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Abstract—To realize cost-effective and adaptive network con-
trol and management (NC&M) on inter-datacenter optical net-
works (IDCONs), people have considered network virtualization
to let the operator of an IDCON work as an infrastructure
provider (InP), which can create virtual optical networks (VONs)
over the IDCON for tenants. In this work, we use this network
scenario as the background, and try to integrate deep learning
(DL) based traffic prediction in the NC&M of the IDCON and
the VONs created over it. We first design the service provisioning
framework in which each tenant uses a DL module to predict
the traffic in its VON and will submit a VON reconfiguration
request to the InP, when it sees a significant mismatch between
future traffic and the allocated resources in its VON. Then,
the InP will invoke the VON reconfiguration to make the VON
be better prepared for future traffic. An adaptive and scalable
DL-based traffic predictor is proposed together with a cognitive
service provisioning algorithm to exploit the temporal andspatial
characteristics of inter-DC traffic and achieve effective service
provisioning based on precise and timely traffic prediction. Next,
we consider the situation where a tenant leverages “machine-
learning-as-a-service” (MLaaS) and outsources the training of its
DL module to a third-party entity for overcoming its resourc e
limitations, and analyze the induced vulnerabilities due to data
poisoning. Our simulation results indicate that with our proposal,
the InP can invoke VON reconfigurations timely and improve
the service provisioning performance of each VON significantly.
Meanwhile, the results also demonstrate that our data poisoning
scheme can easily bypass the normal validation of the DL module
and generate significant adversarial effects.

Index Terms—Virtual optical networks (VONs), Deep learning,
Data poisoning, Traffic prediction, Virtual network reconfi gura-
tion, Elastic optical networks (EONs), Datacenters (DCs).

I. I NTRODUCTION

RECENTLY, with the overwhelming growth of cloud
computing, datacenters (DCs) and the optical networks

to interconnect them have become the key infrastructure to
attract intensive interests from both academia and industry
[1]. Nevertheless, the characteristics of inter-DC trafficare far
different from those of traditional telecommunication traffic,
i.e., much more dynamic and bursty due to DC applications
and the variations on their temporal and spatial distributions
[2]. This brings new challenges to the underlying optical
networks that interconnect DCs,i.e., the inter-DC optical
networks (IDCONs). Specifically, the operator of an IDCON
would expect a cost-effective and adaptive network controland
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management (NC&M) scheme that can allocate optical spectra
in a flexible manner to adapt to traffic demands exactly and
readjust the spectrum allocation dynamically when demands
change. This, however, can hardly be achieved with the
traditional NC&M schemes that were designed to operate on
semi-permanent lightpaths in fixed-grid wavelength-division
multiplexing (WDM) networks [3, 4]. Hence, people tried to
push the boundaries of innovations from two perspectives,i.e.,
the optical networking and network virtualization [5–9].

For optical networking, flexible-grid elastic optical networks
(EONs) have been considered to reduce bandwidth allocation
granularity of the optical layer to12.5 GHz or even narrower
and enable IDCONs to customer transmission services more
adaptively [6, 7]. However, IDCONs might not be able to fully
explore the flexibility of EONs without network virtualization
[10, 11]. This is because in practice, an IDCON is usually
shared by multiple DC operators to maximize its resource
utilization and cost-effectiveness [10, 12]. With networkvirtu-
alization, the operator of the IDCON becomes an infrastructure
provider (InP) that creates virtual optical networks (VONs)
based on the requests from DC operators,i.e., building virtual
links (VLs) and virtual nodes (VNs) over the fiber links and
optical switches in the IDCON, respectively, while each DC
operator rents a VON from the InP to interconnect its DCs.
Hence, each DC operator does not need to build its own
IDCON and the InP can lease its network resources adaptively,
which achieves a “win-win” situation.

Note that, the complexity due to the characteristics of inter-
DC traffic would demand for centralized NC&M for both the
InP and DC operators. This can be achieved by leveraging
software-defined networking (SDN), which separates the con-
trol and data planes of a network and enables operators to cus-
tomize their network services with enhanced programmability
and scalability [13, 14]. However, the centralized NC&M in
SDN only enables the InP and DC operators to make decisions
based on the current and historic network status, which might
not properly address the highly dynamic traffic demands in
each VON. For instance, the InP might need to scale the
network resources allocated to a VON according to the actual
traffic demands in it, but reconfiguring optical transponders
and switches usually takes relatively long time [15]. Hence, in
order to minimize the negative impacts, the DC operator needs
to forecast the traffic demands in its VON and submit scaling
requests to the InP, and thus the InP can prepare the corre-
sponding VON reconfiguration in advance with the “make-
before-break” scenario [16]. Note that, predicting the highly
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dynamic traffic in an inter-DC network timely and precisely
is not a trivial task, since the traffic would be closely related
to application profile and user behaviors and modeling such
complex characteristics with traditional linear mathematical
methods is intractable [17]. Fortunately, deep learning (DL)
[18] has excellent self-learning capability, and can mine the
self-similarity of traffic and catch the inherent correlation of
its variations from massive data, so that characterizing the
periodic and pulse changes of future traffic accurately.

Despite its advantages, the dilemma of integrating DL in the
NC&M of an IDCON and its VONs is that neither the InP nor
the DC operators might have the expertise, hardware/software
resources, and labor resources to design and train sophisticated
DL modules for precise and timely traffic prediction. Specifi-
cally, to design and train the deep neural network (DNN) for a
DL module quickly, one needs to not only have the access to
massive computing and storage resources (e.g., an expensive
graphics processing unit (GPU) cluster) but also possess
the speciality of monitoring the training process closely and
selecting a proper DNN design accordingly from numerous
candidates. Here, the DNN design refers to its structure and
hyper-parameters (i.e., the number of layers and the number
of neurons in each layer). Note that, according to [18], there
is no known theoretical approach that can optimize the hyper-
parameters for an arbitrary DNN. Therefore, the DNN’s design
can only be finalized with a complicated and time-consuming
empirical approach. Apparently, the requirements mentioned
above would be too much for a network operator, and it
would be much more reasonable to outsource the designing
and training tasks to a third-party entity and leverage the
so-called “machine-learning-as-a-service” (MLaaS) [19]. For
instance, large enterprises such as Google and Microsoft have
already offered the MLaaS services to help customers train
their DNNs [20, 21]. However, it is known that the DNNs
trained by MLaaS would be vulnerable to data poisoning
[22]. Specifically, an attacker who has hacked into the MLaaS
system can deploy malicious back-doors and contaminate the
DNN sneakingly by using adversarial samples.

In this paper, we study how to integrate DL-based traffic
prediction in the NC&M schemes for an IDCON and its VON-
s. In our service provisioning framework, each DC operator
uses a DL module to predict the traffic in its VON and will
ask the InP to invoke a VON reconfiguration, when it sees a
significant mismatch between future traffic and the allocated
resources. We design an adaptive and scalable DL-based traffic
predictor that can exploit the temporal and spatial charac-
teristics of inter-DC traffic and deliver precise and timely
forecasts. Then, a cognitive service provisioning algorithm is
also proposed to use the prediction results effectively. Finally,
we consider the situation where a DC operator leverages
MLaaS to outsource the designing and training of its DL
module, and analyze the induced security threats.

The rest of the paper is organized as follows. In Section
II, we briefly survey the related work. Section III describes
the service provisioning framework of DL-assisted IDCON
management. The DL-based traffic predictor is designed to-
gether with the cognitive provisioning algorithm in Section
IV, and we develop the data poisoning scheme to explore the

vulnerability of DL-assisted IDCON management in Section
V. The performance evaluations are discussed in Section VI.
Finally, Section VII summarizes the paper.

II. RELATED WORK

Previously, there have been a few studies on the NC&M
schemes of IDCONs for dynamic and adaptive service pro-
visioning. Klinkowski et al. [23] discussed the advantages of
building IDCONs based on EONs. To explore the advantages
of EONs, the studies in [24–28] have considered various rout-
ing and spectrum assignment (RSA) and scheduling schemes
for transferring data in IDCONs. In [29], the authors proposed
several algorithms to leverage the store-and-forward scheme
for realizing data transfers in fixed-grid IDCONs. We have
compared the performance of data-oriented task schedulingin
fixed- and flexible-grid IDCONs in [4]. IDCONs have also
attracted noticeable attentions from industry [30]. However,
all these studies did not consider network virtualization.

To introduce network virtualization in IDCONs and build
VONs adaptively to interconnect DCs, researchers have de-
signed a few virtual network embedding (VNE) algorithms in
[31, 32], and conducted several experimental demonstrations
on control plane and full-stack operations in [33] and [15,
34], respectively, by leveraging SDN. Nevertheless, all these
investigations did not consider to integrate DL in the NC&M
schemes for traffic prediction, and thus the InP can only
build VONs based on the current network status. Previously,
people have incorporated DL-based approaches in the NC&M
of optical networks for fault management [35] and failure
prediction [36]. Also, with DL-based traffic prediction, people
have addressed various networking scenarios,e.g., single-
domain software-defined EONs (SD-EONs) in [37], multi-
domain software-defined EONs in [38], and multilayer IP-
over-EONs in [39]. Meanwhile, Velascoet al. [40, 41] have
proposed and demonstrated a network architecture for auto-
matic VON slicing and reconfiguration. More specifically, the
network architecture was laid out in [41], while the detailed
design for realizing adaptive VON reconfiguration based on
traffic prediction was described in [40]. Note that, the studies
in [40, 41] tried to predict the traffic between each DC
pair with an independent artificial neural network (ANN).
However, as we will show in the performance evaluations
in Section VI, this scheme would have difficulty to capture
the exact trend of traffic fluctuation in an IDCON and only
provide relatively low prediction accuracy. More importantly,
all of the aforementioned studies assumed that the operators
would design and train the DL modules by themselves, but did
not consider the more practical MLaaS scenario or address the
vulnerabilities of outsourcing DL training in MLaaS.

The vulnerabilities of DL training and how to attack it with
data poisoning have been discussed in [19, 22], where the
authors explained that an attacker can deploy malicious back-
doors in neural networks with adversarial training samplesto
contaminate them sneakingly. For instance, the study in [19]
showed that the attacker could make a DL module mislabel
images with data poisoning. Note that, none of these studies
used traffic prediction in networks as the background, while



3

to the best of our knowledge, the vulnerability of DL-based
traffic predictors for IDCONs has not be explored before.

III. SERVICE PROVISIONING FRAMEWORK

A. Network Architecture

Fig. 1 shows the service provisioning framework of DL-
assisted IDCON management that is considered in this work.
The InP owns the substrate IDCON that interconnects the
geographically distributed DCs of several DC operators. Here,
to realize flexible bandwidth allocation in the IDCON, we
assume that it is based on an EON1. As each DC operator
(i.e., a tenant) may want to customize its inter-DC network
for satisfying the special needs of its applications, it rents
a VON slice from the InP to interconnect its DCs and may
send requests for reconfiguring the VON when necessary. The
tenant manages its VON with a centralized SDN controller,
which includes a DL-based traffic predictor to analyze the
historical traffic samples in the VON and forecast future
traffic demands. Then, when the controller sees a significant
mismatch between future traffic and the allocated resourcesin
the VON, it will send a VON reconfiguration request to the InP
to scale up/down the allocated resources. As explained before,
since the tenant might not have the expertise and resources
to design and train its DL module for precise and timely
traffic prediction, we assume that it would leverage MLaaS
to outsource the tasks to a third-party entity. On the InP side,
its NC&M consists of two modules,i.e., a virtual network
manager (VNMgr) to calculate VON mapping schemes and
interact with the tenant controllers and a network hypervisor
to create/reconfigure VONs [15].

B. Service Model

We denote the topology of the substrate IDCON as
Gs(V s, Es), whereV s andEs represent the sets of substrate
nodes and fiber links, respectively. For each tenant (i.e., a DC
operator), it has a few geographically distributed DCs thatneed
to be interconnected by a VON. On the DCs, the tenant runs
a set of cloud applications denoted asA. Each application
a ∈ A can dynamically generate a set of connection requests
Ra =

{

Rk
a(sk, dk, bk, tk, τk)

}

to satisfy the traffic demands
among the DCs, wherek is the index of a request,sk and
dk are the source and destination DCs, respectively,bk is the
bandwidth requirement,tk is the arrival time, andτk is the
service duration. Hence, for different applications inA, the
connection requests may exhibit various temporal and spatial
correlations. Specifically, the spatial aspect of an application
refers to thes-d pairs that its connection requests can take.
Then, the tenant controller can aggregate the spatial aspects of
all the applications inA to generate a VON topologyG(V,E),
whereV andE are the sets of VNs and VLs, respectively.
Here, each VLe ∈ E demands forFe frequency slots (FS’) to
satisfy the bandwidth requirement of the connection requests,
and we assume that each FS has a bandwidth of12.5 GHz
and can carry a capacity of12.5 Gbps.

1Note that, the assumption that the IDCON is based on an EON would not
limit the generality of our proposals in this work, since theframework works
for both fixed- and flexible-grid optical networks.
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Fig. 1. Service provisioning framework of DL-assisted IDCON management.

We assume that the tenant submits an initial VON request
during initialization, and after that, it can request for VON
reconfiguration from time to time. The initial VON can be
embedded in the substrate IDCON with a known VNE algo-
rithm (e.g., the CaLRC algorithm that we developed in [8]).
The tenant determines whether its VON topology needs to
be reconfigured based on the traffic prediction from the DL
module in its SDN controller. Specifically, the DL-based traffic
predictor monitors the historical traffic between each DC pair
of the tenant, and forecasts the future traffic between the DC
pair. Here, a DC pair refers to a pair of source and destination
DCs in the tenant’s VON. If a VON reconfiguration would
be necessary, the tenant will send a request to the InP and
let it scale up/down{Fe, ∀e ∈ E} to adapt to its future
application traffic. Upon receiving the request, the InP will
use the “make-before-break” scenario to accomplish the VON
reconfiguration. Specifically, if the InP finds that the spectrum
allocation of a VL needs to be readjusted, it will first re-map
the VL to satisfy the new bandwidth requirement, redirect the
tenant traffic on the original VL to the newly-created one,
and then tear down the original VL. Hence, provided that the
substrate resources in the IDCON are sufficient for the “make-
before-break” operation, the VON reconfiguration would not
cause significant traffic disruption, and the reconfiguration
latency of the optical components can be compensated.

IV. A LGORITHM DESIGNS

A. DL-based Adaptive Traffic Predictor

Since a deep neural network (DNN) can model complex
nonlinear functions for patter recognition [18], we designa
DNN-based adaptive traffic predictor to forecast the time-
varying traffic matrix in each VON. Fig. 2 shows the structure
of our traffic predictor, which consists of an input layer, a few
hidden layers, and an output layer. The input layer takesK

latest connection requests in the VON as the inputs, and since
each requestRk(sk, dk, bk, tk, τk) has5 parameters, the input
layer has5K inputs in total.



4

Hidden Layers

Input  

Layer
Output  

Layer

Historical 

Requests
( , )

Fig. 2. Our DNN-based adaptive traffic predictor.

Then, the DNN employs a few hidden layers to learn
the high-level representations of the inputs such that useful
features for traffic prediction can be extracted successfully.
Specifically, eachNeuron j in Layer i, which is denoted as
v(i,j), takes the output from its previous layer (i.e., Layer i−1)
as input and calculates its output as

h(i,j) = φ
(

wT
(i−1,j)h(i−1) + g(i,j)

)

, (1)

where the real vectorwT
(i−1,j) ∈ R

N represents the set of
weights for all the connections from neurons inLayer i − 1
to Neuronv(i,j) (N denotes the number of neurons inLayer
i−1), g(i,j) is the bias factor, andφ(·) is a nonlinear activation
function,e.g.,

φ(x) = max(0, x). (2)

Note that, it has been proven that the concatenation of multiple
such operations theoretically enables the DNN to approximate
any functions [18]. Finally, at the output layer, we implement
the following regression to predict the future traffic at time
t + ∆t for all the DC pairs connected by the tenant’s VON,
based on the features learned by the hidden layers:

bt+∆t
(s,d) = wT

(L,I(s,d,∆t))hL + g(L+1,I(s,d,∆t)), (3)

where bt+∆t
(s,d) is the estimated total bandwidth requirement

between the DC pairs-d at timet+∆t (i.e., looking forward
for a period of∆t), L is the number of hidden layers, and
I(s, d,∆t) is the function to return the index of the neuron
in the output layer, which outputs the bandwidth requirement
prediction of thes-d pair. Note that, each neuron in the output
layer generates the traffic prediction for ans-d pair, and thus
its index can be obtained by checkings andd. Therefore, we
can see that with the DNN, the tenant controller can predict
the traffic traces for all the DC pairs connected by the VON.
This is a more scalable solution than the one proposed in [40,
41], which allocates an ANN to eachs-d pair and uses the
ANNs to predict traffic independently.

To train the DNN, we archive the historical traffic samples
according to the input format of the DNN, and label them
correctly. Specifically, each data samplen contains a few
connection requests as the features (i.e., xn) and the subse-
quent traffic matrix as the label (i.e., yn). Then, we can apply
the well-known back propagation algorithm [18] to adjust the

values ofw andg of the DNN iteratively, until the following
loss function gets minimized.

C =
∑

n

(yn − y′n)
2
, (4)

wherey′n is the prediction from the DNN. Note that, when
necessary (i.e., the traffic pattern has been changed dra-
matically), the DNN may be retrained with updated traffic
samples to maintain the state-of-art knowledge about the traffic
characteristics in the VON.

B. Adaptive and Cognitive Service Provisioning Algorithm

Based on the traffic prediction from the DNN, we design a
VON reconfiguration algorithm, namely, adaptive and cogni-
tive VON reconfiguration (ACVONR), which can readjust the
VON topology adaptively according to traffic dynamics. Note
that, in a VON that interconnects DCs, there are two levels of
traffic dynamics. The first level is the profile of the applications
that are active in the DCs. Specifically, the application profile
defines the spatial and temporal aspects of each application.
Here, the spatial aspect of an application refers to thes-d pairs
that its connection requests can take, while the temporal aspect
is the average service duration of the requests. Generally,for
a VON, the application profile would not change frequently.
The second level of traffic dynamics refers to the time-
varying bandwidth requirements of connection requests,i.e.,
requests that are for different applications and/or arriveat
different time can have different bandwidth requirements.Both
aforementioned levels can cause traffic fluctuation in the VON,
while the second level is generally much more dynamic. In the
following, we will explain how ACVONR addresses the two
levels of traffic dynamics jointly.

Algorithm 1 shows the detailed procedure of ACVONR,
where we assume that each service provisioning period is
∆t. Line 1 initiates two empty setsΘ and Ω, whereΘ is
for storing the latestK connection requests in the VON and
Ω will store the historical requests that are used in transfer
learning. Here, we introduce transfer learning [42] to address
application profile changes in the VON (i.e., the first level of
traffic dynamics), and its details will be explained later inthis
subsection. Then, at each service provisioning time, ACVONR
first tries to set up connections in the VON to serve the newly-
arrived requests since last service provisioning, and if there are
no sufficient resources in the VON, the request(s) could be
blocked (Line 3). Next, the latestK requests are pushed into
Θ as the input to the traffic predictor (Lines 4-7). ACVONR
calculates the prediction accuracyξ in Line 8 by comparing
the previously-predicted and newly-arrived requests. InLine
9, ξ is compared with a preset thresholdσ to test whether the
application profile in the VON has been changed or not.

If the prediction accuracyξ is higher thanσ, we determine
that the application profile does not have significant changes.
Then, inLines10-11, ACVONR obtains the traffic prediction
for the next provisioning period from the DNN, and hypotheti-
cally provisions the forecasted requests in the VON to estimate
future bandwidth requirements on VLs. Then,Line 12 puts a
safety marginm onto the estimated bandwidth requirement on
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Algorithm 1: Adaptive Cognitive VON Reconfiguration
(ACVONR)

1 Θ = ∅, Ω = ∅;
2 for each service provisioning timet do
3 try to set up connections in the VON to serve

newly-arrived requests{Rk(sk, dk, bk, tk, τk)};
4 store information of{Rk(sk, dk, bk, tk, τk)} in Θ;
5 if |Θ| > K then
6 delete the first|Θ| −K elements fromΘ;
7 end
8 compare previously-predicted and newly-arrived

requests to obtain the prediction accuracyξ;
9 if ξ > σ then

10 obtain traffic prediction for the next period
{bt+∆t

(s,d) } by feedingΘ into the DNN;

11 hypothetically provision{bt+∆t
(s,d) } in the VON to

estimate future bandwidth requirements
{F ′

e, e ∈ E};
12 F ′

e = F ′

e +m;
13 if |F ′

e − Fe| > δ, ∃e then
14 send a VON reconfiguration request to the

InP according toF ′

e;
15 end
16 else
17 use mean value of previous predictions as future

bandwidth requirements{F ′

e, e ∈ E};
18 send a VON reconfiguration request to the InP

according to{F ′

e, e ∈ E};
19 store information of{Rk(sk, dk, bk, tk, τk)} in Ω;
20 invoke DNN maintenance with transfer learning

and feedΩ into the DNN;
21 end
22 end

each VL, counting for the uncertainty in traffic variation as
well as prediction errors2. Finally, in Lines 13-15, ACVONR
sends a VON reconfiguration request to the InP if the tenant
sees a significant mismatch between the allocated bandwidth
Fe and estimated bandwidth requirementF ′

e. Note that, in this
work, we assume that the substrate resources in the IDCON
would always be sufficient for the reconfigurations, which is
usually the case in practical situations [12]. Meanwhile, the
algorithm can be simply extended to use the best-effort scheme
to cover the case in which whenF ′

e > Fe, but the substrate
resources in the IDCON are not sufficient to provisionF ′

e.
Otherwise, if we findξ ≤ σ, i.e., the application profile

in the VON has been changed, the DNN maintenance would
be invoked as shown inLines 17-21. Firstly, we temporarily
suspend the operation of the traffic predictor, use the mean
value of previous predictions as future bandwidth require-
ments, and send a VON reconfiguration request to the InP
to modify the VON accordingly (Lines17-18). Next, inLines

2With the distribution of absolute prediction errors obtained in the training
phase, we setm to be the value that can just compensate for the error whose
occurrence frequency is the highest.

19-20, ACVONR invokes the DNN maintenance by leveraging
transfer learning and feeding the information of newly-arrived
requests into the DNN to fine-tune its parameters. It can be
easily verified thatAlgorithm1 runs in polynomial time. Note
that, we can easily turn the DNN maintenance off by setting
the threshold asσ = 0, and then ACVONR degenerates to
cognitive VON reconfiguration (CVONR).

As the application profile in the VON can also change in
relatively large time scale, the DL-based traffic predictorhas to
be adaptive and thus should be maintained and updated from
time to time. However, the cost of redesigning and retraining
the DNN from scratch would be prohibitively high, and the
latency of interacting with the third-party entity for MLaaS
cannot fit into the requirement of dynamic provisioning either.
Therefore, we leverage the technique of transfer learning
[42] to develop a lightweight DNN maintenance scheme.
Specifically, in the transfer learning, we maintain the design of
the DNN (i.e., the number of layers and the number of neurons
in each layer) and try to reuse most of the learned DNN
parameters (i.e., weights and biases) obtained from MLaaS,
but only fine-tune a small portion of them to adapt to the
changes in application profile. The fine-tuning is achieved by
using the latest requests to retrain the DNN according to the
training scheme provided by the third-party entity in MLaaS.
This would make the DNN re-converge to a high precise traffic
predictor within a very short period of time [42]. Hence,
the DNN maintenance based on transfer learning is very
lightweight compared with designing and training the DNN
from scratch and does not require the computing resources
and expertise used in MLaaS, and thus can be accomplished
by the tenant itself in-house.

V. V ULNERABILITIES DUE TO ML AA S

As we assume that each tenant would leverage MLaaS to
outsource the designing and training of its DL-based traffic
predictor to a third-party entity, there would be security
vulnerabilities due to data poisoning [22] in which an attacker
deliberately generates fake training samples and inserts them
into the normal training set to contaminate a DNN in its
training phase. In this section, we will design a data poisoning
scheme that can easily bypass the normal verification of the
DL module and induce adversarial effects.

Here, for MLaaS, a tenant partitions the historical traffic
samples from its VON into a training setSt and a testing
set Sv, defines the working principle of the DNN’s input
and output layers, and then transfersSt and the working
principle to a third-party entity for offloading the designing
and training tasks. The third-party entity will figure out the
DNN’s structure and hyper-parameters (i.e., the number of
layers and the number of neurons in each layer) based on
training performance, train the obtained DNN withSt, and
return the learned parameters (i.e., w and g) to the tenant.
Then, the tenant will verify the DNN withSv before deploying
it for online service provisioning. However, the validation with
Sv does not necessarily secure the traffic predictor, since an
attacker can hack into the third-party entity and contaminate
the DNN with a tampered training data setS′

t. Specifically, the
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attack can be successfully launched without being detectedby
the tenant, ifS′

t satisfies the following two conditions:

• Trained with it, the DNN can deliver sufficiently high
prediction accuracy under normal situations (i.e., being
fed with legitimate request information).

• It contains malicious bugs that are secret enough and have
unique patterns for the DNN to identify.

Here, the legitimate request information refers to the informa-
tion of the normal connection requests that are generated by
legitimate applications in the VON, while the malicious bugs
correspond to the contaminated part of the DNN, which can be
leveraged by the attacker to make the DNN give wrong predic-
tions. Therefore, trained with such a contaminated training set,
the traffic predictor can work perfectly under normal situations
to bypass the validation process, but would be compromised
completely when an attacking signal (e.g., a specific and
unexpected connection request gets inserted in the VON) is
released. Worse still, such an attack can hardly be detected
before it has actually induced severe performance degradation.
Unfortunately, the vulnerability due to data poisoning can
hardly be eliminated by enlarging the testing set. This is
because in most of the DL related problems, the possible
inputs to the DNN are numerous or even infinite. For example,
in our problem, the input layer of the DNN takesK historical
requests as the inputs, while each request is a5-tuple (i.e., the
s-d pair, the bandwidth requirement, arrival time, and service
duration). Therefore, it would be literally impossible forthe
DNN’s user to cover all the possible inputs in the training and
testing sets. Consequently, the attacker can always contaminate
the training set with adversarial samples that are not included
in the original training and testing sets.

We design the data poison scheme by mixing adversarial
training data into the normal training setSt to generateS′

t.
Since each training step actually mimics the actual operation of
the DNN, we feed inK historical requests as the input. Then,
each normal traffic samplen should includeK groups of fea-
tures (i.e., Rk(sk, dk, bk, tk, τk), ∀k ∈ [1,K]), which can be
denoted asxn, while the DNN would output a predicted traffic
matrix, which can be denoted asyn. Then, the DNN actually
achieves the prediction function asψ1(xn) = yn. Similarly, a
poisoned traffic sample can be denoted asx̂n, which would
lead the DNN to be trained to output compromised prediction
ŷn with a hacked prediction functionψ2(x̂n) = ŷn. Therefore,
if we can design̂xn such that the obtainedψ2(·) satisfies the
aforementioned two conditions, the attack can be launched
sneakingly. This actually can be realized by:

• Slightly modifying the order ofs-d pairs in xn and
making them satisfy a particular pattern,i.e., reorder-
ing {{s1, d1}, {s2, d2}, . . . , {sK , dK}} in xn to
{{ŝ1, d̂1}, {ŝ2, d̂2}, . . . , {ŝK , d̂K}} in x̂n, and

• Setting the bandwidth requirements of theK requests in
x̂n as approximately equal,i.e., b̂1 ≈ b̂2 ≈ . . . ≈ b̂K .

Then, we mix the adversarial samplêxn with normal ones
and train the DNN with them. Finally, the DNN can be
contaminated. When it sees the aforementioned particular
pattern of s-d pairs (i.e., the trigger of attacks), it would
output incorrect traffic prediction, in turn cause the tenant

DC1
DC2

DC3

DC4DC5

C11111111

DC1 DC2

DC3

DC5

D

DC4

VON

Substrate IDCON

Fig. 3. Substrate IDCON and a VON to interconnect5 DCs.

to request for improper VON reconfiguration schemes, and
eventually make the VON malfunction. Note that, although
inserting requests with specifics-d pairs and in a predefined
sequence in the VON would be difficult for the attacker
to achieve, it is not completely infeasible. Specifically, the
attacker can hack into a number of virtual machines (VMs)
in the DCs to do so, with the similar method of launching
distributed deny-of-service (DDoS) attacks. Note that, this is
actually easier than launching DDoS attacks, since the required
requests would not be numerous and highly bursty. In all, as
we mainly concentrate on vulnerability analysis, the details of
the attacking scenario is beyond the scope of this work.

VI. PERFORMANCEEVALUATIONS

In this section, we first evaluate the performance of our
proposed DL-assisted IDCON management scheme, and then
demonstrate the security vulnerability due to MLaaS.

A. Simulation Setup

We consider the six-node topology in [43] for the substrate
IDCON and assume that a tenant has5 DCs to be interconnect-
ed with a VON, as shown in Fig. 3. As we have explained in
Section IV, the simulations assume that the substrate resources
in the IDCON would always be sufficient. The tenant supports
five types of applications (a1, . . . , a5) whose application
profile is summarized in Table I. For instance, Table I indicates
that the requests of applicationa1 can take DC1-DC2 and
DC5-DC4 ass-d pairs, and their average service duration is2
provisioning periods (i.e., 2∆t). In the simulations, each∆t
is assumed to be an hour. Based on the application profile
in Table I, the connection requests in the VON are randomly
generated with an average arrival interval of0.8∆t.

Note that, each connection request is defined as
Rk(sk, dk, bk, tk, τk), and until now, all of its parameters
have been determined except for its bandwidth requirement
bk. The bandwidth requirementbk is obtained as follows.
To emulate the dynamic traffic in a practical IDCON, we
leverage the real traffic traces collected by Internet service
providers (ISPs) [44] to generate the bandwidth requirements.
Specifically, for requests arriving at different time, we assign
various bandwidth requirements to them according to the



7

traffic traces, to mimic time-varying traffic demands. Here,the
assignment is based on a sliding window mechanism. We first
take five traces from the data in [44] to represent the bandwidth
requirements of the five applications in Table I, respectively.
Then, on each trace, we apply a sliding window on it. When a
new request arrives, we use its application to map to the right
trace, make its service duration as the size of the corresponding
sliding window, assign the maximum bandwidth usage within
the window as its bandwidth requirement, and then slide
the window forward on the trace until the request’s service
duration ends.

Finally, after obtaining all the connection requests
(∼360000 in total), we sort them in ascending order of their
arrival time and divide them into a training setSt and a testing
set Sv, where 80% of the requests are put inSt and the
remaining20% gets stored inSv. Our simulation environment
is a computer with 4.0 GHz Inter Core i7-6700K CPU, 16 GB
RAM and 11 GB NVIDIA GTX 1080Ti GPU, and the neural
networks are implemented with TensorFlow 1.4.1. Here, we
define the prediction accuracy as

ξ = 1−





∣

∣

∣
bt+∆t
(s,d) − b̂t+∆t

(s,d)

∣

∣

∣

bt+∆t
(s,d)



 , (5)

where bt+∆t
(s,d) as the predicted bandwidth requirement and

b̂t+∆t
(s,d) is the actual bandwidth requirement.

TABLE I
APPLICATIONPROFILE

Apps s-d Pairs Average τk

a1 DC1-DC2, DC5-DC4 2∆t

a2 DC1-DC3, DC2-DC3, DC2-DC4, DC3-DC4 4∆t

a3 DC1-DC2, DC2-DC3, DC2-DC4, DC3-DC4 4∆t

a4 DC1-DC3, DC2-DC3 2∆t

a5 DC2-DC3, DC3-DC4, DC5-DC4 3∆t

B. Performance of Traffic Predictors

We first compare the performance of the traffic predictors
based on an integrated DNN and separate ANNs.

For the integrated DNN, we design it withK = 15,
which means that its input layer consists of75 neurons and
uses a sliding window to consider15 historical requests each
time. To obtain reasonably good training performance and to
avoid both over- and under-fitting [18], we design the DNN
to include three hidden layers, each of which includes92
neurons. Finally, the DNN’s output layer consists of6 neurons,
each of which corresponds to the traffic prediction of a DC
pair listed in Table I. Here, except for the output layer, which
is determined by the considered DC pairs, the design of the
DNN is empirical, i.e., we first roughly select a number of
candidates, then observe the training performance in terms
of convergence speed and prediction accuracy, and finally
determine the best design based on the results.

On the other hand, for the separate ANNs, we use six
independent ANNs to cover the six DC pairs in Table I.
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Fig. 4. Training performance of traffic predictors based on an integrated
DNN and separate ANNs.

The design of each ANN is also determined empirically. To
achieve fair comparisons, each ANN is designed with the same
principle as that of the DNN to determine its input and output
layers, and we optimize its design with the same empirical
approach that is applied to the DNN, train it with the same
training set, and verify it with the same testing set. Specifically,
the output layer of each ANN only consists of one neuron,
which corresponds to the traffic prediction of one DC pair,
while the number of the neurons in its input layer depends on
the average traffic volume listed in Table I for its DC pair.
For instance, Table I shows that there are four requests for
DC2-DC3 on average among each15 requests in the VON,
and thus the input layer of the ANN for DC2-DC3 includes12
neurons. Here, as each ANN does not need to record thes-d
pair of each request, each request can be represented with three
neurons,i.e., for its bandwidth request, arrival time and service
duration, respectively. To optimize the prediction performance
of the ANNs, we design each of them to also include three
hidden layers, each of which consists of30 neurons. Note
that, this is different from the ANN design in [40], which only
puts a single hidden layer in each ANN. This is because when
optimizing the ANNs empirically, we find that the ANNs with
three hidden layers would generally provide significantly more
accurate predictions than those with a single hidden layer.

The training performance of the DNN and ANNs is plotted
in Fig. 4. Here, since we have six ANNs and their training
performance is similar, we only show the training performance
of the one that eventually provides the highest prediction
accuracy,i.e., the ANN for DC2-DC3. We find that for the
DNN, its training converges to an average accuracy of96.49%
after 3.6 × 105 epochs, and it takes us2284 seconds to train
the DNN from scratch. For the ANN, its training can only
converge to an average accuracy of89.59% after 7 × 104

epochs, and its training takes291 seconds. Note that, the time
recorded here is only for the training phases after when the
designs of the DNN and ANNs have already been finalized
empirically. Nevertheless, to finalize their designs, we might
need to try hundreds of candidates. Hence, the overall time and
efforts spent on designing and training the DNN/ANNs would
be too much for a tenant, not even mentioning about that such
time and efforts are based on the assumption that sufficient
computing resources and expertise are provided. This justifies
the necessity of MLaaS, at least for the tenants whose technical
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Fig. 5. Comparison on predicted and actual bandwidth requirements for
DC2-DC3.

teams are small and light.
When the training has been completed, we verify the

performance of the traffic predictors with the requests inSv,
and the results on the prediction accuracy for the bandwidth
requirements among DC pairs are listed in Table II. We
observe that our integrated DNN outperforms the separate
ANNs remarkably for all the DC pairs. Then, to show an
illustrative comparison of the predictions, we take DC2-DC3
as an example, and plot the actual and predicted traffic
loads for it in Fig. 5. Fig. 5(a) indicates that the prediction
from the separate ANN can only capture the rough trend of
traffic fluctuation, and noticeable difference can be seen when
comparing it with the DNN’s prediction in Fig. 5(b). This
actually confirms the superiority of our integrated DNN.

C. Performance of DL-assisted IDCON Management

Next, we perform simulations to evaluate the DL-based traf-
fic predictor’s performance in IDCON management. Specifi-
cally, we consider the IDCON as an EON whose spectrum
allocation granularity is12.5 GHz (i.e., each FS can deliver
a capacity of12.5 Gbps). Then, in each service provision-
ing period, the tenant tries to serve all the newly-arrived
requests with the spectrum resources that the InP allocated
to its VON, i.e., setting up lightpaths with the shortest-path
routing and first-fit scheme to deliver the required bandwidth
capacities. If any of the requests cannot be served due to
insufficient spectrum resources in its VON, they are marked
as blocked. Therefore, the simulations evaluate IDCON man-
agement schemes in terms of two metrics,i.e., the request
blocking probability and spectrum utilization in the VON.
Ideally, we would expect an intelligent IDCON management

scheme to minimize the blocking probability and maximize
spectrum utilization simultaneously.

TABLE II
COMPARISON ONPREDICTION ACCURACY

s-d Pair Integrated DNN Separate ANNs

DC1-DC2 96.54% 81.48%

DC1-DC3 97.29% 89.11%

DC2-DC3 98.01% 89.59%

DC2-DC4 97.26% 87.32%

DC3-DC4 97.09% 86.36%

DC5-DC4 92.72% 85.71%

1) Constant application profile:We first assume that the
application profile does not change, and consider several algo-
rithms to evaluate our proposal. First of all, we incorporate the
integrated DNN and separate ANNs in our proposed ACVONR
algorithm. As the application profile stays unchanged, there is
no need to invoke transfer learning and ACVONR becomes
CVONR. Hence, we obtain two algorithms, namely, CVONR-
ANN and CVONR-DNN. The third one does not use traffic
prediction but allocates fixed capacities to the VON to cope
with traffic fluctuation,i.e., fixed capacity allocation (FCA).
The last algorithm is based on the idea of reactive VON recon-
figuration (ReVONR) without traffic prediction. Specifically,
ReVONR would ask for more bandwidth resources (∆Fe) on
the related VL(s) in the next provision period, when it sees
request blocking in the current period, and similarly, when
it finds that the spectrum utilization(s) of VL(s) are below
certain threshold (ηe) in the current period, it would reduce the
bandwidth allocation(s) on the corresponding VL(s) by∆Fe in
the next period. In the simulations, we optimize{∆Fe, ηe} for
all the VLs in the VON to achieve the best tradeoff between the
blocking probability and spectrum utilization for ReVONR.

Here, FCA can allocate different amount of spectrum re-
sources in the VON. For example, “FCA-150G” means that
the InP allocates the spectrum resources to support150 Gbps
capacity on each VL in the VON3. Fig. 6 shows the results
of request blocking probability and spectrum utilization from
different algorithms. As expected, when more spectrum re-
sources get allocated to the VON, FCA’s blocking probability
and spectrum utilization decrease accordingly. Meanwhile,
we observe that for both blocking probability and spectrum
utilization, the performance of ReVONR is just slightly worse
than that of FCA-150G. This can be explained as follows. As
ReVONR determines when and how to reconfigure the VON
based on the network status in the current period but not the
prediction for the next period, it could make wrong decisions
when the bandwidth requirements are highly dynamic. For
example, a decreasing trend of the bandwidth requirements
in the current period does not necessarily mean that the VON
would require less bandwidths in the next period.

By comparing the results in Figs. 6(a) and 6(b), we can
see that CVONR-DNN always achieves the highest spectrum

3Note that, on average, the dynamic requests would consume a capacity of
∼150 Gbps on each VL, and this is the reason why we start to check the
performance of FCA from FCA-150G.
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Fig. 6. Comparison of CVONR and benchmarks.

utilization and the lowest blocking probability. This actually
confirms the intelligence of our DL-assisted IDCON manage-
ment and indicates that with our proposal, the InP can allocate
spectrum resources to the VONs more adaptively to avoid
both under- and over-provisioning scenarios. Meanwhile, each
tenant does not need to worry about the mismatch between
the allocated resources and incoming connection requests any-
more. Hence, a “win-win” situation can be achieved. Finally,
we can see that with traffic prediction, CVONR-ANN achieves
the second highest spectrum utilization among the algorithms,
but the relatively low prediction accuracy makes its blocking
probability significantly higher than that of CVONR-DNN.

2) Time-varying application profile:Then, we consider two
scenarios where the application profile in the VON can change
on-the-fly, and evaluate the performance of ACVONR and
CVONR (i.e., ACVONR with σ = 0) with an integrated DNN.
The change scenarios are listed in Table III, and we change
the application profile of the connection requests by modifying
certain s-d pairs. In the two change scenarios,Scenario1
involves two changes on thes-d pairs, while Scenario 2
applies threes-d pair changes. Hence, the application change
in Scenario2 is more dramatic.

TABLE III
APPLICATIONPROFILE CHANGE SCENARIOS

Apps s-d Pairs

Scenario 1
a4 DC2-DC3⇒ DC2-DC4

a5 DC2-DC3⇒ DC2-DC4

Scenario 2
a3 DC2-DC3⇒ DC1-DC3

a4 DC2-DC3⇒ DC1-DC3, DC3-DC4⇒ DC2-DC4

We assume that the change happens att = 60 hours in
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Fig. 7. Comparison of CVONR and ACVONR (profile changeScenario1).

the simulations, and compare the performance of CVONR
and ACVONR in terms of blocking probability and spectrum
utilization. The results forScenario1 are shown in Fig. 7.
It can be seen clearly that with the DNN maintenance using
transfer learning, ACVONR can adapt to the application profile
change better and provide lower blocking probability and
higher spectrum utilization than CVONR after the change.
Nevertheless, since the change inScenario 1 is not very
dramatic, the performance difference between CVONR and
ACVONR is not significant. Meanwhile, we would like to
point out that the DNN maintenance with transfer learning
only takes60 milliseconds, which is five magnitudes shorter
than the time used for training from scratch. Hence, the
extremely low time complexity of the DNN maintenance
enables it to fit into the requirement of dynamic provisioning.
The performance difference between CVONR and ACVONR
for Scenario 2is illustrated in Fig. 8. This time, since the
change on application profile is more dramatic, the advantages
of ACVONR over CVONR become more significant.

D. Demonstration of Data Poisoning

Finally, we leverage the scheme in Section V to launch a
data poisoning based attack to the DL-based traffic predictor
and demonstrate the vulnerabilities of MLaaS. Specifically, an
adversarial training sample that includesK = 15 requests is
obtained by modifying the legitimate data, and we mix them
with other normal training samples inSt sneakingly to get the
poisoned training setS′

t. Then, if we train the traffic predictor
with S′

t, its DNN can be contaminated such that controllable
incorrect predictions can be generated when the DNN sees
the particular pattern ofs-d pairs in the adversarial sample,
which is actually the trigger of attacks. The attacker makes
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Fig. 9. Effect of data poisoning.

the bandwidth requirements of the requests in the adversarial
training sample approximately equal (i.e., ≈ b̂), and then
controls the incorrect predictions on bandwidth requirements
by settingb̂ as various values. To verify this, we changeb̂ in
S′

t, collect the actual compromised predictions, and plot the
results in Fig. 9, which indicates that the actual predictions
are almost exactly the same as the attack’s desired outputs.If
we define the attacking accuracy as the value of dividing the
absolute difference between the desired and actual outputsby
the value of desired output, the results in Fig. 9 suggest an
attacking accuracy of98.55%.

We also test the contaminated DNN with the legitimate test-
ing setSv to confirm that it can successfully cheat the tenant
with reasonably high prediction accuracy. Table IV compares
the prediction accuracy between the normal and contaminated
DNNs, and we also plot the cumulative distribution functions
(CDFs) of the prediction accuracy in Fig. 10. The results in
Table IV and Fig. 10 verify that the normal and contaminated
DNNs perform almost the same onSv.

TABLE IV
COMPARISON ONPREDICTION ACCURACY

s-d Pair Normal DNN Contaminated DNN

DC1-DC2 96.54% 96.37%

DC1-DC3 97.29% 96.98%

DC2-DC3 98.01% 97.98%

DC2-DC4 97.26% 97.21%

DC3-DC4 97.09% 97.11%

DC5-DC4 92.72% 92.13%

0.4 0.5 0.6 0.7 0.8 0.9 1
Prediction Accuracy (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

(C
D

F
)

Empirical CDF

Normal DNN
Contaminated DNN

Fig. 10. Comparison on CDF of prediction accuracy.

We put the contaminated DNN in the traffic predictor and
use it in the service provisioning of the VON. The comparison
on the actual and predicted bandwidth requirements for DC2-
DC3 is illustrated in Fig. 11, which indicates that within
150 hours, four attacks have been launched successfully to
deviate the predictions far from the actual values and cause
the tenant to make wrong decisions. We also zoom the time
scale in and plot the prediction accuracy for the first80 hours
in Fig. 12, which suggests that the attacks can bring the
prediction accuracy down to∼30%. Note that, although we
only show the results for DC2-DC3 in Figs. 11 and 12, there
are more simulation results to confirm that the contaminated
DNN’s adversarial effect does not depend ons-d pairs but
we omit those results due to the page limit. Finally, Fig.
13 illustrates the degradation on blocking probability when
the aforementioned attacks happen at different frequencies.
As expected, the average blocking probability in the VON
increases with the attacking frequency.
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We hope to point out that the adversarial effect mentioned
above cannot be compensated by turning on transfer learning.
This is because the performance degradation caused by the
attacks is very sudden such that when ACVONR detects the
significant decrease on prediction accuracy and invokes trans-
fer learning, relatively large adversarial effect has already been
caused. Moreover, the attacker can insert multiple triggers of
attacks in the training phase, and then activate them randomly.
Then, the self-adaptivity of ACVONR can hardly catch up
with the resulting changes. A potential defensive solution
would be applying an anomaly detection scheme to identify
the triggers of attacks [45]. Specifically, since the DNN is
actually contaminated by training it with adversary samples
that have unique patterns deviating from normal samples,
we can apply a clustering algorithm to analyze the patterns
of normal samples and hereby detect suspicious adversary
samples. Another solution would be employing the layers with
special structures in the DNN to smooth out the impact of
attacks, as suggested in [46]. In our future work, we will
try to integrate the aforementioned solutions in our service
provisioning framework, and study how to effectively address
the vulnerability of MLaaS.

VII. C ONCLUSION

In this paper, we investigated how to integrate DL-based
traffic prediction in the NC&M schemes for an IDCON and the
VONs created over it. In our service provisioning framework,
each tenant uses a DL module to predict the traffic in its VON
and would submit a VON reconfiguration request to the InP
of the IDCON, when there is a significant mismatch between
future traffic and the allocated resources in its VON. Hence,
with the requests, the InP could invoke VON reconfiguration
in advance to prepare the VON better for future traffic. In
order to support the framework, we first designed an adaptive
and scalable DL-based traffic predictor to deliver precise and
timely forecasts, and then proposed a cognitive service provi-
sioning algorithm to utilize the prediction results effectively.
Next, we considered the situation where a tenant uses MLaaS
to outsource the designing and training of its DL module, and
analyzed the induced security threats due to data poisoning.
Simulation results indicated that with our proposal, the InP
can invoke VON reconfigurations more timely and accurately,
and thus both the request blocking performance and resource
utilization of a VON gets improved significantly. Meanwhile,
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the results also showed that our data poisoning scheme can
easily bypass the normal verification of the DL module and
induce significant adversarial effects.

In summary, we can see that integrating DL-based traffic
prediction in the NC&M schemes of an IDCON and its VONs
would be apparently beneficial. However, people should be
very cautious about the usage of DL in the NC&M, and pay
extra attentions to the security vulnerabilities that could be
caused by the MLaaS in the process. In other words, one can
never give up “human intelligence” or assume that artificial
intelligence (AI) would just do everything perfectly. Instead,
human intelligence should always be included in the loop
of NC&M, for monitoring the behaviors of AI closely and
reacting quickly when necessary.
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