and bi−1,j such that the difference
between the outputs of the ANN and the real monitoring
OSNR is minimized. Eventually, we can infer the BER of
lightpaths with the estimated OSNR according to the mappings
in Fig. 2(e).

Fig. 7. Structure of the OSNR estimator.

Fig. 8. Results on average prediction error.

Aiming at finding the right configuration of the ANN and
the impact of the size of the training dataset on the perfor-
mance of the OSNR estimator, we evaluate the prediction
error for different numbers of nodes per layer and different
sizes of training dataset (denoted as N) and plot the results in
Fig. 8. Specifically, we randomly picked out certain numbers
of data points from the whole dataset, divided them into
the training and testing datasets with a proportion of 9:1,
repeated the experiment for five times and calculated the
average estimation errors. The estimation error is defined as
|Orel−Oest|

Orel
, where Orel and Oest stand for the measured

and estimated OSNR values (in linear scale), respectively.
As expected, we can observe that the estimation accuracy
improves with the number of data points since the estimator
can learn more accurately the inherent correlations between
the path performance and network configurations with more
data. Meanwhile, we can see that the performance of the
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OSNR estimator improves significantly when the number of
nodes in each layer is increased from 5 to 10 and then stays
almost unchanged when the scale of the ANN further enlarges.
Such observation indicates that under our specific experiment
testbed setup and for the OSNR estimation task, two hidden
layers with 10 nodes in each layer are sufficient for relatively
good estimation accuracy.

Note that, we have also evaluated the impact of the number
of hidden layers on the estimation accuracy and the results
show that two hidden layers are sufficient for the current
dataset. This is because further adding the number of layers
would lead to overfitting and thus bias the performance of the
estimator.

Overall, with 1,200 data points and 40 nodes in each layer,
the estimator can achieve an average estimation error of as low
as 5.8%. It is reasonable to expect that the estimation accuracy
will further improve when larger datasets are employed.

Finally, Fig. 9 shows the comparison between the measured
OSNR values and the estimated ones when the size of the
dataset is 1,200, which exhibits a good match and further
verifies the practicability of the proposed method.

Fig. 9. Comparison between measured and estimated (red stars) OSNR.

C. Cognitive RMSA Example

It is important to demonstrate that the use of a simple RMSA
without cognitive functions could lead to underestimating the
physical impairments (saturation and noise loading conditions
in the optically-amplified links), resulting in a connection
failure due to insufficient BER at the receiver. To this aim
and to motivate our proposal, we performed a simple use case
experiment on the testbed in Fig. 4. Let us assume that there is
a 480 Gb/s alien lightpath request A (e.g., 8PSK modulation
format) that must traverse the domain in the testbed. There
is also a WDM lightpath B (40 Gb/s) currently established
through link 1-3, which is already saturating the amplifier. In a
scenario with simple RMSA, the network control plane could
decide to route the request through link 1-3 (shortest path)
using 8PSK modulation format [see Fig. 10(left)]. However,
because the link is already loaded by intra-domain traffic, the
QoT at the egress node might not be as expected (OSNR is
too low and the estimated BER is 2.5E-2 (see Table II), which
is higher than the 20%-FEC limit of 1.5E-2 [34]). Assuming
instead that the network control plane has cognitive functions,
it would use the information provided by the ML-aided OSNR
estimator to consider the current link status and decide to route

the 420 Gb/s alien signal through the longer but empty link
1-2-3 [see Fig. 10(right)]. As shown by the BER Table II, in
this case, the BER at the egress node is below the pre-FEC
BER limit.

Fig. 10. (Left) Links status with simple RMSA. (Right) Links status with
Cognitive RMSA.

TABLE II
BER VALUES IN THE TESTBED AT INGRESS AND EGRESS NODES. SC:

SUPERVISORY CHANNEL; AW: ALIEN WAVELENGTH.

Simple RMSA Cognitive RMSA
SC BER AW BER SC BER AW BER

Ingress 1E-3 8.7E-4 1E-3 8.7E-4
Egress 8E-3 2.5E-2 2.7E-3 5.2E-3

VI. CONCLUSION

This paper experimentally demonstrated alien wavelength
PM for cognitive provisioning in multi-domain networks. Each
autonomous system (domain) makes use of optical PM to
train an ANN-based QoT estimator to predict the OSNR of
intra- and inter-domain lightpaths and make sure that the new
connection to be established, as well as the existing ones, will
meet the QoT requirements that guarantee BER values below
the pre-FEC threshold.

By using experimental data, (a) we demonstrated a new
monitoring technique for modulation format recognition and
OSNR monitoring; (b) we trained an ANN-based ML QoT
estimator capable to estimate the OSNR of a given lightpath
with an estimation error < 6%; (c) we demonstrated a use case
network scenario of cognitive routing based on the existing
network conditions.

Future research works will focus on: (a) the use of larger
testbeds to better understand how the estimation performance
of the ML tool depends on the number of network nodes, the
number of links, the size of the training datasets and specific
ML approaches (e.g. Q-learning [35]); (b) hierarchical learning
approaches for multi-domain routing [32].
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