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Abstract—To realize cost-effective and adaptive network con-
trol and management (NC&M) on inter-datacenter optical net
works (IDCONSs), people have considered network virtualizéion
to let the operator of an IDCON work as an infrastructure
provider (InP), which can create virtual optical networks (VONSs)
over the IDCON for tenants. In this work, we use this network
scenario as the background, and try to integrate deep learmig
(DL) based traffic prediction in the NC&M of the IDCON and
the VONSs created over it. We first design the service provisiaing
framework in which each tenant uses a DL module to predict
the traffic in its VON and will submit a VON reconfiguration
request to the InP, when it sees a significant mismatch betwee
future traffic and the allocated resources in its VON. Then,
the InP will invoke the VON reconfiguration to make the VON
be better prepared for future traffic. An adaptive and scalable
DL-based traffic predictor is proposed together with a cogniive
service provisioning algorithm to exploit the temporal andspatial
characteristics of inter-DC traffic and achieve effective srvice
provisioning based on precise and timely traffic prediction Next,
we consider the situation where a tenant leverages “machine
learning-as-a-service” (MLaaS) and outsources the traimg of its
DL module to a third-party entity for overcoming its resource
limitations, and analyze the induced vulnerabilities due ¢ data
poisoning. Our simulation results indicate that with our proposal,
the InP can invoke VON reconfigurations timely and improve
the service provisioning performance of each VON significathy.
Meanwhile, the results also demonstrate that our data poisting
scheme can easily bypass the normal validation of the DL mode
and generate significant adversarial effects.

Index Terms—Virtual optical networks (VONSs), Deep learning,
Data poisoning, Traffic prediction, Virtual network reconfi gura-
tion, Elastic optical networks (EONs), Datacenters (DCs).

|. INTRODUCTION

management (NC&M) scheme that can allocate optical spectra
in a flexible manner to adapt to traffic demands exactly and
readjust the spectrum allocation dynamically when demands
change. This, however, can hardly be achieved with the
traditional NC&M schemes that were designed to operate on
semi-permanent lightpaths in fixed-grid wavelength-dons
multiplexing (WDM) networks [3, 4]. Hence, people tried to
push the boundaries of innovations from two perspectives,

the optical networking and network virtualization [5-9].

For optical networking, flexible-grid elastic optical netks
(EONSs) have been considered to reduce bandwidth allocation
granularity of the optical layer t®#2.5 GHz or even narrower
and enable IDCONSs to customer transmission services more
adaptively [6, 7]. However, IDCONs might not be able to fully
explore the flexibility of EONs without network virtualizah
[10, 11]. This is because in practice, an IDCON is usually
shared by multiple DC operators to maximize its resource
utilization and cost-effectiveness [10, 12]. With netweiku-
alization, the operator of the IDCON becomes an infrastmect
provider (InP) that creates virtual optical networks (VQNs
based on the requests from DC operatoes, building virtual
links (VLs) and virtual nodes (VNs) over the fiber links and
optical switches in the IDCON, respectively, while each DC
operator rents a VON from the InP to interconnect its DCs.
Hence, each DC operator does not need to build its own
IDCON and the InP can lease its network resources adaptively
which achieves a “win-win” situation.

Note that, the complexity due to the characteristics ofrinte
DC traffic would demand for centralized NC&M for both the
InP and DC operators. This can be achieved by leveraging

ECENTLY, with the overwhelming growth of cloud software-defined networking (SDN), which separates the con

computing, datacenters (DCs) and the optical network®! and data planes of a network and enables operators o cus
to interconnect them have become the key infrastructure t@mize their network services with enhanced programntgbili
attract intensive interests from both academia and ingdusand scalability [13, 14]. However, the centralized NC&M in

[1]. Nevertheless, the characteristics of inter-DC tredfie far

SDN only enables the InP and DC operators to make decisions

different from those of traditional telecommunicationffi@ based on the current and historic network status, which imigh
i.e., much more dynamic and bursty due to DC application®t properly address the highly dynamic traffic demands in
and the variations on their temporal and spatial distringi €ach VON. For instance, the InP might need to scale the
[2]. This brings new challenges to the underlying opticaletwork resources allocated to a VON according to the actual
networks that interconnect DCs.e., the inter-DC optical traffic demands in it, but reconfiguring optical transposder
networks (IDCONSs). Specifically, the operator of an IDCONnd switches usually takes relatively long time [15]. Herice
would expect a cost-effective and adaptive network comtnol order to minimize the negative impacts, the DC operator sieed
to forecast the traffic demands in its VON and submit scaling
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dynamic traffic in an inter-DC network timely and preciselyulnerability of DL-assisted IDCON management in Section
is not a trivial task, since the traffic would be closely retht V. The performance evaluations are discussed in Section VI.
to application profile and user behaviors and modeling su&imally, Section VII summarizes the paper.
complex characteristics with traditional linear matheoadt
methods is intractable [17]. Fortunately, deep learning;)(D
[18] has excellent self-learning capability, and can mine t
self-similarity of traffic and catch the inherent corredautiof Previously, there have been a few studies on the NC&M
its variations from massive data, so that characterizireg tachemes of IDCONs for dynamic and adaptive service pro-
periodic and pulse changes of future traffic accurately. visioning. Klinkowskiet al. [23] discussed the advantages of

Despite its advantages, the dilemma of integrating DL in tHaiilding IDCONs based on EONs. To explore the advantages
NC&M of an IDCON and its VONs is that neither the InP noof EONSs, the studies in [24—28] have considered various rout
the DC operators might have the expertise, hardware/sagtwing and spectrum assignment (RSA) and scheduling schemes
resources, and labor resources to design and train sayaitésti for transferring data in IDCONSs. In [29], the authors progws
DL modules for precise and timely traffic prediction. Specifiseveral algorithms to leverage the store-and-forwardraehe
cally, to design and train the deep neural network (DNN) forfar realizing data transfers in fixed-grid IDCONs. We have
DL module quickly, one needs to not only have the access@ompared the performance of data-oriented task schediling
massive computing and storage resoureeg,(an expensive fixed- and flexible-grid IDCONs in [4]. IDCONs have also
graphics processing unit (GPU) cluster) but also possed#racted noticeable attentions from industry [30]. Homrgv
the speciality of monitoring the training process closetyl a all these studies did not consider network virtualization.
selecting a proper DNN design accordingly from numerous To introduce network virtualization in IDCONs and build
candidates. Here, the DNN design refers to its structure a®Ns adaptively to interconnect DCs, researchers have de-
hyper-parameters.€., the number of layers and the numbesigned a few virtual network embedding (VNE) algorithms in
of neurons in each layer). Note that, according to [18],ehe[31, 32], and conducted several experimental demonstistio
is no known theoretical approach that can optimize the hyp@n control plane and full-stack operations in [33] and [15,
parameters for an arbitrary DNN. Therefore, the DNN’s desig34], respectively, by leveraging SDN. Nevertheless, adisth
can only be finalized with a complicated and time-consumingvestigations did not consider to integrate DL in the NC&M
empirical approach. Apparently, the requirements meetionschemes for traffic prediction, and thus the InP can only
above would be too much for a network operator, and liuild VONs based on the current network status. Previously,
would be much more reasonable to outsource the designpepple have incorporated DL-based approaches in the NC&M
and training tasks to a third-party entity and leverage thd optical networks for fault management [35] and failure
so-called “machine-learning-as-a-service” (MLaaS) [1Rdr prediction [36]. Also, with DL-based traffic prediction, gele
instance, large enterprises such as Google and Microseét hhave addressed various networking scenar@ég, single-
already offered the MLaaS services to help customers tralomain software-defined EONs (SD-EONS) in [37], multi-
their DNNs [20, 21]. However, it is known that the DNNsdomain software-defined EONs in [38], and multilayer IP-
trained by MLaaS would be vulnerable to data poisoningver-EONs in [39]. Meanwhile, Velascet al. [40, 41] have
[22]. Specifically, an attacker who has hacked into the MLagBoposed and demonstrated a network architecture for auto-
system can deploy malicious back-doors and contaminate thatic VON slicing and reconfiguration. More specificallye th
DNN sneakingly by using adversarial samples. network architecture was laid out in [41], while the detdile

In this paper, we study how to integrate DL-based traffidesign for realizing adaptive VON reconfiguration based on
prediction in the NC&M schemes for an IDCON and its VON{#raffic prediction was described in [40]. Note that, the #&ad
s. In our service provisioning framework, each DC operator [40, 41] tried to predict the traffic between each DC
uses a DL module to predict the traffic in its VON and wilpair with an independent artificial neural network (ANN).
ask the InP to invoke a VON reconfiguration, when it seesHowever, as we will show in the performance evaluations
significant mismatch between future traffic and the allodtatén Section VI, this scheme would have difficulty to capture
resources. We design an adaptive and scalable DL-baséd trahe exact trend of traffic fluctuation in an IDCON and only
predictor that can exploit the temporal and spatial charagerovide relatively low prediction accuracy. More importlgn
teristics of inter-DC traffic and deliver precise and timelgll of the aforementioned studies assumed that the opsrator
forecasts. Then, a cognitive service provisioning alponiis would design and train the DL modules by themselves, but did
also proposed to use the prediction results effectivelyalyi, not consider the more practical MLaaS scenario or address th
we consider the situation where a DC operator leveragesinerabilities of outsourcing DL training in MLaasS.

MLaaS to outsource the designing and training of its DL The vulnerabilities of DL training and how to attack it with
module, and analyze the induced security threats. data poisoning have been discussed in [19, 22], where the
The rest of the paper is organized as follows. In Secti@uthors explained that an attacker can deploy maliciouk-bac

II, we briefly survey the related work. Section Il describedoors in neural networks with adversarial training sampbes
the service provisioning framework of DL-assisted IDCONontaminate them sneakingly. For instance, the study ih [19
management. The DL-based traffic predictor is designed thowed that the attacker could make a DL module mislabel
gether with the cognitive provisioning algorithm in Sectio images with data poisoning. Note that, none of these studies
IV, and we develop the data poisoning scheme to explore theed traffic prediction in networks as the background, while

II. RELATED WORK
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assisted IDCON management that is considered in this work.  =------ PR3 oo oo SPRSREE oo p oo
The InP owns the substrate IDCON that interconnects the el ettt bty

geographically distributed DCs of several DC operatorseHe 3
to realize flexible bandwidth allocation in the IDCON, we |
assume that it is based on an EDMs each DC operator !
(i.e., a tenant) may want to customize its inter-DC network L
for satisfying the special needs of its applications, ittsen "™ € /4
a VON slice from the InP to interconnect its DCs and may
send requests for reconfiguring the VON when necessary. The
tenant manages its VON with a centralized SDN controller,
which includes a DL-based traffic predictor to analyze the
historical traffic samples in the VON and forecast futur€ig. 1. Service provisioning framework of DL-assisted IDE@anagement.
traffic demands. Then, when the controller sees a significant

mismatch between future traffic and the allocated resournces

the VON, it will send a VON reconfiguration request to the InP We assume that the tenant submits an initial VON request
to scale up/down the allocated resources. As explaineddefaluring initialization, and after that, it can request for NO
since the tenant might not have the expertise and resourpesonfiguration from time to time. The initial VON can be
to design and train its DL module for precise and timelgmbedded in the substrate IDCON with a known VNE algo-
traffic prediction, we assume that it would leverage MLaa&hm (e.g, the CaLRC algorithm that we developed in [8]).
to outsource the tasks to a third-party entity. On the InR,sidThe tenant determines whether its VON topology needs to
its NC&M consists of two modules,e., a virtual network be reconfigured based on the traffic prediction from the DL
manager (VNMgr) to calculate VON mapping schemes anmflodule in its SDN controller. Specifically, the DL-basedftca
interact with the tenant controllers and a network hyp@nvispredictor monitors the historical traffic between each D@ pa
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to create/reconfigure VONSs [15]. of the tenant, and forecasts the future traffic between the DC
pair. Here, a DC pair refers to a pair of source and destinatio
B. Service Model DCs in the tenant’s VON. If a VON reconfiguration would

We denote the topology of the substrate IDCON e necessary, the tenant will send a request to_ the InP and
G*(V*, E*), whereV* and E* represent the sets of substratdft it scale up/down{F,, Ve € E} to adapt to its future
nodes and fiber links, respectively. For each tenaet @ DC application traffic. Upon receiving the request, the InPI wil
operator), it has a few geographically distributed DCs testd  US€ the “make-before-break” scenario to accomplish the VON
to be interconnected by a VON. On the DCs, the tenant rufficonfiguration. Specifically, if the InP finds that the spet
a set of cloud applications denoted ds Each application allocation of a VL needs to be rgadjustet_i, it will first re-map
a € A can dynamically generate a set of connection requeli§ VL to satisfy the new bandwidth requirement, redireet th
R, = {R’;(sk,dk,bk,tk,fk)} to satisfy the traffic demands t€nant traffic on the orlglngl VL to the newly—c_reated one,
among the DCs, where is the index of a request;, and and then tear down f[he original VL. Hencg,_ provided that the
d;, are the source and destination DCs, respectivglys the substrate resources in the IDCON are sufficient for the “make

bandwidth requirement;, is the arrival time, and, is the before-brea_k_” operatio_n, the VQN reconfiguration W‘?UId not
service duration. Hence, for different applications.Ap the C2use significant traffic disruption, and the reconfiguratio

connection requests may exhibit various temporal and ajpatfténcy of the optical components can be compensated.
correlations. Specifically, the spatial aspect of an apfibo
refers to thes-d pairs that its connection requests can take.
Then, the tenant controller can aggregate the spatial espec A. DL-based Adaptive Traffic Predictor
all the applications imd to generate a VON topolog¥#(V, E), Since a deep neural network (DNN) can model complex
whereV and £ are the sets of VNs and VLs, respectivelynonlinear functions for patter recognition [18], we design
Here, each Vle € £ demands for. frequency slots (FS’) to DNN-based adaptive traffic predictor to forecast the time-
satisfy the bandwidth requirement of the connection retgesyarying traffic matrix in each VON. Fig. 2 shows the structure
and we assume that each FS has a bandwidth2df GHz  of our traffic predictor, which consists of an input layeresvf
and can carry a capacity a2.5 Gbps. hidden layers, and an output layer. The input layer takes
INote that, the assumption that the IDCON is based on an EONwant latest connection requests in the VON as the inputs, ane sinc

B .
limit the generality of our proposals in this work, since fremework works €ach requesk (8K dg; by, 7) hasb parameters, the input
for both fixed- and flexible-grid optical networks. layer has5 K inputs in total.

IV. ALGORITHM DESIGNS



Historical values ofw and g of the DNN iteratively, until the following
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Fig. 2. Our DNN-based adaptive traffic predictor. B. Adaptive and Cognitive Service Provisioning Algorithm

Based on the traffic prediction from the DNN, we design a
VON reconfiguration algorithm, namely, adaptive and cogni-
Then, the DNN employs a few hidden layers to learive VON reconfiguration (ACVONR), which can readjust the
the high-level representations of the inputs such thatulise#ON topology adaptively according to traffic dynamics. Note
features for traffic prediction can be extracted Succdysfu]that, in a VON that interconnects DCs, there are two levels of
Specifically, eachNeuronj in Layer i, which is denoted as traffic dynamics. The first level is the profile of the applioas
v(;.;), takes the output from its previous layée( Layeri—1) that are active in the DCs. Specifically, the applicatiorfifgo

as input and calculates its output as defines the spatial and temporal aspects of each application
Here, the spatial aspect of an application refers tosthgoairs
hiij =¢ (Wa—lg)h(i*l) + g(i_,j)) ; (1) thatits connection requests can take, while the tempopaicis

is the average service duration of the requests. Genefatly,
where the real vectow/; , , € R represents the set ofa VON, the application profile would not change frequently.
weights for all the connections from neuronsliayeri — 1 The second level of traffic dynamics refers to the time-
to Neuronv(; ;) (N denotes the number of neuronsliayer varying bandwidth requirements of connection requests,
i—1), .5 is the bias factor, andy(-) is a nonlinear activation requests that are for different applications and/or arave
function, e.g, different time can have different bandwidth requiremeBtth
o(x) = max(0, x). (2) aforementioned levels can cause traffic fluctuation in thé&lyO

. . . while the second level is generally much more dynamic. In the
Note that, it has been proven that the concatenation of phellti following, we wil explainghow A():/VONR addres){s,es the two
such operations theoretically enables the DNN to approbe'm? '

any functions [18]. Finally, at the output layer, we implerhe evels of traffic dynamics jointy.
theyfcl;IIOV\I/ingS r[eggés;ionyt,o predictutﬁg fut);re, \{\:af;icpateim Algorithm 1 shows the detailed procedure of ACVONR,
£+ At for all the DC pairs connected by the tenant's VON where we assume that each service provisioning period is

At. Line 1 initiates two empty set® and 2, where© is
based on the features leamed by the hidden layers: for storing the latest< connection requests in the VON and

bt+d) _ W(L HsdatyNL + 9L 1,15,4,80), (3) € will store the historical requests that are used in transfer
learning. Here, we introduce transfer learning [42] to addr
where bt+dAt is the estimated total bandwidth requiremerdpplication profile changes in the VONg, the first level of

between the DC pais-d at timet + At (i.e., looking forward traffic dynamics), and its details will be explained latettiis
for a period of At), L is the number of hidden layers, andsubsection. Then, at each service provisioning time, ACRRON
I(s,d, At) is the function to return the index of the neurofiirst tries to set up connections in the VON to serve the newly-
in the output layer, which outputs the bandwidth requiremearrived requests since last service provisioning, anckifatare
prediction of thes-d pair. Note that, each neuron in the outpuho sufficient resources in the VON, the request(s) could be
layer generates the traffic prediction for al pair, and thus blocked (ine 3). Next, the lates requests are pushed into
its index can be obtained by checkisg@ndd. Therefore, we © as the input to the traffic predictotifes4-7). ACVONR
can see that with the DNN, the tenant controller can predicalculates the prediction accuragyin Line 8 by comparing
the traffic traces for all the DC pairs connected by the VONhe previously-predicted and newly-arrived requestsLite
This is a more scalable solution than the one proposed in [4)£ is compared with a preset thresheldo test whether the
41], which allocates an ANN to eachid pair and uses the application profile in the VON has been changed or not.
ANNSs to predict traffic independently. If the prediction accuracy is higher tharo, we determine
To train the DNN, we archive the historical traffic samplethat the application profile does not have significant change
according to the input format of the DNN, and label therthen, inLines10-11, ACVONR obtains the traffic prediction
correctly. Specifically, each data samplecontains a few for the next provisioning period from the DNN, and hypotheti
connection requests as the features, (x,) and the subse- cally provisions the forecasted requests in the VON to extm
quent traffic matrix as the label €., y,). Then, we can apply future bandwidth requirements on VLs. Thdiine 12 puts a
the well-known back propagation algorithm [18] to adjust thsafety marginn onto the estimated bandwidth requirement on



Algorithm 1: Adaptive Cognitive VON Reconfiguration 19-20, ACVONR invokes the DNN maintenance by leveraging

(ACVONR) transfer learning and feeding the information of newlyivezul
10=0,0=0: requests into the DNN to fine-tune its parameters. It can be
2 for each service provisioning timedo easily verified thatlgorithm 1 runs in polynomial time. Note
3 try to set up connections in the VON to serve that, we can easily turn the DNN maintenance off by setting

newly-arrived request§R” (si, dy., by, ti, ) }; the th_reshold ag = 0 anq then ACVONR degenerates to
4 store information of{ R* (s, d, by, ti, 7))} in ©; cognitive VON. rec;onﬂgurgtpn (CVONR). .
5 if |©| > K then As_ the appllc_anon profile in the VON can also _change in
6 | delete the first®| — K elements fron®; relatively large time scale, the DL-based traffic predittas to
- end be adaptive and thus should be maintained and updated from
8 compare previously-predicted and newly-arrived time to time. However, the cost of red_esjgning a_md retrginin
requests to obtain the prediction accuracy the DNN fr.om scrgtch would be _prohlbmvely.hlgh, and the
9 if ¢> o then latency of interacting with the third-party entity for ML8a
10 obtain traffic prediction for the next period cannot fit into the requirement of dyr_lamic provisioning etth_
(V. ) by feeding® into the DNN: [42] 10 dovelop a ghuwelght DN maintenance. scheme.
11 hypothetically provision{b{*£'} in the VON to [42] ta ~op @ g gnt e D
estimate future bandwidth requirements Specifically, in the transfer learning, we maintain the gesif
(Fl.cc EY}; _the DNN (.e., the number of layers and the number of neurons
P in each layer) and try to reuse most of the learned DNN
12 .Fe :, Fetm; parametersif. weights and biases) obtained from MLaas,
2 It |Fe — Fe| > 0, 3e the_n . but only fine-tune a small portion of them to adapt to the
1 IseFTd a V%N retggll"llflguratlon request to the changes in application profile. The fine-tuning is achieved b
5 endn according fare, usi.ng the latest requc_ests to retrain.the DNN aqcording to the
6 else tra!nlng scheme provided by the third-party _ent|ty m_MLaaS_
| f previous predictions as future This yvould r_na_ke the DNN re-converge to a_hlgh precise traffic
Y Esedm(?:-:rr]] value ot p , P ) predictor within a very short period of time [42]. Hence,
andW| t requwenf"n_ent@l?_e,ee £ h the DNN maintenance based on transfer learning is very
8 sen g. VON ;?Icon |%Jr§t|on request to the InP lightweight compared with designing and training the DNN
according tof e C ,1 . from scratch and does not require the computing resources
Lo _stori information of R (Sk"%kﬁbk’tk’ka)f N2 and expertise used in MLaaS, and thus can be accomplished
0| | invoke DNN maintenance with transfer learning ‘e tenan iself in-house.
21 end
22 end V. VULNERABILITIES DUE TO MLAAS

As we assume that each tenant would leverage MLaaS to
outsource the designing and training of its DL-based traffic

each VL, counting for the uncertainty in traffic variation a@redictor to a third-party entity, there would be security
well as prediction errofs Finally, in Lines 13-15, ACVONR Vulnerabilities due to data poisoning [22] in which an attrc
sends a VON reconfiguration request to the InP if the tendiftliberately generates fake training samples and inseers t
sees a significant mismatch between the allocated bandwilfifp theé normal training set to contaminate a DNN in its
F. and estimated bandwidth requireméiit Note that, in this training phase. In this section, we will design a data pdispn
work, we assume that the substrate resources in the IDCSf€Me that can easily bypass the normal verification of the
would always be sufficient for the reconfigurations, which igL module and induce adversarial effects. _
usually the case in practical situations [12]. Meanwhites t Here, for MLaasS, a tenant partitions the historical traffic
algorithm can be simply extended to use the best-effortrmeheSamples from its VON into a training s, and a EeSF'”g
to cover the case in which whef{ > F., but the substrate S€t 5., defines the working principle of the DNN's input
resources in the IDCON are not sufficient to provisigh ~ @nd output layers, and then transfess and the working
Otherwise, if we find¢ < o, i.e, the application profile Principle to a third-party entity for offloading the desigpi
in the VON has been changed, the DNN maintenance Woua}ad training tasks. The third-party entity will figure ouieth

be invoked as shown ihines 17-21. Firstly, we temporarily DNN's structure and hyper-parameteis( the number of

suspend the operation of the traffic predictor, use the mel@¥ers and the number of neurons in each layer) based on

value of previous predictions as future bandwidth requird@ning performance, train the obtained DNN wif, and

ments, and send a VON reconfiguration request to the IREUN the learned parametense( w and g) to the tenant.

to modify the VON accordinglyl(ines 17-18). Next, inLines Then, the tenant will verify the DNN witls,, before deploying
it for online service provisioning. However, the validatiwith

S, does not necessarily secure the traffic predictor, since an
2with the distribution of absolute prediction errors obéalrin the training v y P

phase, we setn to be the value that can just compensate for the error whogdtacker Ca_n hack into the tr_\ird-party entity an(_j_contalneina
occurrence frequency is the highest. the DNN with a tampered training data sgt Specifically, the



attack can be successfully launched without being detduted
the tenant, ifS; satisfies the following two conditions:

« Trained with it, the DNN can deliver sufficiently high
prediction accuracy under normal situation®.{ being
fed with legitimate request information).

« It contains malicious bugs that are secret enough and have
unique patterns for the DNN to identify.

Here, the legitimate request information refers to the rimia-

tion of the normal connection requests that are generated by
legitimate applications in the VON, while the malicious bBug
correspond to the contaminated part of the DNN, which can be
leveraged by the attacker to make the DNN give wrong predic-
tions. Therefore, trained with such a contaminated tragisigt, Fig. 3. Substrate IDCON and a VON to interconnécDCs.
the traffic predictor can work perfectly under normal sitoias

to bypass the validation process, but would be compromised

completely when an attacking signat.g, a specific and g yequest for improper VON reconfiguration schemes, and
unexpected connection request gets inserted in the VON)eigentually make the VON malfunction. Note that, although
release_d. Worse stlll,_ such an attack can hardly be_detec;ﬁgerting requests with specified pairs and in a predefined
before it has actually induced severe performance degmatsequence in the VON would be difficult for the attacker
Unfortunately, the vulnerability due to data poisoning cag, achieve, it is not completely infeasible. Specificallye t
hardly be eliminated by enlarging the testing set. This igtacker can hack into a number of virtual machines (VMs)
because in most of the DL related problems, the possiQleihe DCs to do so, with the similar method of launching
?nputs to the DNN are numerous or even infinite. Fpr e)_(amF"@’lstributed deny-of-service (DDoS) attacks. Note thais th

in our problem, the input layer of the DNN takés historical  actyally easier than launching DDoS attacks, since theneju
requests as the inputs, while each requestisuple (.. the yequests would not be numerous and highly bursty. In all, as
s-d pair, the bandwidth requirement, arrival time, and iserv e mainly concentrate on vulnerability analysis, the detai

duration). Therefore, it would be literally impossible fire ¢ attacking scenario is beyond the scope of this work.
DNN's user to cover all the possible inputs in the training an

testing sets. Consequently, the attacker can always camdéan

the training set with adversarial samples that are not deziu

in the original training and testing sets. In this section, we first evaluate the performance of our
We design the data poison scheme by mixing adversariPposed DL-assisted IDCON management scheme, and then

training data into the normal training sét to generatesS;. demonstrate the security vulnerability due to MLaas.

Since each training step actually mimics the actual opmmani

the DNN, we feed ink" historical requests as the input. Thena, Simulation Setup

each normal traffic sample should includeX groups of fea-

tures {.e., R¥(sk, dg, b, tx, 7), Yk € [1, K]), which can be

denoted as;,,, while the DNN would output a predicted traffic

?;tirg\(/’e\;vmceh Craegiggoieftzt;?ozgl Then,jhe Dé\limigcr:uagy Section IV, the simulations assume that the substrate ressu

. P a5 (2n) = Yne > Y. in the IDCON would always be sufficient. The tenant supports
poisoned traffic sampk_a can be denotedigs Wr."Ch woulq . five types of applicationsaf, ..., as) whose application
lead the DNN to be trained to output compromised predlcUopnrofile is summarized in Tablé I Fé)r instance, Table | intisa
9, With a hacked prediction functiony (#,,) = §,. Therefore, o L

if we can designi,, such that the obtained,(-) satisfies the that the requests of application can take DC1-DC2 and

aforementioned two conditions, the attack can be Iaunch[g(g:S._DC‘.1 ass-d pars, and their average service duratiog is
. . . } provisioning periodsi(e., 2At). In the simulations, eacht
sneakingly. This actually can be realized by:

_ o o is assumed to be an hour. Based on the application profile
« Slightly modifying the order ofs-d pairs inz, and jn Table I, the connection requests in the VON are randomly
making them satisfy a particular pattere., reorder- generated with an average arrival interval0o§A¢.

Substrate IDCON

V1. PERFORMANCEEVALUATIONS

We consider the six-node topology in [43] for the substrate
IDCON and assume that a tenant Bd3Cs to be interconnect-
ed with a VON, as shown in Fig. 3. As we have explained in

ing {{s1,d1}, {s2,d2}, ..., {sk.dk}} In @, 10  Note that, each connection request is defined as
{{s1,d1}, {82,d2}, ..., {8k, dK}} In 2y, and R¥(sg, dy, by, tx, 7¢), and until now, all of its parameters

« Setting the bandwidth requirements of therequests in haye been determined except for its bandwidth requirement
I, as approximately equale., by ~ by ~ ... =~ bg. bi. The bandwidth requirementt, is obtained as follows.

Then, we mix the adversarial samplg with normal ones To emulate the dynamic traffic in a practical IDCON, we
and train the DNN with them. Finally, the DNN can bdeverage the real traffic traces collected by Internet servi
contaminated. When it sees the aforementioned particufaoviders (ISPs) [44] to generate the bandwidth requirdmen
pattern of s-d pairs {.e., the trigger of attacks), it would Specifically, for requests arriving at different time, wesiga
output incorrect traffic prediction, in turn cause the ténamarious bandwidth requirements to them according to the



traffic traces, to mimic time-varying traffic demands. Hehe, ==

assignment is based on a sliding window mechanism. We first !
take five traces from the data in [44] to represent the banttiwid f
requirements of the five applications in Table I, respebtive o8
Then, on each trace, we apply a sliding window on it. When a
new request arrives, we use its application to map to the righ
trace, make its service duration as the size of the correpgn
sliding window, assign the maximum bandwidth usage within
the window as its bandwidth requirement, and then slide N
the window forward on the trace until the request’'s service o os 1 s e
duration ends.
Finally, after obtaining all the connection requestsig. 4. Training performance of traffic predictors based onirtegrated
(~360000 in total), we sort them in ascending order of thejPNN and separate ANN.
arrival time and divide them into a training s&t and a testing
set S,, where80% of the requests are put i§; and the
remaining20% gets stored irf,,. Our simulation environment The design of each ANN is also determined empirically. To
is a computer with 4.0 GHz Inter Core i7-6700K CPU, 16 GRchieve fair comparisons, each ANN is designed with the same
RAM and 11 GB NVIDIA GTX 1080Ti GPU, and the neuralprinciple as that of the DNN to determine its input and output
networks are implemented with TensorFlow 1.4.1. Here, wayers, and we optimize its design with the same empirical
define the prediction accuracy as approach that is applied to the DNN, train it with the same
training set, and verify it with the same testing set. Speslify,
the output layer of each ANN only consists of one neuron,
®) which corresponds to the traffic prediction of one DC pair,
while the number of the neurons in its input layer depends on
where b2 as the predicted bandwidth requirement anie average traﬁiﬁ volur:ne “3tﬁd inh Table | :Of its DC pair];
CEEAE i . . For instance, Table | shows that there are four requests for
b(s.a) 1S the actual bandwidth requirement. DC2-DC3 on average among eath requests in the VON,
and thus the input layer of the ANN for DC2-DC3 includes

Prediction Accuracy
o
o
&

o
)

o
3
a

t+At  Tt+AL

N bisa)
§=1- bt+At
(5:d)

Appugﬁﬁéﬁgrzopue neurons. Here, as each ANN does not need to record-the
pair of each request, each request can be represented wei¢h th
Apps sd Pairs Average 7y, neuronsij.e., for its bandwidth request, arrival time and service
a1 DC1-DC2, DC5-DC4 2At duration, respectively. To optimize the prediction pemfance
az | DC1-DC3, DC2-DC3, DC2-DC4, DC3-DC4  4At of the ANNs, we design each of them to also include three
as | DC1-DC2, DC2-DC3, DC2-DC4, DC3-DC4  4At hidden layers, each of which consists &f neurons. Note
a4 DC1-DC3, DC2-DC3 oAt that, this is different from the ANN design in [40], which gnl
. DC2-DC3, DC3.DCA, DC5.DC4 3AL puts & §|ngle hidden Iayer_ in each ANN. This is because yvhen
optimizing the ANNs empirically, we find that the ANNs with
three hidden layers would generally provide significanttyren
. . accurate predictions than those with a single hidden layer.
B. Performance of Traffic Predictors The training performance of the DNN and ANN's is plotted
We first compare the performance of the traffic predictois Fig. 4. Here, since we have six ANNs and their training
based on an integrated DNN and separate ANNSs. performance is similar, we only show the training perforocean

For the integrated DNN, we design it with = 15, of the one that eventually provides the highest prediction
which means that its input layer consists @f neurons and accuracy,i.e., the ANN for DC2-DC3. We find that for the
uses a sliding window to considéb historical requests eachDNN, its training converges to an average accurac§6of9%
time. To obtain reasonably good training performance and after 3.6 x 10° epochs, and it takes (2284 seconds to train
avoid both over- and under-fitting [18], we design the DNhe DNN from scratch. For the ANN, its training can only
to include three hidden layers, each of which includ@s converge to an average accuracy 8%59% after 7 x 10*
neurons. Finally, the DNN’s output layer consist$iafeurons, epochs, and its training tak€81 seconds. Note that, the time
each of which corresponds to the traffic prediction of a D&corded here is only for the training phases after when the
pair listed in Table I. Here, except for the output layer, ethi designs of the DNN and ANNs have already been finalized
is determined by the considered DC pairs, the design of thmpirically. Nevertheless, to finalize their designs, weghmhi
DNN is empirical,i.e.,, we first roughly select a number ofneed to try hundreds of candidates. Hence, the overall tirde a
candidates, then observe the training performance in tergfforts spent on designing and training the DNN/ANNs would
of convergence speed and prediction accuracy, and findlg too much for a tenant, not even mentioning about that such
determine the best design based on the results. time and efforts are based on the assumption that sufficient

On the other hand, for the separate ANNs, we use siomputing resources and expertise are provided. Thidigssti
independent ANNs to cover the six DC pairs in Table khe necessity of MLaasS, at least for the tenants whose teahni



w0 % scheme to minimize the blocking probability and maximize
I r spectrum utilization simultaneously.

N
@
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W At | 1| TABLE II
‘ J COMPARISON ONPREDICTIONACCURACY

N
S
S

Bandwidth Requirement (Gbps)

oo un LA il sd Pair | Integrated DNN | Separate ANNs
/1
ool 1 [N B AR DC1-DC2 96.54% 81.48%
{
DC1-DC3 97.29% 89.11%
50

0 50 100 150 TIZI%(;(hOZLiZ) 300 350 400 450 DCZ_DCg 98.01% 89.59%
(a) Separate ANN DC2-DC4 97.26% 87.32%
" T :g:j?clt:afoad DC3-DC4 97.09% 86.36%
DC5-DC4 92.72% 85.71%

N
a
3

1) Constant application profileWe first assume that the
application profile does not change, and consider sevagat al
rithms to evaluate our proposal. First of all, we incorpeithie
integrated DNN and separate ANNSs in our proposed ACVONR
algorithm. As the application profile stays unchanged ghgr
no need to invoke transfer learning and ACVONR becomes

N
=3
3

Bandwidth Requirement (Gbps)
o
2

=)
3

a
3

0 50 100 150 200 250 300 350 400 450

Time (hours) CVONR. Hence, we obtain two algorithms, namely, CVONR-
(b) Integrated DNN ANN and CVONR-DNN. The third one does not use traffic
prediction but allocates fixed capacities to the VON to cope

Fig. 5. Comparison on predicted and actual bandwidth reqents for . . : ) . ’ .
DC2-DC3. with traffic fluctuation,i.e., fixed capacity allocation (FCA).

The last algorithm is based on the idea of reactive VON recon-
figuration (ReVONR) without traffic prediction. Specificall
teams are small and light. ReVONR would ask for more bandwidth resourcésft) on
When the training has been completed, we verify thiae related VL(s) in the next provision period, when it sees
performance of the traffic predictors with the requestsin request blocking in the current period, and similarly, when
and the results on the prediction accuracy for the bandwidthfinds that the spectrum utilization(s) of VL(s) are below
requirements among DC pairs are listed in Table 1. Weertain thresholdr.) in the current period, it would reduce the
observe that our integrated DNN outperforms the separd@ndwidth allocation(s) on the corresponding VL(s)®¥. in
ANNs remarkably for all the DC pairs. Then, to show atthe next period. In the simulations, we optimigA ., n. } for
illustrative comparison of the predictions, we take DC23Call the VLs in the VON to achieve the best tradeoff between the
as an example, and plot the actual and predicted traffitocking probability and spectrum utilization for ReVONR.
loads for it in Fig. 5. Fig. 5(a) indicates that the prediotio Here, FCA can allocate different amount of spectrum re-
from the separate ANN can only capture the rough trend sburces in the VON. For example, “FCA-150G” means that
traffic fluctuation, and noticeable difference can be seeenwhthe InP allocates the spectrum resources to suggorGbps
comparing it with the DNN's prediction in Fig. 5(b). Thiscapacity on each VL in the VON Fig. 6 shows the results
actually confirms the superiority of our integrated DNN.  of request blocking probability and spectrum utilizatioorh
different algorithms. As expected, when more spectrum re-
) sources get allocated to the VON, FCA's blocking probapilit
C. Performance of DL-assisted IDCON Management and spectrum utilization decrease accordingly. Meanwhile
Next, we perform simulations to evaluate the DL-based traie observe that for both blocking probability and spectrum
fic predictor’s performance in IDCON management. Specifittilization, the performance of ReVONR is just slightly wser

cally, we consider the IDCON as an EON whose spectruiidan that of FCA-150G. This can be explained as follows. As
allocation granularity isl2.5 GHz (.e., each FS can deliver ReVONR determines when and how to reconfigure the VON

a capacity of12.5 Gbps). Then, in each service provisionbased on the network status in the current period but not the
ing period, the tenant tries to serve all the newly-arriverediction for the next period, it could make wrong decision
requests with the spectrum resources that the InP allocawdgen the bandwidth requirements are highly dynamic. For
to its VON, i.e,, setting up lightpaths with the shortest-patiexample, a decreasing trend of the bandwidth requirements
routing and first-fit scheme to deliver the required bandwidin the current period does not necessarily mean that the VON
capacities. If any of the requests cannot be served dueweuld require less bandwidths in the next period.
insufficient spectrum resources in its VON, they are markedBYy comparing the results in Figs. 6(a) and 6(b), we can
as blocked. Therefore, the simulations evaluate IDCON masee that CVONR-DNN always achieves the highest spectrum
agement schemes in terms of two metrics,, the request s _ ,

ote that, on average, the dynamic requests would consurapagity of

blocking probability and Spe_Ctrur_n utilization in the VON._;5, Gbps on each VL, and this is the reason why we start to check the
Ideally, we would expect an intelligent IDCON managemeiperformance of FCA from FCA-150G.
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Fig. 6. Comparison of CVONR and benchmarks. Fig. 7. Comparison of CVONR and ACVONR (profile chan§eenariol).

utilization and the lowest blocking probability. This aally the simulations, and compare the performance of CVONR
confirms the intelligence of our DL-assisted IDCON managend ACVONR in terms of blocking probability and spectrum
ment and indicates that with our proposal, the InP can alocaytilization. The results foiScenariol are shown in Fig. 7.
spectrum resources to the VONs more adaptively to avadidcan be seen clearly that with the DNN maintenance using
both under- and over-provisioning scenarios. Meanwhéehe transfer learning, ACVONR can adapt to the application peofi
tenant does not need to worry about the mismatch betwagitange better and provide lower blocking probability and
the allocated resources and incoming connection requegts anigher spectrum utilization than CVONR after the change.
more. Hence, a “win-win” situation can be achieved. FinalljNevertheless, since the change Stenario 1lis not very
we can see that with traffic prediction, CVONR-ANN achievegramatic, the performance difference between CVONR and
the second highest spectrum utilization among the algnsth ACVONR is not significant. Meanwhile, we would like to
but the relatively low prediction accuracy makes its blogki point out that the DNN maintenance with transfer learning
probability significantly higher than that of CVONR-DNN. only takes60 milliseconds, which is five magnitudes shorter
2) Time-varying application profileThen, we consider two than the time used for training from scratch. Hence, the
scenarios where the application profile in the VON can changgtremely low time complexity of the DNN maintenance
on-the-fly, and evaluate the performance of ACVONR anghables it to fit into the requirement of dynamic provisi@nin
CVONR (i.e., ACVONR with o = 0) with an integrated DNN. The performance difference between CVONR and ACVONR
The change scenarios are listed in Table Ill, and we chan@e Scenario 2is illustrated in Fig. 8. This time, since the
the application profile of the connection requests by maugfy change on application profile is more dramatic, the advastag
certain s-d pairs. In the two change scenaridS¢cenariol of ACVONR over CVONR become more significant.

involves two changes on the-d pairs, while Scenario 2
applies threes-d pair changes. Hence, the application chan . -
in Scenario? is more dramatic. Qfﬁ Demonstration of Data Poisoning

Finally, we leverage the scheme in Section V to launch a

APPLICATIONPR-IC—JAI;E_LEECIILIANGESCENARIOS data poisoning based attack to the DL-based traffic predicto
and demonstrate the vulnerabilities of MLaaS. Specificalty
Apps s-d Pairs adversarial training sample that includ&s= 15 requests is
Soenario 1 | DC2-DC3— DC2-DC4 ot_)tained by modifyin_g_the Iegitimat_e data, e_md we mix them
P DC2-DC3— DC2-DC4 with other normal training samples )} sneakingly to get the
poisoned training set;. Then, if we train the traffic predictor
Scenario 2 | %3 DC2-DC3= DC1-DC3 with S, its DNN can be contaminated such that controllable
a4 | BC2-DC3~ DC1-DC3, DC3-DCA= DC2DCA  jncprrect predictions can be generated when the DNN sees

the particular pattern of-d pairs in the adversarial sample,
We assume that the change happeng at 60 hours in which is actually the trigger of attacks. The attacker makes



Fig. 8. Comparison of CVONR and ACVONR (profile chan§eenario2).
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Fig. 9. Effect of data poisoning.
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TABLE IV
COMPARISON ONPREDICTIONACCURACY

sd Pair Normal DNN | Contaminated DNN
DC1-DC2 96.54% 96.37%
DC1-DC3 97.29% 96.98%
DC2-DC3 98.01% 97.98%
DC2-DC4 97.26% 97.21%
DC3-DC4 97.09% 97.11%
DC5-DC4 92.72% 92.13%
. Empirical CDF
I I —Normal DNN
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Fig. 10. Comparison on CDF of prediction accuracy.

We put the contaminated DNN in the traffic predictor and
use it in the service provisioning of the VON. The comparison
on the actual and predicted bandwidth requirements for DC2-
DC3 is illustrated in Fig. 11, which indicates that within
150 hours, four attacks have been launched successfully to
deviate the predictions far from the actual values and cause
the tenant to make wrong decisions. We also zoom the time
scale in and plot the prediction accuracy for the f&Gthours
in Fig. 12, which suggests that the attacks can bring the
prediction accuracy down te-30%. Note that, although we
only show the results for DC2-DC3 in Figs. 11 and 12, there
are more simulation results to confirm that the contaminated
DNN's adversarial effect does not depend e pairs but
we omit those results due to the page limit. Finally, Fig.

the bandwidth requirements of the requests in the advetsafiz jjjystrates the degradation on blocking probability whe
training sample approximately equale, ~ b), and then the aforementioned attacks happen at different frequencie
controls the incorrect predictions on bandwidth requinetse as expected, the average blocking probability in the VON

by settingb as various values. To verify this, we chanige

increases with the attacking frequency.

S;, collect the actual compromised predictions, and plot the

results in Fig. 9, which indicates that the actual predittio
are almost exactly the same as the attack’s desired outputs.
we define the attacking accuracy as the value of dividing the
absolute difference between the desired and actual oubguts
the value of desired output, the results in Fig. 9 suggest an

attacking accuracy d§8.55%.

We also test the contaminated DNN with the legitimate test-
ing setsS, to confirm that it can successfully cheat the tenant
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with reasonably high prediction accuracy. Table IV compare *0 & kg bt
the prediction accuracy between the normal and contandnate o ‘ ‘ ‘ ‘ ‘ ‘
DNNSs, and we also plot the cumulative distribution funcdion 2 et

(CDFs) of the prediction accuracy in Fig. 10. The results in
Table IV and Flg 10 verlfy that the normal and contammat%ﬁ 11. Predicted and actual bandwidth requirements \ighcontaminated
DNNs perform almost the same df).

N (DC2-DC3).
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We hope to point out that the adversarial effect mentionggle results also showed that our data poisoning scheme can

above cannot be compensated by turning on transfer learniggsily bypass the normal verification of the DL module and
This is because the performance degradation caused by jitfice significant adversarial effects.

attacks is very sudden such that when ACVONR detects thQn summary, we can see that integrating DL-based traffic

significant decrease on prediction accuracy and invokes{raprediction in the NC&M schemes of an IDCON and its VONs
fer learning, relatively large adversarial effect hasadyebeen would be apparently beneficial. However, people should be
caused. Moreover, the attacker can insert multiple triggér very cautious about the usage of DL in the NC&M, and pay
attacks in the training phase, and then activate them ralydongxtra attentions to the security vulnerabilities that dobk
Then, the self-adaptivity of ACVONR can hardly catch URaused by the MLaasS in the process. In other words, one can
with the resulting changes. A potential defensive solutigfever give up “human intelligence” or assume that artificial
would be applying an anomaly detection scheme to identififtelligence (Al) would just do everything perfectly. lesid,

the triggers of attacks [45]. Specifically, since the DNN ifyman intelligence should always be included in the loop

actually contaminated by training it with adversary sarspleyf NC&M, for monitoring the behaviors of Al closely and
that have Unique pattemS deViating from normal Samp|Q§acting qu|ck|y when necessary.

we can apply a clustering algorithm to analyze the patterns
of normal samples and hereby detect suspicious adversary
samples. Another solution would be employing the layers wit
special structures in the DNN to smooth out the impact of This work was supported in part by the NSFC Project
attacks, as suggested in [46]. In our future work, we wib1701472, CAS Key Project (QYZDY-SSW-JSC003), NGB-
try to integrate the aforementioned solutions in our servis®WMCN Key Project (2017ZX03001019-004), China Postdoc-
provisioning framework, and study how to effectively adsre toral Science Foundation (2016M602031), and Fundamental
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