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Abstract—In this article, we discuss the design and imple- manage a large nhumber of heterogeneous network elements,
mentation of a novel datacenter network (DCN) system, which which at least include the servers for VM deployment and the

utilizes a knowledge-defined network orchestration mechasm AL ; ; .
(NO-M) to operate a hybrid optical/electronic DCN (HOE-DCN) toptpf raE:rI:].(TQRi, aggregart]lon anq .Colre SW!tCheS fhor nﬁlﬁl
cost-effectively and energy-efficiently. The motivation®ehind the rou_ Ing. IS 'S. c_) say,_ it has to Jomty_optlmlze the allo-
proposed HOE-DCN system are the urgent needs to address thecations of multi-dimensional IT resourcese( CPU cycles,

scalability, energy and manageability issues in the existy DCN  memory and storage) on servers and bandwidth resources on
systems. To realize the knowledge-defined NO-M, we follow & network links [3]. Note that, DCNs purely based on electconi
principle of predictive analytics in human brain to design three packet switching would be unsustainable soon [4, 5]. Hence,

artificial intelligence (Al) modules based on deep learningDL) . - .
and make them operate collaboratively. The proposed HOE-D&  NyPrid optical/electronic DCNs (HOE-DCNs) that use both

system is implemented in a network testbed, and we conduct high-speed Ethernet switches and optical circuit switsh(e
experiments that involve both control and data plane operabns connect ToR switches will soon become increasingly common
to demonstrate i;s advantages. Thg experi_mental results sk that for new DCN deployments [4, 5]. This, however, will further
the HOE-DCN simultaneously achieves high-performance seite o mpjicate the network management part in an NO-M.
provisioning and improved energy-efficiency. Furthermore by On the other hand. both th ting task d the traff
analyzing the pros and cons of the HOE-DCN system, we also n the other hand, bo € compuling tasks an e trainc
point out several directions to work on in the future. ina DCN can be hlghly dynam'?- For example, the ré}tlo
Index Terms—Datacenter networks (DCNs), Network orches- betweerl inter- and intra-rack Fraﬁlc could Change °Vef time
tration, Energy saving, Knowledge-defined networking (KDN, when different types of COmpUtlng tasks are running, wlole f
Artificial intelligence (Al). the same reason, the ratio between mice and elephant flows
would also be time-variant. Therefore, an NO-M can hardly be
efficient without precise knowledge on the characteristits
computing tasks and traffic in the DCN. Moreover, to reduce
RIVEN by the happening revolution on information andhe setup latency of services and minimize the mismatch
communication technology (ICT), cloud computing idetween allocated and utilized resources, the NO-M needs to
penetrating academia, industry, and government sectpidlya predict future computing tasks and traffic accurately [6].
across the world. In the new context, customers can rentFor these two challenges, the first one can be addressed
IT and network resources from the cloud service provideby designing a centralized NO-M based on software-defined
(CSPs) in a “pay-as-you-use” manner, which can signifiganthetworking (SDN) [7, 8], while the idea of knowledge-defined
reduce the investment in self-built infrastructure. Tere, networking (KDN) [9] might be leveraged to resolve the sec-
the amount of global IP traffic generated by clouds has beend one. KDN is a new networking paradigm that incorporates
growing at a compound annual growth rate of 30% since 208PN, telemetry, data analytics, and artificial intelliger{él).
and would reach 14.1 zettabytes (1 zettabyte®)Z bytes) Specifically, with the global view and full control over a
in 2020, and this actually represents more than 92% of thetwork provided by SDN, the KDN controller can collect
total traffic within/among datacenters (DCs) [1]. Conseatilye rich telemetry information, conduct Al-assisted data wiicd,
being the fundamental infrastructure of cloud computin@, Dabstract knowledge via deep learning (DL), and make wise
networks (DCNs) are under great pressure to accommoddégisions to achieve highly efficient network orchestratio
such tremendous traffic with sustainable technologiesTRis In this article, we first review the recent trends of DCN
means that the network orchestration mechanisms (NO-Migvelopment from the perspectives of architecture sdaigbi
used to manage the virtual machines (VMs) and netwoehergy efficiency and management agility. Then, to address
connections in DCNs should try to not only increase resourtee revealed issues, we design an HOE-DCN system with
utilization but also reduce energy consumption. knowledge-defined NO-M. By leveraging DL-based Al, our
The challenges of realizing a highly efficient NO-M ardNO-M achieves precise prediction and intelligent decision
mainly two-fold. On one hand, the NO-M needs to control anahaking, and thus can effectively improve both the service
provisioning performance and energy-efficiency of the HOE-
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I. INTRODUCTION



1. REVIEW ON DATACENTER NETWORKS (DCNS) The utilization on ICT equipment can be greatly improved
A. Architecture Scalability with the virtualization technology that virtualizes the fe&-

Most deployed DCNs use electronic packet switches Sources on servers and uses them for VM deployment. Hence,

. L . . . server load consolidation,e., grooming VMs onto fewer
ganized in hierarchical architectures to interconnectessr

. Lo servers and shutting down the idle ones, can be achieved
However, they have sustainability and scalability issugs t : . )
. . : . for energy saving. Here, the overhead is that the associated
the following two reasons. First of all, both the capital exgi-

ture (CAPEX) from switches and the operational expendituyelvI migrations might generate huge volumes of trafﬁg among
servers and push the energy usage on related switches up.

(OPEX) due to power consumption would increase rapidl .
when the capacity of such a DCN is being expanded [4]. Thélf;nerefore, the DC operator has to carefully steer the tradfic

will eventually make the DCNs unsustainable to support tﬁié/md unnecessary energy consumption [13, 14].
future Mega DCs that can contain hundreds of thousands of
servers and have tremendous bandwidth capacity requitsmeg. Management Agility

Secondly, due to the best-effort nature of packet switching Traditional DCN management usually relies on vendor-

would be challenging for the DCNs to provide dif'ferentiategependent tools that can only be operated well by experts

services to clients with various QoS requirements. On th%d thus is error prone and difficult to operate and uparade
other hand, by utilizing the tremendous bandwidth capacig/ b b P9 '

. . . . L o . Fortunately, SDN offers new opportunities to manage DCNs
in optical fibers, optical circuit switching (OCS) and optic more easil);/ adaptively and reli;tfly [7]. Under the pargadtg‘
packet switching (OPS) provide alterative solutions totdlat SDN DCNé become more programm.ab'le the CSPs gain
the DCN architecturg for supporting large-scale D.C.S bett%” c,ontrol over the entire network systen’; via a centralize
Nevertheless, the optical solutions are not perfect eiiece and programmable orchestrator. There are several adwntag
the long switch configuration time of OCS would make th )

path setup latency unsuitable for delay-sensitive sesvi due to this. Firstly, with a global view on its DCN, a CSP

OPS is still not mature because of the lack of all-opticafdmsf can manage the gllocanons of .IT and bandwidth resources
) . . . more effectively with the centralized orchestrator. Seltpn
and the complexity from optical signal processing [10].

he orchestrator helps the CSP respond quickly to DCN status

arcl:(regc(::gr’nm:nggzn[i—%r]m%agg-e[ggoNglcez(I:ol\rf t(h}_éoai_z(;gsgig%nges by collecting telemetry information proactively.

. o ore promisingly, after gathering rich data about a DCN,
.Of both electronic packet switching (EPS) and OCS and mo\&% can ipncorporgtt)a/ the idga of KIgN [9] in its managemen-
L?;gi:gi‘:llybéﬁzy :Saghicvibilﬁ Faigsrf(zt))tg ntrHagSétjgraLr?nn;ktg system by introducing Al-assisted data analytics. Hence,
an EPS network-work coordinatelilwith’an OCS netwaisk nowledge can be abstracted from the network data and
the ToR switches can be either interconnected with higlectpeused to achieve intelligent decision making [6]. Meanwhile

Ethernet switchesi.é., to carry delay-sensitive and/or highIy'r:n':n:’cg::e:?gnﬁitth;éhtir: CV(‘)/:LL t::xﬁ t;ideegf dt;etgwfoﬁg ;25
dynamic traffic) or an optical circuit switch.¢., to support 9 grity plexity

bandwidth-intensive and/or long-lasting traffic). Notetthin and analytics. With the fast development of compuiting tech-

reality, especially for a Mega DC, the HOE-DCN would haVnolog;;ies/facilities and Al algorithms, the latter is bedom

a more complex architecture than that in Fig. 1(a). This F%ss and less problematic. For instance, one can easilyirapr

because the available ports on a commercial OCS switch < time efficiency of Al training by leveraging knowledge

usually limited (e, in the magnitude of hundreds), and thu§"'2" NG among Al modules, parallel trainirge

we cannot use a single OCS switch to interconnect all the ToR

switches in a DC. Therefore, multiple OCS switches might bell. HOE-DCN wiTH KNOWLEDGE-DEFINED NETWORK
organized in a hierarchical mannez.dg, the leaf-and-spine ORCHESTRATION

architecture) to realize a scalable HOE-DCN. The HOE-DCN in Fig. 1(a) leverages a multi-tier EPS
network and a flat OCS network to realize inter-rack intercon
B. Energy Efficiency nections. Here, the EPS network consists of edge, aggoegati
It is known that DCs in the United States consumed apnd core tiers. In the edge tier, the ToR switches connect
proximately 70 billion kilowatt-hours (KWHs) in 2014, whic the servers and organize them in racks. The switches in the
accounts for~1.8% of the total electricity consumption ofaggregation and core tiers interconnect the ToR switchds an
the country, and the number has been growing fast since theilge the communications among the servers in different
[11]. The energy consumption of a DC normally comes fromacks. With packet-level switching granularity, the EPS-ne
two entities, which are the ICT equipmerite(, the servers, work can support delay-sensitive and/or highly dynamierint
switches and other network elements in the DC) and thack traffic well, but may suffer from congestions caused by
cooling and lighting facilities. Building DCs in cold plese the oversubscription in the hierarchical structure.
and/or using renewable energy resources can improve th&he OCS network uses a reconfigurable OCS switch to
energy efficiency of the latter, while there is also plenty dhterconnect the ToR switchege. the OCS switch can set
room to reduce the energy consumption of ICT equipmeunp lightpaths with wavelength-level switching granuharib
because the servers and switches in current DCs are usupliynp high-throughput traffic through. Therefore, bandhsdt
in very low utilization €.g, 10%) [12]. intensive and/or long-lasting inter-rack traffic can byp#se
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Fig. 1. Hybrid optical/electronic DCN (HOE-DCN) with a maganent system based on knowledge-defined NO-M.

. . . I O
EPS network to avoid congestions. However, the typical CON  yiucarane  Laer [ Layors —] Lover
figuration time of an OCS switch is in hundreds of millisec- e Prediction of Traffic
onds, which would introduce relatively long path setupriate Destination Traffic_Volume(t+1)

Hence, it would be critical to make the EPS and OCS network:
cooperate well for accommodating various types of flows in
the HOE-DCN, which motivates us to design a knowledge-| wraftic Volume()
defined network orchestration mechanism (NO-M).

Fig. 1(b) shows the design of our proposed managemer Layer0 Loyt Layer N Layer Ne1
system to realize knowledge-defined NO-M for the HOE- Q) Activation Function by, = (01, tn_1)
DCN. Here, we design an IT Resource Controller (IT-C)
and a Network Controller (NET-C) to manage the IT and _
bandwidth resources, respectively, and they are cootiriay ~ Historicalvi PP — sl — oo

Traffic_Volume(t+2)
Traffic_Volume(t) i

Traffic_Volume(t+j)

Traffic_Volume(t+T)

Traffic_Volume(t-T)

(a) DL-based Traffic Prediction Module

a Knowledge-Defined Network Orchestrator (KD-NO). In the pemands Pred[i)ﬁzgﬁ;sf VM
IT-C, the VM Deployment Module, VM Migration Module,

CPU(t)

CPU(t+1)
and VM Scaling Module realize adaptive VM management =

in the servers, while the IT Resource and Traffic Monitor CPU(tT) O=> CPU:(t+T)

collects the statistics about IT resource usage and traffi : ':> ‘\ : :

periodically to send to the KD-NO. The NET-C consists of | RAM(t) X RA“’!(t+1)

three modules. The Flow Provisioning Module accommodate RAM(t+T)

flows according to their types, and routes their traffic to " RAMED htt O fesy ;

minimize the energy usage of switches. The Network Recon ' Layer0  Layer1 LayerN Layer N+1

figuration Module reconfigures the OCS switch to adapt tc () Activaton Function = f (81, n-1)

inter-rack traffic, while the Network Abstract Module calte (b) DL-based VM Demand Prediction Module

the statistics about inter-rack traffic to forward to the IKD. Input Hidden Output  pregitions on Data
We follow the principle of predictive analytics in human e Taioand  La0er [ taves ] b Transter Latency and

brain to design the KD-NO [6], which makes three Al modules Traffic_Volume Average Data

based on deep learning (DL) work collaboratively to achieve = e Tenstertatensy

.. . .. . e : Data_Rate(Link;)
predictive analytics and decision making. Specificallye th Traffic_Volume

DL-based Traffic Prediction Module and the DL-based VM (Feck
Demand Prediction Module first predict future IT/bandwidth |SGEeEEeston

resource demands based on the historical network datadstor L ®  Layor1 Ly N Layeriel (OGS SfPory
in the Network and Service Database( forecasting based ) Activation Function hy, = f (@1, k1)

on memory), and then the DL-based Network Reconfiguration
Module takes the prediction results and determines thenapti
HOE-DCN configuration intelligentlyife., decision making Fig. 2. Designs of Al modules based on deep neural networkiNg) to
based on knowledge). Finally, the configuration is implehieve knowledge-defined network orchestration.

mented by the VM Management Module and the Network

Management Module, which talk with the IT-C and NET-

C, respectively, for orchestrating the IT/bandwidth reses.

Note that, the three DL-based Al modules work in a relativelyrediction accuracy could be achieved if the traffic and VM
independent way in our current design, but consolidatied thdemands are analyzed and predicted jointly. We will address
functionalities may bring in more benefits. For examplehkig this issue in our future work.

(c) DL-based Network Reconfiguration Module



IV. Al M ODULES BASED ONDEEPLEARNING

We design the three Al modules in the KD-NO in Fig.
1(b) based on deep neural networks (DNNs) [15], and their
structures are illustrated in Fig. 2. The three Al modulé®ta
the similar DNN structure, which contains an interconnecte
network of simple processing unitsg, neutrons) to explore
the high-order correlation properties of input data. Eaeh-n
tron contains a non-linear activation function that canetak
its current state®,, ; and the outputs from other neutrons
h, 1 as inputs to generate an outpht,, for modeling
highly nonlinear systems precisely. Each DNN consists of
an input layer, multiple hidden layers, and an output layer.
Here, the neutrons in each layer process the outputs from the
previous layer with their activation functions, and proagg
their outputs to the next layer through a set of links that
can multiply weights on. The procedure is done when tH&: 3 Snapshot of our HOE-DCN prototype.
processed data reaches the output layer, where the finaltsutp
of the DNN are obtained. In general, by increasing the number

of hidden layers, we can enhance the analyzing and pregdictifpg inter-rack network is built with four aggregation/core

capability of a DNN at the cost of longer training time.  gyitches organized in a hierarchical structure. Here, B, T
For the Traffic Prediction Module, the DNN in Fig. 2(a) usegggregation and core switches are all packet-based OpenFlo
the historical statistics of traffic between a source-de$ibn g itches, which are either hardware-based commercial ones
pair as the inputs to forecast its future traffic volumes.eNop, sofrware-based OpenvSwitch running on Linux servers.
that, with the right inputs, the DNN can predict the traffiGeanwhile, the ToR switches are also interconnected throug
between either a VM pair or two racks. To train the DNN, reconfigurable optical switch for the OCS inter-rack netwo
we organize the collected traffic statistics as a time serigge distinguish the capacities in EPS and OCS inter-rack
input it to the DNN for outputs, and update the DNN'S papeqyorks by letting the ToR switches connect to them with
rameters_ |t<_arat|vely by performmg gradient descent (GRY)IU yifferent types of ports. Specifically, the ToR switches et
the prediction 'OS’S_beCPmes satisfactory. The VM Demanqg, thejr aggregation switches through 1GbE ports, whilg the
Prediction Module in Fig. 2(b) works similarly.e., its DNN = ¢a5 5150 communicate with each other through 10GbE optical

is trained for predicting future IT resource usage on a eL( yorts whose connectivity is configured by the optical switch
usages on CPU, memory and storage) based on historical data}.he control plane of the HOE-DCN is developed based on

When the modules in Figs. 2(a) and 2(b) have been train%%en—source softwares and implemented in commodity Linux
they work together to provide the DL-based Network Reco@’ervers. For the KD-NO in Fig. 1(b), we modify OpenStack

figur:_ation Module in Fig. Z(C.) with t.h? knowledg_e tq mak(%o realize the IT-C, and the NET-C is implemented based on
intelligent network orchestration decisions. Specificaiiven ONOS. Specifically, we develop the Flow Provisioning Mod-

the f_uture_ IT/bandvv_|dt_h resource demands, the DNN in F'%Ie to support differentiated services and traffic consaiah
2(c) is trained to optimize the average daia-transfer &tend in the EPS inter-rack network, program the Network Reconfig-
) %ﬁlation Module to configure the reconfigurable optical skvitc

configuration for the HOE-DCN. Her.e, to creatg a tralnlngutomatically, and realize the Network Abstract Module to
sample, we randomly generate certain IT/bandwidth resou ollect network status in the HOE-DCN. These three modules

demands and an HOE-DCN configuration, implement them le implemented by leveraging the internal APIs provided by
our HOE-DCN testbed, and collect the average data-trans 0S. The three DL-based Al modules in Fig. 2 are realized

latency and link utilizations. Hence, the DL-based Networ, ased on TensorFlow. We have to admit that there is a gap
Reconfiguration Module is trained with practical data otiiel between our HOE-DCN prototype and a practical HOE-DCN
from a real network system, for making wise decisions. but with all the required software/hardware components it
good enough for the proof-of-concept demonstrations tavsho
V. EXPERIMENTAL DEMONSTRATIONS the advantages of our proposed knowledge-defined NO-M.

A. System Implementation In the experiments, we deplay VMs in the three racks
We implement our proposal in a network testbed as shov@g];jog?]lg’ grﬁnferrarifr;[tramg acrgfrr;g tzi;/.nMs \évgratk;;eagcf;ZGE_l:Ih

In Fig. 3, and demonstrate its advantages experimentaiy. -liirPer’f To erlnurl)ate traffic congestisfﬁ in tlhtgaJ testbed wz a|aSpI;vI

data plane of our HOE-DCN prototype consists of servel, er limit on the data-rate of each switch’s ports. Spedific

s organized in three racks. The servers in each rack :

: h ToR switch, the data-rate of a 1GbE port that connects
connected to a ToR switch through 1GbE ports, and e €ac ! o :

9 P to an aggregated EPS switch is limited bel®d0 Mbps, while
IHere, the prediction loss is defined as the mean square efrtneo each Optical 10GbE port ConneCting to the OCS optical switch

predicted traffic volumes to the actual ones. has a peak data-rate 360 Mbps.

.-
b



B. Experimental Results

I
~

——Actual Volume

In the experimental demonstrations, the HOE-DCN testbed ——Predicted Volume

leverages the KD-NO to realize Al-assisted VM migration,
VM scaling, and HOE-DCN reconfiguration, where all the
control and management operations on the HOE-ECN are
automatic to verify the intelligence of KD-NO. Note that, to
adapt to the dynamics in the HOE-DCN, we train the DL-
based Al modules with the online scheme,, the training
data sets are updated consistently based on real colleatad d
Specifically, the modules are first trained in their inizalions

and then get trained again when their training data sets have

o
w

©
=

Instant Data-Transfer (GB)
o
)

0
20 40 60 80 100
Time (Seconds)

(a) Predicted and actual traffic volumes

been updated with new data. The first training always takes Rack1_Rack2 Rack3
the longest time but can be considered as a part of the offline Rack1) 0 | 1.8489 | 0.0060
initialization, while each subsequent training convergesh Rack 2| 0.0044 | 0.0218 | 0.8262
faster since only a portion of the training data set gets tguia Rack 3| 0.0042 | 0.9130 | 0.0506
Meanwhile, we optimize the DNNs in the Al modules to (1) without VM Migration (GB)
reduce the time complexity of training. Rack1 Rack2 Rack3

1) Al-Assisted VM MigrationFig. 4 shows the experimen- Rack 18 0F ) 09850 11:0614
tal results of Al-assisted VM migration. Specifically, thé®K Rack 2| 0.0042 | 0.0002 | 0.0090
NO analyzes the traffic prediction from the DL-based Traffic Rack 3| 0.0044 | 0.9130 | 1.7802
Prediction Module and invokes automatic VM migration to (2) with VM Migration (GB)
consolidate the traffic among VMs for energy saving. In the (b) Data-transfer volumes for with and with-
worst case i(e., the first training in the initialization), the out VM migration

prediction loss of the DL-based module can be brought dow
to 0.0196, which corresponds to a deviation gf20 MBytes
on data-transfer volume, aft&00 rounds of training. The
training takes148 seconds. Fig. 4(a) shows the predicted
and actual volumes of instant data-transfer within a secoN®’s CPU usage over time can be predicted precisely too.
between two racks We observe that ovet00 seconds, the  With the assistance from the VM Demand Prediction Mod-
curves of the predicted and actual traffic basically ovewdh yle, the KD-NO can invoke VM scaling automatically and
each other, and there is almost no visible difference betwegmely to ensure the performance of a VM. Fig. 5(b) shows the
them. Therefore, the results in Fig. 4(a) verify that the DLEPU usages for with and without the Al-assisted VM scaling.
based Traffic Prediction Module can forecast the volumes @jfithout the VM scaling, the VM’s CPU usage can be as high
both intra-rack and inter-rack data-transfers accurately as 100% for ~15 minutes to accomplish a computing task,
Based on the accurate traffic prediction, the KD-NO orgavhile the VM scaling reduces the VM’s CPU usage6
nizes the VMs in the optimal scenario for energy saving withnd makes it finish the task within12.5 minutes.
automatic VM migration. Fig. 4(b) compares the data-transf 3) Al-Assisted HOE-DCN Reconfiguratiofinally, we try
volumes among the racks for with and without the AI-assistt?g verify the performance of the DL-based Netvvérk Recon-
VM migration, which indicates that through VM migration, iguration Module. In the worst case, the module needs to
the proposed KD-NO converts certain traffic from inter-rac&e trained ford x '104 rounds, which té\ke955 seconds, for

_to intra-rack and consolldatt_as the m_te_r-r:_:\ck traffic mdieis achieving an accuracy ¢f8.82% on the decision making to
improves not only the service provisioning performance blrléconﬁ ure the HOE-DCN based on the inputs from the DL-
also the energy efficiency of the HOE-DCN. g P

. . . based Traffic and VM Demand Prediction Modules. Then, the
2) Al-Assisted VM Scaling:Then, we try to verify the

- experiments use the DL-based modules for automatic HOE-
performance of the DL-_based VM D_emand Predlcnc_m MOdu!%CN reconfiguration, whose advantages can be confirmed
Specifically, the experiments consider the scenario in khi

he KD-NO | M d q diction f h DLQVith the results in Figs. 6(a) and 6(b). The results in Fig)6(
the ) analyzes emand pre |ct|on_ rom _t € suggest that our proposed KD-NO significantly reduces the
based module and invokes automatic VM scaling to improv

ea%erage data-transfer latency of the flows in the HOE-DCN,

Y}MS p%r_fo_rmalnce O'} Sﬁ rvilgi ErOViZiO\?'i\;l]gbm the dWI(D) rS:j.ca.ssvhich improves the performance of service provisioningrélo
the prediction loss of the -base emand Fre 'C_t'ol%portantly, Fig. 6(b) indicates that the KD-NO actuallyess
Module goes belovi.2596, which corresponds to a deviation

f< 1.5%. af ds of traini ™ o K less switch portsife., less energy consumption) to achieve
of < 1.5%, after 8000 rounds of training. The training ta ®Sthe reduced data-transfer latency. Hence, unlike thetinadi

15.5 hours. Fig. 5(a) compares the predicted and actual inSt"i’{értwork orchestration systems that can only trade datesfiea
CPU usages of a VM, which confirms that the change OfIgtency for energy efficiency, our KD-NO can leverage iell

ent decision making to optimize both of them simultanepusl|
2Note that, in the KD-NO, we assign a DL-based Traffic Predictilodule 9 9 P e

to each rack-paire(g, Rack 1-Rack 1 or Rack1-Rack2), and the results in 1 HiS is & really promising obser_v_atlon and_suggests that our
Fig. 4(a) are the worst ones from all these modules, for faingarisons. ~ KD-NO opens up new opportunities to realize green DCNSs.

%. 4. Experimental results of Al-assisted VM migration.
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VI. DISCUSSION ANDCONCLUSIONS JSC003), NGBWMCN Key Project (20172X03001019-004),

We discussed our efforts on realizing an HOE-DCN sy$thina Postdoctoral Science Foundation (2016M602031), and
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NO-M, and implemented them in a real network testbed for
prototyping our design. The experimental results dematestr
that our HOE-DCN prototype can achieve predictive anatytlc[l]
and intelligent decision making and thus realize autorahtic
management, to improve not only the performance of service
provisioning but also the system’s energy-efficiency. 2]
Besides the advantages, we hope to point out that the
proposed HOE-DCN system can still be improved from a few
perspectives. For instance, the current knowledge-defitiad
M only predicts traffic and VM demands, which is still low-
level knowledge for DCN operation and thus not good enouglil
Our future work will try to incorporate more intelligence in
it and make it application-drive,e., enabling it to predict [s5
the actual applications/services that will be run in the HOE
DCN. Hence, high-level knowledge can be obtained to mak
the network system more efficient, in terms of both system
architecture and operation procedure. This is because for
making intelligent decisions, high-level knowledge wolble [7
much more useful than low-level knowledge. Take human
brains as an example, it is obvious that to recognize a people
the high-level knowledge about objects and faces would b
much more useful than the low-level knowledge about sharps
and colors. Moreover, the application-driven scheme waeld [©]
helpful to address the issues on resiliency and security. (10]
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