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AI-Assisted Knowledge-Defined Network
Orchestration for Energy-Efficient Datacenter

Networks
Wei Lu, Lipei Liang, Bingxin Kong, Baojia Li, Zuqing Zhu

Abstract—In this article, we discuss the design and imple-
mentation of a novel datacenter network (DCN) system, which
utilizes a knowledge-defined network orchestration mechanism
(NO-M) to operate a hybrid optical/electronic DCN (HOE-DCN)
cost-effectively and energy-efficiently. The motivationsbehind the
proposed HOE-DCN system are the urgent needs to address the
scalability, energy and manageability issues in the existing DCN
systems. To realize the knowledge-defined NO-M, we follow the
principle of predictive analytics in human brain to design three
artificial intelligence (AI) modules based on deep learning(DL)
and make them operate collaboratively. The proposed HOE-DCN
system is implemented in a network testbed, and we conduct
experiments that involve both control and data plane operations
to demonstrate its advantages. The experimental results show that
the HOE-DCN simultaneously achieves high-performance service
provisioning and improved energy-efficiency. Furthermore, by
analyzing the pros and cons of the HOE-DCN system, we also
point out several directions to work on in the future.

Index Terms—Datacenter networks (DCNs), Network orches-
tration, Energy saving, Knowledge-defined networking (KDN),
Artificial intelligence (AI).

I. I NTRODUCTION

DRIVEN by the happening revolution on information and
communication technology (ICT), cloud computing is

penetrating academia, industry, and government sectors rapidly
across the world. In the new context, customers can rent
IT and network resources from the cloud service providers
(CSPs) in a “pay-as-you-use” manner, which can significantly
reduce the investment in self-built infrastructure. Therefore,
the amount of global IP traffic generated by clouds has been
growing at a compound annual growth rate of 30% since 2015
and would reach 14.1 zettabytes (1 zettabytes =1021 bytes)
in 2020, and this actually represents more than 92% of the
total traffic within/among datacenters (DCs) [1]. Consequently,
being the fundamental infrastructure of cloud computing, DC
networks (DCNs) are under great pressure to accommodate
such tremendous traffic with sustainable technologies [2].This
means that the network orchestration mechanisms (NO-Ms)
used to manage the virtual machines (VMs) and network
connections in DCNs should try to not only increase resource
utilization but also reduce energy consumption.

The challenges of realizing a highly efficient NO-M are
mainly two-fold. On one hand, the NO-M needs to control and
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manage a large number of heterogeneous network elements,
which at least include the servers for VM deployment and the
top-of-rack (ToR), aggregation and core switches for traffic
routing. This is to say, it has to jointly optimize the allo-
cations of multi-dimensional IT resources (i.e., CPU cycles,
memory and storage) on servers and bandwidth resources on
network links [3]. Note that, DCNs purely based on electronic
packet switching would be unsustainable soon [4, 5]. Hence,
hybrid optical/electronic DCNs (HOE-DCNs) that use both
high-speed Ethernet switches and optical circuit switch(es) to
connect ToR switches will soon become increasingly common
for new DCN deployments [4, 5]. This, however, will further
complicate the network management part in an NO-M.

On the other hand, both the computing tasks and the traffic
in a DCN can be highly dynamic. For example, the ratio
between inter- and intra-rack traffic could change over time
when different types of computing tasks are running, while for
the same reason, the ratio between mice and elephant flows
would also be time-variant. Therefore, an NO-M can hardly be
efficient without precise knowledge on the characteristicsof
computing tasks and traffic in the DCN. Moreover, to reduce
the setup latency of services and minimize the mismatch
between allocated and utilized resources, the NO-M needs to
predict future computing tasks and traffic accurately [6].

For these two challenges, the first one can be addressed
by designing a centralized NO-M based on software-defined
networking (SDN) [7, 8], while the idea of knowledge-defined
networking (KDN) [9] might be leveraged to resolve the sec-
ond one. KDN is a new networking paradigm that incorporates
SDN, telemetry, data analytics, and artificial intelligence (AI).
Specifically, with the global view and full control over a
network provided by SDN, the KDN controller can collect
rich telemetry information, conduct AI-assisted data analytics,
abstract knowledge via deep learning (DL), and make wise
decisions to achieve highly efficient network orchestration.

In this article, we first review the recent trends of DCN
development from the perspectives of architecture scalability,
energy efficiency and management agility. Then, to address
the revealed issues, we design an HOE-DCN system with
knowledge-defined NO-M. By leveraging DL-based AI, our
NO-M achieves precise prediction and intelligent decision
making, and thus can effectively improve both the service
provisioning performance and energy-efficiency of the HOE-
DCN. Next, we describe how to implement our proposal
in a real testbed, and present the experimental results to
demonstrate its advantages. Finally, we summarize the article.
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II. REVIEW ON DATACENTER NETWORKS (DCNS)

A. Architecture Scalability

Most deployed DCNs use electronic packet switches or-
ganized in hierarchical architectures to interconnect servers.
However, they have sustainability and scalability issues due to
the following two reasons. First of all, both the capital expendi-
ture (CAPEX) from switches and the operational expenditure
(OPEX) due to power consumption would increase rapidly,
when the capacity of such a DCN is being expanded [4]. This
will eventually make the DCNs unsustainable to support the
future Mega DCs that can contain hundreds of thousands of
servers and have tremendous bandwidth capacity requirements.
Secondly, due to the best-effort nature of packet switching, it
would be challenging for the DCNs to provide differentiated
services to clients with various QoS requirements. On the
other hand, by utilizing the tremendous bandwidth capacity
in optical fibers, optical circuit switching (OCS) and optical
packet switching (OPS) provide alterative solutions to flatten
the DCN architecture for supporting large-scale DCs better.
Nevertheless, the optical solutions are not perfect either, since
the long switch configuration time of OCS would make the
path setup latency unsuitable for delay-sensitive services and
OPS is still not mature because of the lack of all-optical buffers
and the complexity from optical signal processing [10].

Hence, the hybrid optical/electronic DCNs (HOE-DCNs)
are recommended [4–6]. HOE-DCNs explore the advantages
of both electronic packet switching (EPS) and OCS, and more
importantly, they can enable a smooth transition from the
traditional DCNs. As shown in Fig. 1(a), an HOE-DCN makes
an EPS network work coordinately with an OCS network,i.e.,
the ToR switches can be either interconnected with high-speed
Ethernet switches (i.e., to carry delay-sensitive and/or highly
dynamic traffic) or an optical circuit switch (i.e., to support
bandwidth-intensive and/or long-lasting traffic). Note that, in
reality, especially for a Mega DC, the HOE-DCN would have
a more complex architecture than that in Fig. 1(a). This is
because the available ports on a commercial OCS switch is
usually limited (i.e., in the magnitude of hundreds), and thus
we cannot use a single OCS switch to interconnect all the ToR
switches in a DC. Therefore, multiple OCS switches might be
organized in a hierarchical manner (e.g., the leaf-and-spine
architecture) to realize a scalable HOE-DCN.

B. Energy Efficiency

It is known that DCs in the United States consumed ap-
proximately 70 billion kilowatt-hours (KWHs) in 2014, which
accounts for∼1.8% of the total electricity consumption of
the country, and the number has been growing fast since then
[11]. The energy consumption of a DC normally comes from
two entities, which are the ICT equipment (i.e., the servers,
switches and other network elements in the DC) and the
cooling and lighting facilities. Building DCs in cold places
and/or using renewable energy resources can improve the
energy efficiency of the latter, while there is also plenty of
room to reduce the energy consumption of ICT equipment
because the servers and switches in current DCs are usually
in very low utilization (e.g., 10%) [12].

The utilization on ICT equipment can be greatly improved
with the virtualization technology that virtualizes the ITre-
sources on servers and uses them for VM deployment. Hence,
server load consolidation,i.e., grooming VMs onto fewer
servers and shutting down the idle ones, can be achieved
for energy saving. Here, the overhead is that the associated
VM migrations might generate huge volumes of traffic among
servers and push the energy usage on related switches up.
Therefore, the DC operator has to carefully steer the trafficto
avoid unnecessary energy consumption [13, 14].

C. Management Agility

Traditional DCN management usually relies on vendor-
dependent tools that can only be operated well by experts,
and thus is error prone and difficult to operate and upgrade.
Fortunately, SDN offers new opportunities to manage DCNs
more easily, adaptively and reliably [7]. Under the paradigm of
SDN, DCNs become more programmable,i.e., the CSPs gain
full control over the entire network system via a centralized
and programmable orchestrator. There are several advantages
due to this. Firstly, with a global view on its DCN, a CSP
can manage the allocations of IT and bandwidth resources
more effectively with the centralized orchestrator. Secondly,
the orchestrator helps the CSP respond quickly to DCN status
changes by collecting telemetry information proactively.

More promisingly, after gathering rich data about a DCN,
we can incorporate the idea of KDN [9] in its managemen-
t system by introducing AI-assisted data analytics. Hence,
knowledge can be abstracted from the network data and
used to achieve intelligent decision making [6]. Meanwhile,
it is worth noting that there will be a tradeoff between the
management agility and the complexity due to data collection
and analytics. With the fast development of computing tech-
nologies/facilities and AI algorithms, the latter is becoming
less and less problematic. For instance, one can easily improve
the time efficiency of AI training by leveraging knowledge
sharing among AI modules, parallel training,etc.

III. HOE-DCN WITH KNOWLEDGE-DEFINED NETWORK

ORCHESTRATION

The HOE-DCN in Fig. 1(a) leverages a multi-tier EPS
network and a flat OCS network to realize inter-rack intercon-
nections. Here, the EPS network consists of edge, aggregation
and core tiers. In the edge tier, the ToR switches connect
the servers and organize them in racks. The switches in the
aggregation and core tiers interconnect the ToR switches and
bridge the communications among the servers in different
racks. With packet-level switching granularity, the EPS net-
work can support delay-sensitive and/or highly dynamic inter-
rack traffic well, but may suffer from congestions caused by
the oversubscription in the hierarchical structure.

The OCS network uses a reconfigurable OCS switch to
interconnect the ToR switches,i.e., the OCS switch can set
up lightpaths with wavelength-level switching granularity to
pump high-throughput traffic through. Therefore, bandwidth-
intensive and/or long-lasting inter-rack traffic can bypass the
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Fig. 1. Hybrid optical/electronic DCN (HOE-DCN) with a management system based on knowledge-defined NO-M.

EPS network to avoid congestions. However, the typical con-
figuration time of an OCS switch is in hundreds of millisec-
onds, which would introduce relatively long path setup latency.
Hence, it would be critical to make the EPS and OCS networks
cooperate well for accommodating various types of flows in
the HOE-DCN, which motivates us to design a knowledge-
defined network orchestration mechanism (NO-M).

Fig. 1(b) shows the design of our proposed management
system to realize knowledge-defined NO-M for the HOE-
DCN. Here, we design an IT Resource Controller (IT-C)
and a Network Controller (NET-C) to manage the IT and
bandwidth resources, respectively, and they are coordinated by
a Knowledge-Defined Network Orchestrator (KD-NO). In the
IT-C, the VM Deployment Module, VM Migration Module,
and VM Scaling Module realize adaptive VM management
in the servers, while the IT Resource and Traffic Monitor
collects the statistics about IT resource usage and traffic
periodically to send to the KD-NO. The NET-C consists of
three modules. The Flow Provisioning Module accommodates
flows according to their types, and routes their traffic to
minimize the energy usage of switches. The Network Recon-
figuration Module reconfigures the OCS switch to adapt to
inter-rack traffic, while the Network Abstract Module collects
the statistics about inter-rack traffic to forward to the KD-NO.

We follow the principle of predictive analytics in human
brain to design the KD-NO [6], which makes three AI modules
based on deep learning (DL) work collaboratively to achieve
predictive analytics and decision making. Specifically, the
DL-based Traffic Prediction Module and the DL-based VM
Demand Prediction Module first predict future IT/bandwidth
resource demands based on the historical network data stored
in the Network and Service Database (i.e., forecasting based
on memory), and then the DL-based Network Reconfiguration
Module takes the prediction results and determines the optimal
HOE-DCN configuration intelligently (i.e., decision making
based on knowledge). Finally, the configuration is imple-
mented by the VM Management Module and the Network
Management Module, which talk with the IT-C and NET-
C, respectively, for orchestrating the IT/bandwidth resources.
Note that, the three DL-based AI modules work in a relatively
independent way in our current design, but consolidating their
functionalities may bring in more benefits. For example, higher
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Fig. 2. Designs of AI modules based on deep neural networks (DNNs) to
achieve knowledge-defined network orchestration.

prediction accuracy could be achieved if the traffic and VM
demands are analyzed and predicted jointly. We will address
this issue in our future work.
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IV. AI M ODULES BASED ONDEEPLEARNING

We design the three AI modules in the KD-NO in Fig.
1(b) based on deep neural networks (DNNs) [15], and their
structures are illustrated in Fig. 2. The three AI modules take
the similar DNN structure, which contains an interconnected
network of simple processing units (i.e., neutrons) to explore
the high-order correlation properties of input data. Each neu-
tron contains a non-linear activation function that can take
its current stateΘn−1 and the outputs from other neutrons
hn−1 as inputs to generate an outputhn, for modeling
highly nonlinear systems precisely. Each DNN consists of
an input layer, multiple hidden layers, and an output layer.
Here, the neutrons in each layer process the outputs from the
previous layer with their activation functions, and propagate
their outputs to the next layer through a set of links that
can multiply weights on. The procedure is done when the
processed data reaches the output layer, where the final outputs
of the DNN are obtained. In general, by increasing the number
of hidden layers, we can enhance the analyzing and predicting
capability of a DNN at the cost of longer training time.

For the Traffic Prediction Module, the DNN in Fig. 2(a) uses
the historical statistics of traffic between a source-destination
pair as the inputs to forecast its future traffic volumes. Note
that, with the right inputs, the DNN can predict the traffic
between either a VM pair or two racks. To train the DNN,
we organize the collected traffic statistics as a time series,
input it to the DNN for outputs, and update the DNN’s pa-
rameters iteratively by performing gradient descent (GD) until
the prediction loss1 becomes satisfactory. The VM Demand
Prediction Module in Fig. 2(b) works similarly,i.e., its DNN
is trained for predicting future IT resource usage on a VM (i.e.,
usages on CPU, memory and storage) based on historical data.

When the modules in Figs. 2(a) and 2(b) have been trained,
they work together to provide the DL-based Network Recon-
figuration Module in Fig. 2(c) with the knowledge to make
intelligent network orchestration decisions. Specifically, given
the future IT/bandwidth resource demands, the DNN in Fig.
2(c) is trained to optimize the average data-transfer latency and
the utilizations of EPS and OCS ports by selecting the best
configuration for the HOE-DCN. Here, to create a training
sample, we randomly generate certain IT/bandwidth resource
demands and an HOE-DCN configuration, implement them in
our HOE-DCN testbed, and collect the average data-transfer
latency and link utilizations. Hence, the DL-based Network
Reconfiguration Module is trained with practical data collected
from a real network system, for making wise decisions.

V. EXPERIMENTAL DEMONSTRATIONS

A. System Implementation

We implement our proposal in a network testbed as shown
in Fig. 3, and demonstrate its advantages experimentally. The
data plane of our HOE-DCN prototype consists of server-
s organized in three racks. The servers in each rack are
connected to a ToR switch through 1GbE ports, and the

1Here, the prediction loss is defined as the mean square error of the
predicted traffic volumes to the actual ones.

Reconfigurable Optical Switch

OpenFlow Switches

High-Performance Servers

Fig. 3. Snapshot of our HOE-DCN prototype.

EPS inter-rack network is built with four aggregation/core
switches organized in a hierarchical structure. Here, the ToR,
aggregation and core switches are all packet-based OpenFlow
switches, which are either hardware-based commercial ones
or software-based OpenvSwitch running on Linux servers.
Meanwhile, the ToR switches are also interconnected through
a reconfigurable optical switch for the OCS inter-rack network.
We distinguish the capacities in EPS and OCS inter-rack
networks by letting the ToR switches connect to them with
different types of ports. Specifically, the ToR switches connect
to their aggregation switches through 1GbE ports, while they
can also communicate with each other through 10GbE optical
ports whose connectivity is configured by the optical switch.

The control plane of the HOE-DCN is developed based on
open-source softwares and implemented in commodity Linux
servers. For the KD-NO in Fig. 1(b), we modify OpenStack
to realize the IT-C, and the NET-C is implemented based on
ONOS. Specifically, we develop the Flow Provisioning Mod-
ule to support differentiated services and traffic consolidation
in the EPS inter-rack network, program the Network Reconfig-
uration Module to configure the reconfigurable optical switch
automatically, and realize the Network Abstract Module to
collect network status in the HOE-DCN. These three modules
are implemented by leveraging the internal APIs provided by
ONOS. The three DL-based AI modules in Fig. 2 are realized
based on TensorFlow. We have to admit that there is a gap
between our HOE-DCN prototype and a practical HOE-DCN,
but with all the required software/hardware components, itis
good enough for the proof-of-concept demonstrations to show
the advantages of our proposed knowledge-defined NO-M.

In the experiments, we deploy9 VMs in the three racks
randomly, generate traffic among the VMs with the DCT2GEN
tool, and implement the corresponding data transfers with
iPerf. To emulate traffic congestion in the testbed, we applyan
upper limit on the data-rate of each switch’s ports. Specifically,
on each ToR switch, the data-rate of a 1GbE port that connects
to an aggregated EPS switch is limited below300 Mbps, while
each optical 10GbE port connecting to the OCS optical switch
has a peak data-rate of700 Mbps.
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B. Experimental Results

In the experimental demonstrations, the HOE-DCN testbed
leverages the KD-NO to realize AI-assisted VM migration,
VM scaling, and HOE-DCN reconfiguration, where all the
control and management operations on the HOE-ECN are
automatic to verify the intelligence of KD-NO. Note that, to
adapt to the dynamics in the HOE-DCN, we train the DL-
based AI modules with the online scheme,i.e., the training
data sets are updated consistently based on real collected data.
Specifically, the modules are first trained in their initializations
and then get trained again when their training data sets have
been updated with new data. The first training always takes
the longest time but can be considered as a part of the offline
initialization, while each subsequent training convergesmuch
faster since only a portion of the training data set gets updated.
Meanwhile, we optimize the DNNs in the AI modules to
reduce the time complexity of training.

1) AI-Assisted VM Migration:Fig. 4 shows the experimen-
tal results of AI-assisted VM migration. Specifically, the KD-
NO analyzes the traffic prediction from the DL-based Traffic
Prediction Module and invokes automatic VM migration to
consolidate the traffic among VMs for energy saving. In the
worst case (i.e., the first training in the initialization), the
prediction loss of the DL-based module can be brought down
to 0.0196, which corresponds to a deviation of≤ 20 MBytes
on data-transfer volume, after200 rounds of training. The
training takes148 seconds. Fig. 4(a) shows the predicted
and actual volumes of instant data-transfer within a second
between two racks2. We observe that over100 seconds, the
curves of the predicted and actual traffic basically overlapwith
each other, and there is almost no visible difference between
them. Therefore, the results in Fig. 4(a) verify that the DL-
based Traffic Prediction Module can forecast the volumes of
both intra-rack and inter-rack data-transfers accurately.

Based on the accurate traffic prediction, the KD-NO orga-
nizes the VMs in the optimal scenario for energy saving with
automatic VM migration. Fig. 4(b) compares the data-transfer
volumes among the racks for with and without the AI-assisted
VM migration, which indicates that through VM migration,
the proposed KD-NO converts certain traffic from inter-rack
to intra-rack and consolidates the inter-rack traffic more.This
improves not only the service provisioning performance but
also the energy efficiency of the HOE-DCN.

2) AI-Assisted VM Scaling:Then, we try to verify the
performance of the DL-based VM Demand Prediction Module.
Specifically, the experiments consider the scenario in which
the KD-NO analyzes VM demand prediction from the DL-
based module and invokes automatic VM scaling to improve a
VM’s performance on service provisioning. In the worst case,
the prediction loss of the DL-based VM Demand Prediction
Module goes below1.2596, which corresponds to a deviation
of ≤ 1.5%, after 8000 rounds of training. The training takes
15.5 hours. Fig. 5(a) compares the predicted and actual instant
CPU usages of a VM, which confirms that the change of a

2Note that, in the KD-NO, we assign a DL-based Traffic Prediction Module
to each rack-pair (e.g., Rack1-Rack1 or Rack1-Rack2), and the results in
Fig. 4(a) are the worst ones from all these modules, for fair comparisons.
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Fig. 4. Experimental results of AI-assisted VM migration.

VM’s CPU usage over time can be predicted precisely too.

With the assistance from the VM Demand Prediction Mod-
ule, the KD-NO can invoke VM scaling automatically and
timely to ensure the performance of a VM. Fig. 5(b) shows the
CPU usages for with and without the AI-assisted VM scaling.
Without the VM scaling, the VM’s CPU usage can be as high
as 100% for ∼15 minutes to accomplish a computing task,
while the VM scaling reduces the VM’s CPU usage to60%
and makes it finish the task within∼12.5 minutes.

3) AI-Assisted HOE-DCN Reconfiguration:Finally, we try
to verify the performance of the DL-based Network Recon-
figuration Module. In the worst case, the module needs to
be trained for4 × 104 rounds, which takes955 seconds, for
achieving an accuracy of98.82% on the decision making to
reconfigure the HOE-DCN based on the inputs from the DL-
based Traffic and VM Demand Prediction Modules. Then, the
experiments use the DL-based modules for automatic HOE-
DCN reconfiguration, whose advantages can be confirmed
with the results in Figs. 6(a) and 6(b). The results in Fig. 6(a)
suggest that our proposed KD-NO significantly reduces the
average data-transfer latency of the flows in the HOE-DCN,
which improves the performance of service provisioning. More
importantly, Fig. 6(b) indicates that the KD-NO actually uses
less switch ports (i.e., less energy consumption) to achieve
the reduced data-transfer latency. Hence, unlike the traditional
network orchestration systems that can only trade data-transfer
latency for energy efficiency, our KD-NO can leverage intelli-
gent decision making to optimize both of them simultaneously.
This is a really promising observation and suggests that our
KD-NO opens up new opportunities to realize green DCNs.
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Fig. 5. Experimental results of AI-assisted VM scaling.

VI. D ISCUSSION ANDCONCLUSIONS

We discussed our efforts on realizing an HOE-DCN sys-
tem with knowledge-defined NO-M. Specifically, we designed
three DL-based AI modules to assist the knowledge-defined
NO-M, and implemented them in a real network testbed for
prototyping our design. The experimental results demonstrated
that our HOE-DCN prototype can achieve predictive analytics
and intelligent decision making and thus realize automatical
management, to improve not only the performance of service
provisioning but also the system’s energy-efficiency.

Besides the advantages, we hope to point out that the
proposed HOE-DCN system can still be improved from a few
perspectives. For instance, the current knowledge-definedNO-
M only predicts traffic and VM demands, which is still low-
level knowledge for DCN operation and thus not good enough.
Our future work will try to incorporate more intelligence in
it and make it application-drive,i.e., enabling it to predict
the actual applications/services that will be run in the HOE-
DCN. Hence, high-level knowledge can be obtained to make
the network system more efficient, in terms of both system
architecture and operation procedure. This is because for
making intelligent decisions, high-level knowledge wouldbe
much more useful than low-level knowledge. Take human
brains as an example, it is obvious that to recognize a people,
the high-level knowledge about objects and faces would be
much more useful than the low-level knowledge about sharps
and colors. Moreover, the application-driven scheme wouldbe
helpful to address the issues on resiliency and security.
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