
1

Application-Driven End-to-End Slicing: When
Wireless Network Virtualization Orchestrates with

NFV-based Mobile Edge Computing
Kai Han, Shengru Li, Shaofei Tang, Huibai Huang, Sicheng Zhao, Guilu Fu

Zuqing Zhu,Senior Member, IEEE

Abstract—Recently, to adapt to the various quality-of-service
(QoS) requirements of emerging applications, application-driven
network slicing has attracted intensive interests. In thiswork, we
apply the idea of software-defined wireless network virtualization
(WiNV) to WiFi networks, and design and demonstrate a novel
network system, namely, ADE2WiNFV. The proposed system can
orchestrate software-defined WiNV with network function virtu-
alization (NFV) based mobile edge computing (MEC) to realize
application-driven end-to-end (E2E) slicing over heterogeneous
wireline/wireless networks. Our experimental demonstrations
verify that ADE 2WiNFV can realize application-aware E2E slices
on-demand, each of which contains not only guaranteed E2E
bandwidth resources (i.e., in the forms of virtual links, virtual
switches and virtual access points (vAPs)) but also isolated IT
resources (i.e., in the form of virtual network functions (vNFs))
to carry specific applications with QoS guarantees.

Index Terms—Software-defined networking (SDN), Network
function virtualization (NFV), Mobile edge computing (MEC),
Application-driven slicing, Heterogeneous networks.

I. I NTRODUCTION

OVER the past decades, the usage of wireless-enabled
mobile devices has been growing rapidly. As a result,

mobile data traffic has been increasing exponentially, and this
trend will continue in the near future [1]. Meanwhile, it is
known that among all the radio access technologies, the WiFi-
based ones are the most widely used and have already become
an indispensable part of people’s lives. For instance, the Office
of Communications of the United Kingdom (UK) recently
reported that81% of the mobile users in UK used WiFi
frequently [2]. Despite its convenience and cost-effectiveness,
WiFi usually works in the best-effort manner and thus can
hardly provide any quality-of-service (QoS) guarantees on
metrics such as access bandwidth, end-to-end latency, and
service availability. However, more and more emerging ap-
plications would require such QoS guarantees [3–5], and
an end-to-end solution is highly desired. This brings new
challenges not only to WiFi but also to the wireline network
that interconnects WiFi access points (APs).

The aforementioned challenges could be addressed by lever-
aging the concept of slice-as-a-service (SaaS),i.e., application-
driven end-to-end (E2E) network slicing. Specifically, the

K. Han, S. Li, S. Tang, H. Huang, S. Zhao, G. Fu and Z. Zhu are
with the School of Information Science and Technology, University of
Science and Technology of China, Hefei, Anhui 230027, P. R. China (email:
zqzhu@ieee.org).

Manuscript received April 1, 2018.

infrastructure provider (InP) creates various network slices
(i.e., virtual networks (VNTs)), assures certain types of QoS
guarantees within the slices, and leases them to tenants for
offering different services to end-users [6]. In Fig. 1, we con-
sider future 5G network as an example, where three slices are
created over the same substrate network (SNT), for delivering
high-throughput, low-latency and real-time, and low-rateand
non-critical services to smart-phones, autonomous cars, and
massive Internet-of-things (IoTs), respectively [7].

5G Substrate Network

Switch or Router

Access Point

Edge Node

Fig. 1. Application-driven E2E networking slicing in 5G network.

To realize SaaS, we first need an effective virtual network
embedding (VNE) algorithm, which can determine how to
map the virtual links and nodes in a VNT onto substrate links
and nodes to satisfy certain optimization objective. Previously,
the problem of VNE has already been studied intensively
and numerous algorithms have been proposed to achieve
various optimization objectives in different types of SNTs[8–
10]. Then, from the perspective of system implementation,
software-defined networking (SDN) and network virtualization
are considered as the key enabling technologies for SaaS. SDN
decouples network control and management (NC&M) from
data forwarding and utilizes centralized NC&M to facilitate
customized and QoS-aware routing and switching [11–14].
While network virtualization can realize VNTs over a shared
SNT by isolating network resources to provide customized
network environments. Therefore, by combining SDN with
network virtualization, an InP can conveniently build a VNT
according to the QoS requirements of a tenant for it to deploy

2

emerging applications,i.e., realizing application-driven net-
work slicing. Several existing network systems have been de-
signed for such purpose,e.g., OpenVirtex [15], CoVisor [16],
SR-PVX [17] and DPVisor [18]. Nevertheless, the application-
driven network slicing realized by these systems only covers
the wireline segment of a network, while the access bandwidth
in the WiFi segment can hardly be isolated properly, which
means that the solution is not “E2E”. This is because WiFi
uses shared medium for data transmission without any service
differentiation, and thus it would be difficult to apply SDN
polices to it for QoS guarantees. Moreover, it is known that
to ensure QoS for certain emerging applications, the InP not
only needs the support from the network side but also has to
leverage the network function virtualization (NFV) based on
IT resource virtualization [19, 20].

In order to achieve an E2E solution, people have recent-
ly introduced the concept of wireless network virtualization
(WiNV) [21], which can partition the radio resource in a
wireless access network into logical slices according to appli-
cation demands and isolate these partitions properly for QoS
guarantees. Meanwhile, mobile edge computing (MEC) has
attracted intensive interests to provide computing capabilities
for mobile users at the edge of networks for simplifying core
network operation and reducing E2E latency [20]. In this work,
we apply the idea of WiNV to WiFi networks and extend our
preliminary work in [22] to design and demonstrate a novel
network system, namely, ADE2WiNFV. The proposed system
can orchestrate software-defined network virtualization with
NFV-based MEC to realize application-driven E2E slicing over
heterogeneous wireline/wireless networks. Our contributions
can be summarized as follows:

• We design and implement a highly-programmable wire-
less SDN switch, which supports protocol-independent
packet processing on the wireline side and can realize
radio resource virtualization (i.e., creating/removing vir-
tual APs dynamically and allocating access bandwidth to
them) on the WiFi side.

• We realize a MEC system to improve the performance
of application-driven E2E slicing by leveraging the
container-based NFV,i.e., the virtual network functions
(vNFs) are packaged as docker images that can be in-
stantiated on commodity Linux servers on-demand with
very short setup latency (i.e., within a second).

• We integrate wireline/wireless SDN switches and the
MEC system as ADE2WiNFV, to provide a flexible virtu-
alization layer for tenants to request for application-aware
slices and implement applications with QoS guarantees.

The rest of the paper is organized as follows. Section II
discusses the related work. We describe the system architecture
of ADE2WiNFV and introduce its design in details in Section
III. The experimental demonstrations are presented in Section
IV. Finally, Section V summarizes the paper.

II. RELATED WORK

A. Software-Defined Wireless Networks

As the best-known implementation of SDN, OpenFlow
(OF) [23] specifies the southbound protocol for a logically-

centralized controller to manage the forwarding tables in SDN
switches remotely. However, OF does not provide effective
support to WiFi, since even in its latest version (i.e., OF
v1.5), the match fields do not address IEEE 802.11 frames.
To address this issue, the authors of [24] extended the match
fields in OF to consider WiFi frames and developed open
APIs to enable the NC&M of a home WiFi network with
an SDN controller. However, the work only tried to improve
the radio channel utilization and total throughput the WiFi
network, but did not consider how to provide various QoS
guarantees to different services with WiNV. In [25], Leeet
al. designed a system called meSDN to realize WiNV and the
management of WiFi uplink for QoS guarantees. However, the
compatibility of meSDN is somewhat limited since it needs to
apply modifications on mobile clients. By creating light virtual
APs for mobile clients, the studies in [26, 27] tried to improve
the performance of mobility management in WiFi networks
and achieved reduced handover latency. Nevertheless, theydid
not address the problem of service provisioning with various
QoS guarantees in WiFi networks. Moreover, these studies
only worked on the network side but did not try to leverage
NFV based on IT resource virtualization.

Another drawback of the OF-based approaches mentioned
above is that their data planes are protocol-dependent,i.e.,
the match fields are all defined based on existing network
protocols. Hence, when the need of supporting new protocols
appears, we have to extend OF to include more match fields,
which would make OF more and more complicated. To achieve
a future-proof and protocol-independent data plane, people
have proposed both P4 [28] and protocol-oblivious forwarding
(POF) [14]. POF refers to a packet field as a tuple<offset,
length>, where offset represents the start location of the
field in a packet andlength indicates its length in bits [29].
Therefore, POF switches can utilize the tuple<offset, length>
to locate any data in a packet, and then process it with the
protocol-oblivious forwarding instruction set (POF-FIS)[14,
30] for packet parsing and forwarding. Previously, we have
designed and implemented several network elements, subsys-
tems and systems [31–33] to build the POF-enabled network
environment. These investigations suggest that the protocol-
independent nature of POF can fit into the requirement of
WiNV perfectly, since there is no need to define new match
fields for IEEE 802.11 frames. Therefore, in this work, we ex-
pand our POF-based mobility management system developed
in [22], and add WiNV with radio resource isolation and NFV-
based MEC into the big picture for realizing ADE2WiNFV.

B. Network Function Virtualization

Traditionally, service providers rely on special-purposemid-
dleboxes to realize network functions. This scheme, however,
has the drawbacks of low cost-effectiveness, long time-to-
market, difficult to maintain,etc. Hence, NFV was proposed
to decouple network functions from dedicated hardware and
realize network functions with software-defined elements by
leveraging IT resource virtualization [34]. Specifically,NFV
enables service providers to instantiate vNFs on-demand on
general-purpose hardware for customized traffic processing

3

[35, 36]. An intuitive way to instantiate vNFs is to deploy
normal virtual machines (VMs) in a cloud system [37]. N-
evertheless, such VMs usually consume relatively large IT
resources and might have difficulty to fit into the resource
budget of a lightweight MEC system. More importantly, since
both creating and migrating a VM cause a long latency (i.e.,
in the order of tens of seconds or even minutes), the VM-
based schemes could hardly support mobile clients. On the
other hand, ClickOS [38] has been considered as a lightweight
and fast-booting platform for vNF prototypes. Specifically, by
using a high-performance I/O library as Netmap [39], people
can create lightweight VMs with ClickOS quickly and move
packets among them with a relatively high throughput.

Container-based platforms such as docker have recently
attracted intensive interests and been considered as a promising
solution for vNF prototyping [20]. This is because compared
with VMs, containers consume much less IT resources and
can be started within a second. Specifically, containers do not
need to include their own operating systems (OS’), but rely on
the name-space and resource isolation provided by their hosts’
OS kernels to encapsulate the vNFs [40]. In other words, with
containers, vNFs are essentially defined as configuration files,
which can be easily copied, modified and transferred. In this
work, we leverage container-based NFV to package each vNF
as a docker image for fast deployment and mobility support.

Orchestrator

Firewall … …

Transcoding … …

Loadbalancing … … Mobile Edge Cloud

Network

Controller

WiFi

Controller

NFV

Controller

Tenant 3Tenant 2Tenant 1
Service

Layer

Orchestration

Layer

Control

Layer

Infrastructure

Layer

PVS

POF-enabled WiFi AP

Mobile

Clients

vAPs

POF-enabled WiFi AP

vAPs

POF-enabled WiFi AP

vAPs

Server for NFV

Server for NFV
Server for NFV

Fig. 2. Architecture of our proposed ADE2WiNFV system.

C. Mobile Edge Computing

Recently, MEC has been considered to provide mobile and
cloud computing capabilities in access networks to simplify
core network operation and reduce E2E latency [20]. Since
service providers need to customize computing capabilities
for different mobile clients and services to adapt to their
demands, IT resource virtualization becomes a key enabling
technology for MEC to mitigate the negative effects due to
the heterogeneity on hardware, feature and platform [41].

Hence, NFV-based MEC would be a promising solution to
increase the flexibility of service deployment and improve
resource utilization at the edge of networks. For instance,
in [42], the authors leveraged NFV-based MEC to enhance
the efficiency of content delivery. However, the work only
addressed how to increase the efficiency and performance of
network services with NFV-based MEC, but did not consider
the resource allocation and isolation among different services,
i.e., the orchestration of WiNV and NFV-based MEC. In
this work, we design and implement ADE2WiNFV, which
can orchestrate software-defined WiNV with NFV-based MEC
to realize application-driven E2E slicing over heterogeneous
wireline/wireless networks. This, to the best of our knowledge,
has not been explored before in the literature.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first provide a high-level overview on the
proposed ADE2WiNFV system, and then explain the designs
of the four layers in the system in details.

A. Architectural Overview of ADE2WiNFV

With ADE2WiNFV, we aim to integrate software-defined
WiNV and NFV-based MEC to achieve application-driven E2E
slicing over heterogeneous wireline/wireless networks. Here,
an application-driven E2E slice refers to a virtual network
(VNT) that contains not only guaranteed E2E bandwidth
resources (i.e., in the forms of virtual links, virtual switches
and virtual APs (vAPs)) but also isolated IT resources (i.e.,
in the form of vNFs) to carry specific applications with
QoS guarantees (e.g., high throughput for a Big Data related
application, and low latency for a delay-sensitive application).
Fig. 2 shows the architecture of ADE2WiNFV, where there
are four layers in it as follows.

Infrastructure Layer : This layer is the substrate infras-
tructure that consists of a few edge network devices (e.g.,
WiFi APs and mobile clients) and a mobile edge cloud. The
APs are homemade and POF-enabled, and can provide data
plane programmability like the wireline POF switches [29, 33].
Moreover, we program each AP to enable WiNV,i.e., being
able to create and host vAPs with isolated virtual interfaces
and access bandwidth. In other words, each vAP works as
an independent AP dedicated to an application-driven E2E
slice, and the traffic to/from it is processed with POF-FIS to
ensure customized forwarding for the mobile clients in the
slice. The mobile edge cloud covers the wireline part of the
substrate infrastructure, which includes high-throughput home-
made POF switches (i.e., PVS [33]) for packet forwarding
and high-performance Linux servers for container-based vNF
deployment. Here, the vNFs for firewall, transcoding, load-
balancing,etc., can be instantiated on and removed from the
servers dynamically according to application demands.

Control Layer : This layer is in charge of the NC&M of
the devices in the infrastructure layer, with three controllers,
i.e., the network controller, the WiFi controller, and the NFV
controller. The network controller manages the wireline part
of the network in the substrate infrastructure, which includes
the PVS’ and the Ethernet side of the POF-enabled APs, to

4

provide customized packet processing and forwarding for each
E2E slice. The WiFi side of the POF-enabled APs is managed
by the WiFi controller, which is responsible for configuring
system parameters related to wireless channel, SSID, BSSID,
client authentication,etc. Meanwhile, to accomplish WiNV,
the WiFi controller also controls the creation and removal of
vAPs and associated access bandwidth allocation and isolation.
The NFV controller handles the vNF deployment for each E2E
slice, with the IT resources in the mobile edge cloud.

Orchestration Layer: This layer interacts with the control
layer to gather the real-time information regarding the sub-
strate infrastructure. Meanwhile, this layer also provides a set
of application programming interfaces (APIs) to the tenants in
the upper service layer, for instantiating/removing vAPs and
vNFs, customizing traffic forwarding schemes, and monitoring
the operation status of their E2E slices.

Service Layer: This layer is the place where tenants access
ADE2WiNFV to request for application-driven E2E slicing.
Note that, this layer is only responsible for the high-level
administrative tasks from tenants, while the actual E2E slicing
is accomplished by the orchestration and control layers.

WiFi Agent

Flow Tables

POF Agent

WiNV Module

POF Switch
POF-enabled AP

Network Controller WiFi Controller

…

E
h
th

e
rn

e
t

vAPs

WiFi MAC

Fig. 3. Design of our POF-enabled WiFi AP.

B. Software-Defined Wireless Network Virtualization

The media access control (MAC) layer of WiFi can be
logically divided into two sub-layers,i.e., an upper layer and a
lower layer. The upper layer handles the management frames,
including the beacon, probe, authentication, and association re-
quests and the corresponding responses, while the lower layer
processes the control frames, including the acknowledgement
(ACK), request-to-send (RTS) and clear-to-send (CTS) frames.
Note that, as the processing of the control frames is delay-
sensitive, the lower layer is usually taken care of in hardware.
On the other hand, the management frames can be handled by
software tools since they do not have time constraints. This
actually provide us a good opportunity to design the software-
defined WiNV system for ADE2WiNFV. The detailed design
of the POF-enabled AP is illustrated in Fig. 3. We integrate
three modules in it,i.e., the WiNV module, WiFi agent, and
POF switch. The POF-enabled AP runs on a Linux system, and
thus it can be implemented either on a commodity server with
a WiFi card or a portable wireless router running OpenWrt.

1) WiNV Module:In the POF-enabled WiFi AP, the WiNV
module handles the creation and removal of vAPs with isolated
virtual interfaces and access bandwidth. We realize it by
extending Hostapd [43], which is a user-space daemon running
on a Linux system to create APs and associated authentication
servers. Specifically, Hostapd can intercepts the management
frames from the MAC layer of WiFi and processes them in a
customized way. In order to support on-demand application-
driven E2E slicing in ADE2WiNFV, we expand Hostapd to
support dynamic creation and removal of multiple vAPs on
a physical radio interface. Also, we program an interface on
Hostapd to facilitate the communication with the WiFi agent,
i.e., reporting association and disassociation of mobile clients
to and receiving instructions from the WiFi agent.

2) WiFi Agent:We program the WiFi agent as a lightweight
Python daemon to bridge the communication between the
POF-enabled AP and the WiFi controller in the control layer.
When a mobile client connects to a vAP in a slice, the WiNV
module reports the association event to the WiFi agent, which
in turn notifies the remote WiFi controller about the event.
Similarly, when the mobile client leaves, the disassociation
event is reported as well. In this way, the WiFi controller
knows about the location and status of each mobile client in
real time. To operate on the application-driven E2E slices,the
WiFi agent receives instructions (e.g., create/remove vAP(s),
change channel, and remove client) from the WiFi controller,
and executes them by invoking the APIs provided by the
WiNV module. Meanwhile, the execution results are also sent
back to the WiFi controller. When necessary, the WiFi agent
can connect a newly-added vAP to the POF switch and activate
the data transfer through it.

3) POF Switch:The POF switch is realized based on our
homemade software switch PVS [33], and it bridges data
traffic between the WiFi and wireline Ethernet interfaces of
the POF-enabled AP, since the WiNV module only handles
the management frames of WiFi MAC layer. With POF-FIS,
the network controller in the control layer can install flow
tables in the POF switch to realize the protocol translation
between the WiFi and wireline Ethernet interfaces and achieve
per-flow and per-vAP based traffic steering. For example, the
POF switch can limit the access bandwidth of any vAP with
the meter instruction in POF-FIS, and thus realize bandwidth
allocation and isolation for the vAPs on the POF-enabled AP.

As the management frames of WiFi MAC layer are pro-
cessed locally in the WiFi agent, our design of the POF-
enabled WiFi AP does not fully decouple the control and
data planes as that in previous work [26]. This is because
sending management frames to a remote controller for pro-
cessing would bring in extra latency, and thus might limit the
performance of mobility management.

C. NFV-based Mobile Edge Cloud

ADE2WiNFV utilizes an NFV-based mobile edge cloud to
bring the computing and storage capabilities close to mobile
clients for improving the QoS of the applications running in
E2E slices. Fig. 4 shows the design of an MEC node in the
mobile edge cloud, which consists of docker containers, an
MEC agent, and a POF switch.

5

1) Docker Containers:They run on a Linux system and
share the OS’ kernel, and thus they can be started instantly
and only consume a small amount of IT resources. Hence, we
use docker containers as our vNF deployment platform, and
package vNFs as docker images. This implementation provides
us the flexibility of either realizing vNFs with commonly-
used software tools (e.g., iptables for firewall, and haproxy
for load-balancing) or programming our own vNFs with the
assistance of the Intel data plane development kit (DPDK)
[44]. For the former case, the vNFs connect to the POF
switch through virtual Ethernet ports. For the latter case,the
vNFs communicate with the POF switch through the vhost-
user driver of DPDK for high-performance I/O. As an MEC
node can host multiple vNFs belonging to different E2E slices,
we use a two-Bytetenant id to identify a slice and another
two-Byte instance id to index a vNF within the slice. The
tenant id and instance id can be combined as a four-Byte
vnf id, which is the unique ID of a vNF. In order to steer
traffic through the vNFs, we reuse thevnf id of each vNF as
the IP address of its input interface.

MEC Agent

POF Agent

Network Controller NFV Controller

Docker Engine

Linux OS Kernel

Flow Tables
vNF1 vNF1 vNF1

vNF2 vNF2 vNF2

vNF3 vNF3 vNF3

N
IC

D
P

D
K

N
IC

N
IC

v
h

o
s
t-

u
s
e

r

D
P

D
K

v
e

th

POF Switch

MEC Node

Slice 1 Slice 2 Slice 3 …

… … …

…

…

…

…

Fig. 4. Design of an MEC node in mobile edge cloud.

2) MEC Agent:It is a python daemon, which is in charge of
starting, maintaining and stoping vNFs. When a tenant sitting
in the service layer requests for a new vNF, the orchestration
layer works with the NFV controller to find the most suitable
MEC node for vNF deployment, and then they instruct the
MEC agent in the MEC node to instantiate the vNF. Next, the
MEC agent selects the right image for the vNF and uses it to
start a container, and the processing pipeline of the vNF will
be activated when the container finishes booting. After that,
the MEC agent creates the I/O interfaces for the container and
connects them to the POF switch. Meanwhile, the MEC agent
assignstenant id and instance id to the vNF, combines them
to obtain the IP address (i.e., the vnf id) of the vNF’s input
interface, and records the vNF’s information in its database.
When a vNF needs to be removed, the MEC agent looks
up its database to find thecontainer id of the vNF, deletes
the corresponding container, and then removes the vNF’s I/O
interfaces that are connected to the POF switch. Note that,
the MEC agent also needs to report to the NFV controller
periodically about the working status and resource usages of

the vNFs on its MEC node.
3) POF Switch:The POF switch in Fig. 4 is responsible for

routing traffic externally(i.e., to/from other MEC nodes) and
steering traffic internally among the local vNFs. To process
traffic to/from other MEC nodes, the POF switch uses DPDK
on the physical linecards (NICs) to achieve high-throughput
packet forwarding, while for internal traffic routing, it uses the
virtual Ethernet ports or the vhost-user driver of DPDK.

D. Controllers and Orchestrator

As shown in Fig. 2, there are three controllers,i.e.,
the network controller, WiFi controller, NFV controller, and
an orchestrator in the control and orchestration layers of
ADE2WiNFV. We implement all of them based on the ONOS
platform [45]. By leveraging our previous work in [17, 18],
we extend ONOS to support POF and use it as the network
controller, while the WiFi controller, NFV controller and
orchestrator are programmed as applications in the extended
ONOS. The orchestrator can coordinate the three controllers,
and provide a set of restful APIs to tenants in the service layer
for application-driven E2E slicing. Table I lists the northbound
APIs (i.e., from tenants in the service layer to the orches-
trator), with which tenants can create/remove E2E slices and
start/stop vAPs and vNFs in the slices dynamically. The WiFi
and NFV controllers use TCP connections to communicate
with the WiFi agents and NFV agents, respectively, with the
southbound APIs in Table II.

TABLE I
NORTHBOUNDAPIS FORSERVICE LAYER TO CALL ORCHESTRATOR

Call Orchestrator Descriptions

addTenant() Create an E2E slice

getTenants() Get a global view of all the tenants’ slices

removeTenant() Destroy an E2E slice

addVapToTenant() Add a vAP to a slice

removeVap() Remove a vAP from a slice

getVaps() Get status of all the vAPs in a slice

addVnfToTenant() Add a vNF to a slice

removeVnf() Remove a vNF from a slice

getVnfs() Get all the vNFs in a slice

getWifiAgents() Get all the WiFi agents in the infrastructure layer

getMecAgents() Get all the MEC agents in the mobile edge cloud

getClients() Get all the mobile clients in a slice

IV. EXPERIMENTAL DEMONSTRATIONS

In this section, we discuss the experimental demonstrations
to evaluate the performance of our proposed ADE2WiNFV,
with the setup in Fig. 5. Here, we include five Linux servers
in the setup, each of which is equipped with a2.10GHz Intel
Xeon CPU and32 GB DDR3 memory. Among these servers,
three are used as MEC nodes, each of which equips with six
Ethernet ports (1GbE or 10GbE), one runs ONOS to carry the
service, orchestration and control layers of ADE2WiNFV, and
the last one equips a WiFi card to work as a POF-enabled AP

6

TABLE II
SOUTHBOUND APIS FORCONTROL LAYER TO CALL INFRASTRUCTURE

LAYER

Call WiFi Agent Descriptions

createVap() Create a vAP in a physical AP

delVap() Remove a vAP in a physical AP

getVaps() Get all the vAPs in a physical AP

getStatus() Get radio information of a physical AP

changeChannel() Change a physical AP’s channel

getClient() Get information of a mobile client

removeClient() Disassociate a mobile client from a vAP

getTxRate() Get sending rate of a vAP

getRxRate() Get receiving rate of a vAP

Call MEC Agent Descriptions

createVnf() Create a vNF in an MEC node

delVnf() Remove a vNF in an MEC node

getVnfs() Get all the vNFs in an MEC node

getStatistics() Get IT usage in an MEC node

(i.e., AP2 in Fig. 5). In order to demonstrate the compatibility
of our design, we implement another POF-enabled AP (i.e.,
AP1) on a portable wireless router running OpenWrt.

MEC Node1

MEC Node3

MEC Node2

ONOS

Portable Wireless

Router

Linux Server POF Switch

Fig. 5. Experiment setup.

A. Performance of Container-based vNFs

We first conduct experiments to measure the performance of
our container-based NFV platform. Here, we build a ClickOS-
based NFV platform as the benchmark, since according to
[38, 39], ClickOS also provides a lightweight and fast-booting
platform for vNF prototypes and can realize high-throughput
traffic processing. The experiments compare the two NFV
platforms in terms of traffic processing performance.

To push the platforms to their extremes, we use them to
realize a simple vNF that directly forwards packets from input
to output without any further processing. Then, in a single
MEC node, we can concatenate such vNFs multiple times to
realize a service function chain (SFC). For fair comparisons,
the container-based and ClickOS-based NFV platforms run
on the same Linux system with the same software/hardware
configuration. We use iperf3 [46] as the traffic generator to

pump traffic through the SFCs with a fixed packet size of
1500 Bytes, and the experiments measure the traffic processing
throughput, traffic processing latency and memory usage of
the SFCs when their chain lengths change. Fig. 6(a) shows
the results on traffic processing throughput. It can be seen that
our container-based NFV platform achieves a peak throughput
of 1.95 Gbps when there is only one vNF in the SFC. As
expected, the throughput decreases with the chain length ofthe
SFC, but the throughput of our container-based NFV platform
still maintains at531 Mbps even when there are as many as20

vNFs in the SFC. In contrast, the ClickOS-based one can only
achieve a peak throughput of1.14 Gbps, and its throughput
quickly decreases to70 Mbps with 20 vNFs in the SFC.

The results on average traffic processing latency are plotted
in Fig. 6(b), which are obtained by using theping program.
The results suggest that the traffic processing latency of our
container-based NFV platform is also much shorter than thatof
the ClickOS-based one. The comparison on memory usage is
illustrated in Fig. 6(c). Since the ClickOS-based NFV platform
is still based on VMs (i.e., each vNF is based on a VM that
consumes around8 MBytes of memory), its memory usage
increases sharply with the chain length of the SFC. On the
other hand, since our docker containers share memory with the
host’s Linux OS, its memory usage only increases slightly with
the chain length and is much less. The results in Fig. 6 confirm
that our container-based NFV platform performs much better
than the benchmark. This is because the container-based vNFs
directly process packets in Linux kernel without extra memory
copies. While in ClickOS, the vNFs are based on VMs and
thus packets have to first go through the virtualization layer
and then be copied from kernel space to user space, which
applies a strict performance bottleneck.

Note that, the results in Fig. 6 are obtained without applying
any high-performance I/O tools for accelerating. Actually, the
traffic processing throughput of both the container-based and
ClickOS-based NFV platforms can be further improved with
such tools. Therefore, we incorporate netmap in the ClickOS-
based platform and add DPDK support in our container-
based platform, to accelerate their packet processing. Then, we
remeasure their packet processing throughput with one vNF
in the SFC and plot the results in Fig. 7. The experiments
consider different packet sizes,i.e., from 64 to 1500 Bytes.
We observe that our container-based platform achieves a
throughput of7.66 million packets per second (Mpps) with the
smallest packet size (i.e., 64 Bytes), and its data throughput
reaches the line-rate of a 10GbE port when the packet size
is 256 Bytes. Nevertheless, the packet processing throughput
of the ClickOS-based benchmark is only5.12 Mpps with 64-
Byte packets, and it cannot reach the10 Gbps line-rate until
the packet size increases to1024 Bytes.

B. Setup and Removal Latencies

As we have explained before, the setup and removal la-
tencies of the vAPs and vNFs would affect ADE2WiNFV’s
performance on dynamic slicing and mobility management.
Hence, we conduct experiments to measure the latencies with
the setup in Fig. 5. Here, we have two physical APs,i.e.,

7

Chain Length of SFCs
0 5 10 15 20

T
ra

ffi
c

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t (

M
bp

s)

0

500

1000

1500

2000
Container-based vNFs
ClickOS-based vNFs

(a) Traffic processing throughput

Chain Length of SFCs
0 5 10 15 20

T
ra

ffi
c

P
ro

ce
ss

in
g

La
te

nc
y

(m
se

c)

0

0.2

0.4

0.6

0.8

1
Container-based vNFs
ClickOS-based vNFs

(b) Average traffic processing latency

Chain Length of SFCs
0 5 10 15 20

M
em

or
y

U
sa

ge
 (

M
B

yt
es

)

0

50

100

150

200
Container-based vNFs
ClickOS-based vNFs

(c) Memory usage

Fig. 6. Performance comparisons between container-based and ClickOS-based NFV platform.

Packet Size (Bytes)
0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
in

 P
a

c
k
e

ts
 (

M
p

p
s
)

0

2

4

6

8

T
h

ro
u

g
h

p
u

t
in

 D
a

ta
 (

G
b

p
s
)

2

4

6

8

10

Container-based vNF

ClickOS-based vNF

Container-based vNF
ClickOS-based vNF

Fig. 7. Packets processing throughput with acceleration tools.

AP1 and AP2, and due to the hardware limitation on them,
AP2 can support8 vAPs while AP1 can only support4 vAPs
at most. We measure the latencies on AP2 since it has a
larger capacity, and use the restful APIs on orchestrator to
send instructions of creating and removing vAPs to the WiFi
agent on AP2. The corresponding setup/removal latencies are
defined as the time interval from when the WiFi agent receives
the instructions to when the vAPs have been started/removed.
Fig. 8 shows the results on the setup/removal latencies to
operate on different numbers of vAPs, which indicate that on
average, our ADE2WiNFV only consumes around30 and100
msec to create and remove a vAP, respectively.

Number of vAPs

1 2 3 4 5 6 7 8

L
a
te

n
c
y
 (

m
s
e
c
)

0

100

200

300

400

500

600

700

800 Setup Latency

Removal Latency

Fig. 8. Setup and removal latencies of vAPs in ADE2WiNFV.

Then, the experiments also measure the setup and removal
latencies of vNFs, and we still use the ClickOS-based plat-
form as the benchmark. The definitions of the setup/removal

latencies for vNFs are similar as those for vAPs. The results
are shown in Fig. 9, and we can see that the ClickOS-based
platform actually achieves shorter setup/removal latencies than
our container-based one, despite the worse performance on
traffic processing. The average setup and removal latencies
per vNF of our container-based platform are0.95 and 0.73

second, respectively, which are still less than a second and
can fit into the requirement of dynamic operation well.

Number of vNFs
0 10 20 30 40 50 60

L
a

te
n

c
y
 (

s
e

c
)

0

10

20

30

40

50

60
Setup Latency of Container vNFs

Removal Latency of Container vNFs

Setup Latency of ClickOS vNFs

Removal Latency of ClickOS vNFs

Fig. 9. Setup and removal latencies of vNFs.

C. Application-Driven E2E Slicing Demonstrations

Since the mobile clients connect to a WiFi network share
the wireless media for data transmission, it would be difficult
to ensure QoS guarantees to them, especially for bandwidth-
hungry applications such as video streaming. Although IEEE
802.11e has included the WiFi multimedia scheme to im-
prove the QoS of multimedia related applications in WiFi
networks, it needs to apply modifications on mobile clients
and would have compatibility issues. In this subsection, we
will conduct experiments to verify that ADE2WiNFV can
realize application-aware slices and implement applications
with QoS guarantees through the orchestration of software-
defined WiNV and NFV-based MEC, without requiring any
modifications on mobile clients.

The experiments consider three scenarios, as shown in Fig.
10. In Scenario 1, we do not create any application-aware
slices and just let the three mobile clients to stay in the same
WiFi physical network (i.e., hosted by AP1) and compete for
access bandwidth with each other. As shown in Fig. 10(a),
ADE2WiNFV deploys a vNF for web server and a vNF for

8

MEC Node1

MEC Node3

MEC Node2

AP1

AP2APAA

Client1 Client2 Client3

ONOS

Web Server Video Server

(a) Scenario 1: without slicing

MEC Node1

MEC Node3
AP1

Client1 Client2 Client3

Slice1 Slice2

Web Server Video Server

MEC Node2

AP2

ONOS

(b) Scenario 2: with application-aware slices

MEC Node1

MEC Node3

ONOS

AP1

Client1
Client2 Client3

Slice1 Slice2

Client4

Web Server Video Server

Transcoding MEC Node2

AP2

(c) Scenario 3: application-aware slices with dy-
namic vNF deployment

Fig. 10. Experimental scenarios to demonstrate application-driven E2E slicing.

video streaming server on MEC Node1 and MEC Node2,
respectively. In Scenario 2, we create two application-aware
slices with two vAPs on AP1. Here, as shown in Fig. 10(b),
Slice1 is for the web application, which is delay-tolerant but
only allows a small amount of packet losses, while Slice2 is
for video streaming, which is a delay-sensitive application and
needs guaranteed access bandwidth. Scenario 3 in Fig. 10(c)
considers the dynamic joining of a mobile client in Slice2,
and to adapt to the increased bandwidth requirement due to
the new client, ADE2WiNFV deploys a vNF for transcoding
on MEC Node3 instantly for video traffic adaption.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

B
a
n
d
w

id
th

 (
M

b
p
s
)

0

20

40

60

(a) Scenario 1

Client1

Client2

Client3

B
a
n
d
w

id
th

 (
M

b
p
s
)

(a) Scenario 1

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

B
a
n
d
w

id
th

 (
M

b
p
s
)

0

20

40

60

(b) Scenario 2

Client1

Client2

Client3

(b) Scenario 2

Fig. 11. Receiving bandwidths on clients in Scenarios 1 and 2.

In the experiments, we measure the total down-link and up-
link bandwidths of AP1, and confirm that they are60 and30
Mbps, respectively. Then, Client2 and Client3 subscribe tothe
video server on MEC Node2 for 1080P video streaming ser-
vices, and each of them consumes10 Mbps access bandwidth
on AP1. After the video streaming services running for25

seconds, Client1 starts to download a large data file from the
web server on MEC Node1 with10 simultaneous threads. In
Scenario 1, ADE2WiNFV does not create any slices and lets
the mobile clients compete for the access bandwidth on AP1
freely, while in Scenario 2, it creates two slices, assigns Client1
to Slice1 for web services, and puts Client2 and Client3 in
Slice2 for video streaming services. Slice2 gets a guaranteed

access bandwidth of30 Mbps. Fig. 11 shows the receiving
bandwidths of the services running on the three mobile clients
in the two scenarios. As we can see in Fig. 11(a), when there
is no application-driven E2E slicing, the receiving bandwidths
of Client2 and Client3 can easily drop to almost zero when
Client1 starts its download process att = 25 second and seizes
all the access bandwidth on AP1. In contrast, the results in Fig.
11(b) indicate that in Scenario 2, the application-driven E2E
slicing provided by ADE2WiNFV can guarantee the receiving
bandwidths of Client2 and Client3 in Slice2 even when the
download of Client1 starts. Specifically, the access bandwidth
of Client1 is limited below30 Mbps and thus it would not
affect the video streaming services of Client2 and Client3.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

Y
-P

S
N

R
 (

d
B

)

0

20

40

60

(a) Y-PSNR of video playback on Client2

Scenario 1

Scenario 2

(a) Y-PSNR of video playback on Client2

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

Y
-P

S
N

R
 (

d
B

)

0

20

40

60

(b) Y-PSNR of video playback on Client3

Scenario 1

Scenario 2

(b) Y-PSNR of video playback on Client3

Fig. 12. Y-PSNR of video playback on Client2 and Client3.

To further verify the QoS of the video streaming services,
we measure the luminance component’s peak signal-to-noise
ratio (Y-PSNR) of the video playback on Client2 and Client3
in Scenarios 1 and 2, and plot the results in Fig. 12. We observe
that in Scenario 1, the QoS of the video playback on Client2
and Client3 decreases sharply when Client1 starts to download
at t = 25 seconds. On the other hand, the application-driven
E2E slicing in Scenario 2 maintains the Y-PSNR of the video
playback at a relatively high value all the time.

In Scenario 3 in Fig. 10(c), we consider the situation in
which Client4 joins in Slice2 dynamically and tries to share
the access bandwidth with Client2 and Clien3. This, however,

9

would lead to insufficient bandwidth in Slice2. To address this
issue, ADE2WiNFV deploys a vNF for transcoding on MEC
Node3 for Slice2 on-demand, which decreases the bandwidth
of each video stream to8 Mbps. Fig. 13(a) shows the receiving
bandwidths on the three clients in Slice2, when there is no
vNF for transcoding. It can be seen that without the vNF for
transcoding, the bandwidth variation on the clients can affect
each other since the total bandwidth usage in Slice2 approach-
es its upper limit after Client4 joining in. For instance, from
t = 15 to t = 22, there is a peak on the bandwidth of Client2,
which suppresses the bandwidths of Client3 and Client4. With
the vNF for transcoding, the receiving bandwidths in Fig.
13(b) do not have the issue anymore. This actually can be
further verified with the Y-PSNR of the video playback on the
clients in Fig. 14. Specifically, the results indicate that with
the vNF for transcoding, the Y-PSNR of the video playback
always stays at a relatively high value for all the clients, while
the vNF for transcoding is absent, the Y-PSNR on each client
can have sudden and large drops due to the bandwidth com-
petitions among the clients. Therefore, Scenario 3 confirms
that our ADE2WiNFV can orchestrate software-defined WiNV
and NFV-based MEC to realize traffic adaption and improve
the QoS of mobile clients, especially when the WiFi access
bandwidth becomes the bottleneck for service provisioning.

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

B
a
n
d
w

id
th

 (
M

b
p
s
)

4

6

8

10

12

(a) without vNF for transcoding

Client2

Client3

Client4

B
a
n
d
w

id
th

 (
M

b
p
s
)

(a) without vNF for transcoding

Time (sec)

0 5 10 15 20 25 30 35 40 45 50 55

B
a
n
d
w

id
th

 (
M

b
p
s
)

4

6

8

10

12

(b) with vNF for transcoding

Client2

Client3

Client4

(b) with vNF for transcoding

Fig. 13. Receiving bandwidths on clients in Scenario 3.

Finally, we hope to point out that same as the prelimi-
nary system in [22], our ADE2WiNFV also supports NFV-
assisted mobility management and can achieve relatively short
handover latency. However, since this part has already been
discussed intensively in [22], we omit it from this paper.

V. CONCLUSION

In this work, we designed and demonstrated ADE2WiNFV,
i.e., a novel network system that can orchestrate software-
defined WiNV with NFV-based MEC to realize application-
driven E2E slicing over heterogeneous wireline/wireless net-
works. Our experimental results confirmed that ADE2WiNFV
can realize application-aware E2E slices on-demand, each of
which contains not only guaranteed E2E bandwidth resources
(i.e., in the forms of virtual links, virtual switches and vAPs)

Time (sec)
0 5 10 15 20 25 30 35 40 45 50 55

Y
-P

S
N

R
 (

d
B

)

0

20

40

60

(a) Client2

w/o transcoding

w/ transcoding

Y
-P

S
N

R
 (

d
B

)

(a) Client2

Time (sec)
0 5 10 15 20 25 30 35 40 45 50 55

Y
-P

S
N

R
 (

d
B

)

0

20

40

60

(b) Client3

w/o transcoding

w/ transcoding

Y
-P

S
N

R
 (

d
B

)

(b) Client3

Time (sec)
0 5 10 15 20 25 30 35 40 45 50 55

Y
-P

S
N

R
 (

d
B

)

0

20

40

60

(c) Client4

w/o transcoding

w/ transcoding

(c) Client4

Fig. 14. Y-PSNR of video playback on clients in Scenario 3.

but also isolated IT resources (i.e., in the form of vNFs) to
carry applications with QoS guarantees.

ACKNOWLEDGMENTS

This work was supported in part by the NGBWMCN Key
Project under Grant No. 2017ZX03001019-004 and the Key
Project of the CAS (QYZDY-SSW-JSC003).

REFERENCES

[1] Cisco visual networking index: Global mobile da-
ta traffic forecast update, 2016-2021. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.html

[2] Infrastructure report 2014: Ofcom’s second full analysis of the UK’s
communications infrastructure. [Online]. Available: http://stakeholders.
ofcom.org.uk/binaries/research/infrastructure/2014/infrastructure-14.pdf

[3] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud man-
agement for profit-driven multimedia cloud computing,”IEEE Trans.
Multimedia, vol. 17, pp. 1297–1308, Aug. 2015.

[4] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[5] J. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinateddata
backup in geo-distributed optical inter-datacenter networks,” J. Lightw.
Technol., vol. 33, pp. 3005–3015, Jul. 2015.

[6] Z. Zhu et al., “Build to tenants’ requirements: On-demand application-
driven vSD-EON slicing,”J. Opt. Commun. Netw., vol. 10, pp. A206–
A215, Feb. 2018.

[7] 5G White Paper, 2015. [Online]. Available:
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN 5G White PaperV1 0.pdf

[8] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,”J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[9] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[10] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,”IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

10

[11] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2015.

[12] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[13] X. Chen, S. Zhu, L. Jiang, and Z. Zhu, “On spectrum efficient failure-
independent path protection p-cycle design in elastic optical networks,”
J. Lightw. Technol., vol. 33, pp. 3719–3729, Sept. 2015.

[14] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
58–66, Mar. 2017.

[15] A. Al-Shabibi et al., “OpenVirteX: A network hypervisor,” inProc. of
ONS 2014, pp. 25–30, Aug. 2014.

[16] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor:A compositional
hypervisor for software-defined networks,” inProc. of NSDI 2015, pp.
87–101, May 2015.

[17] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[18] H. Huang et al., “Realizing highly-available, scalable and protocol-
independent vSDN slicing with a distributed network hypervisor sys-
tem,” IEEE Access, vol. 6, pp. 13 513–13 522, 2018.

[19] J. Liu et al., “On dynamic service function chain deployment and
readjustment,”IEEE Trans. Netw. Serv. Manag., vol. 14, pp. 543–553,
Sept. 2017.

[20] R. Cziva and D. Pezaros, “Container network functions:Bringing NFV
to the network edge,”IEEE Commun. Mag., vol. 55, pp. 24–31, Jun.
2017.

[21] M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing in
virtual wireless networks: A survey,”IEEE Trans. Netw. Serv. Manag.,
vol. 13, pp. 462–476, Sept. 2016.

[22] K. Han et al., “Leveraging protocol-oblivious forwarding (POF) to
realize NFV-assisted mobility management,” inProc. of GLOBECOM
2017, pp. 1–6, Dec. 2017.

[23] OpenFlow Switch Specifications. [Online]. Available:https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[24] A. Patro and S. Banerjee, “COAP: a software-defined approach for home
WLAN management through an open API,” inProc. of MobiArch 2014,
pp. 31–36, Sept. 2014.

[25] J. Leeet al., “meSDN: Mobile extension of SDN,” inProc. of MCS
2014, pp. 7–14, Jun. 2014.

[26] L. Suresh et al., “Towards programmable enterprise WLANS with
Odin,” in Proc. of HotSDN 2012, pp. 115–120, Aug. 2012.

[27] J. Schulz-Zanderet al., “OpenSDWN: programmatic control over home
and enterprise WiFi,” inProc. of SOSR 2015, pp. 1–12, Jun. 2015.

[28] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[29] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,”IEEE Trans. Netw. Serv. Manag., vol. 15,
pp. 275–288, Mar. 2018.

[30] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

[31] S. Li, D. Hu, W. Fang, and Z. Zhu, “Source routing with protocol-
oblivious forwarding (POF) to enable efficient e-health data transfers,”
in Proc. of ICC 2016, pp. 1–6, Jun. 2016.

[32] D. Hu et al., “Design and demonstration of SDN-based flexible flow
converging with protocol-oblivious forwarding (POF),” inProc. of
GLOBECOM 2015, pp. 1–6, Dec. 2015.

[33] Q. Sun, Y. Xue, S. Li, and Z. Zhu, “Design and demonstration of high-
throughput protocol oblivious packet forwarding to support software-
defined vehicular networks,”IEEE Access, vol. 5, pp. 24 004–24 011,
2017.

[34] M. Chiosi et al., “Network functions virtualisation,” 2012. [Online].
Available: https://portal.etsi.org/nfv/nfvwhite paper.pdf

[35] W. Fanget al., “Joint spectrum and IT resource allocation for efficient
vNF service chaining in inter-datacenter elastic optical networks,” IEEE
Commun. Lett., vol. 20, pp. 1539–1542, Aug. 2016.

[36] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,”J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[37] J. Soareset al., “Cloud4NFV: A platform for virtual network functions,”
in Proc. of CloudNet 2014, pp. 288–293, Oct. 2014.

[38] J. Martinset al., “ClickOS and the art of network function virtualiza-
tion,” in Proc. of NSDI 2014, pp. 459–473, Apr. 2014.

[39] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in Proc. of
USENIX ATC 2012, pp. 9–9, Jun. 2012.

[40] J. Fontenla-Gonzalezet al., “Lightweight container-based OpenEPC
deployment and its evaluation,” inProc. of NetSoft 2016, pp. 435–440,
Jun. 2016.

[41] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,”IEEE Commun.
Surveys Tuts., vol. 16, pp. 369–392, First Quarter 2014.

[42] J. Fajardo, I. Taboada, and F. Liberal, “Improving content delivery
efficiency through multi-layer mobile edge adaptation,”IEEE Netw.,
vol. 29, pp. 40–46, Nov. 2015.

[43] Hostapd. [Online]. Available: http://w1.fi/hostapd/
[44] DPDK: Data Plane Development Kit. [Online]. Available: https:

//dpdk.org/
[45] ONOS. [Online]. Available: https://onosproject.org/
[46] iperf. [Online]. Available: https://iperf.fr/

