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Abstract—In this paper, we design and implement a dis-
tributed network virtualization hypervisor (NVH) system, namely
DPVisor, which can provide superior network programmability
based on protocol-oblivious forwarding (POF) to realize highly-
available, scalable and protocol-independent virtual software-
defined network (vSDN) slicing. The experimental comparisons
indicate that DPVisor achieves comparable performance as ON-
Visor (i.e., an OpenFlow-based ONOS benchmark), in terms of
the message processing latency, message processing throughput,
and failure recovery time. Moreover, to optimize the performance
of distributed NVH systems, we carefully adjust the consistency
model used in the state synchronization of NVH instances and
propose a local cache based scheme to balance the tradeoff
between the consistency and availability of network status.
Our experimental results confirm that the message processing
throughput of distributed NVH systems can be greatly improved
(i.e., for both DPVisor and ONVisor), while the data consistency
among NVH instances is still maintained well.

Index Terms—Software-defined networking (SDN), Network
virtualization, Distributed network hypervisor, Consist ency mod-
el, Protocol-oblivious forwarding (POF).

I. I NTRODUCTION

RECENTLY, network virtualization has attracted intensive
interests from both academia and industry [1, 2], since it

allows an infrastructure provider (InP) to dynamically slice
logically-isolated virtual networks over a shared substrate
network according to the demands from service providers
(SPs) [3, 4]. Meanwhile, SPs can operate the virtual networks
(i.e., the tenants) by leveraging the principle of software-
defined networking (SDN) to ensure flexibility and network
programmability. Therefore, by combining network virtualiza-
tion with SDN, the InP can slice virtual SDNs (vSDNs) [5]
and offer SPs the flexibility of running their own protocols and
applications on the vSDNs [6–9], to accelerate the deployment
of new services and facilitate network innovations.

Although network virtualization with vSDNs enhances the
network system’s performance in terms of programmability
and adaptivity, the task can never be accomplished without
an effective network virtualization hypervisor (NVH) system
[10]. Specifically, the NVH system needs to abstract the re-
sources in the substrate network, virtualize substrate switches
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for the tenants, and bridge the communications between the
substrate switches and the vSDNs’ controllers. Hence, from
the perspective of each controller, it directly manages thevir-
tual switches in its vSDN, while all the substrate switches view
the NVH as the centralized controller for flow management.
Previously, people have developed a few NVH systems to
realize vSDN slicing,e.g., FlowVisor [11], OpenVirteX [6],
and SR-PVX [8]. Even though these NVH systems have been
proven to be effective, there are still a few unaddressed issues
that restrict their practicalness, especially for being used in a
large-scale, complicated and heavy-loaded substrate network.

This is because the NVH systems in [6, 8, 11] were all
based on a centralized architecture, which means that a single
NVH sits in between the vSDNs’ controllers and substrate
switches to handle all the flow management messages. This,
however, makes the system vulnerable to NVH failures,i.e.,
a single failure on the NVH can bring down the services of
all the vSDNs. Therefore, the centralized architecture cannot
guarantee high-availability, which is known to be vital in
network design, especially for wide-area networks [12, 13].
Moreover, since it needs to translate and forward all the
flow management messages, the single NVH can become the
performance bottleneck of the network system. In order to
address these reliability and scalability issues, one can try
to design a logically centralized but physically distributed
architecture for the NVH system, similar to the efforts made
for the control plane of SDN [14, 15]. Nevertheless, the design
and implementation of such a distributed NVH system still
have not been fully explored before.

In this work, we design and implement a distributed N-
VH system to realize highly-available, scalable and protocol-
independent vSDN slicing. Specifically, the NVH system takes
the architecture in Fig. 1 and is developed based on the well-
known ONOS platform [15]. By following our previous idea
in [8], we first expand the NVH module in ONOS to add in the
support of protocol-oblivious forwarding (POF) [16]. Hence,
the programmability and flexibility of the NVH system can
be significantly improved to accomplish protocol-independent
vSDN slicing. Then, we transform the centralized NVH system
into a distributed one by creating distributed NVH instances
and letting them use east/west-bound communications to main-
tain a logically centralized view of the substrate network and
vSDNs. In other words, each NVH instance only needs to
manage a subset of the substrate network directly, and all
the instances communicate with each other to synchronize
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network status. Therefore, the workload can be distributed
to the NVH instances to achieve better scalability, and when
an NVH instance breaks down, another one can take over its
management tasks instantly for realizing high-availability.
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Fig. 1. Architecture of distributed NVH system for vSDN slicing.

Next, we conduct experiments to compare our distributed
NVH system, namely DPVisor, with the original OpenFlow-
based ONOS benchmark (i.e., ONVisor [17, 18]), in terms of
the message processing latency, message processing through-
put, and failure recovery time. The results demonstrate that
DPVisor achieves comparable performance as ONVisor for
all the three metrics. This confirms that our design adds in
POF support to significantly improve the programmability
and flexibility of the distributed NVH system without causing
noticeable performance degradation. Finally, to optimizethe
performance of the distributed NVH system, we carefully
adjust the consistency model used in the state synchronization
of NVH instances. Specifically, we propose a local cache
based scheme to balance the tradeoff between the consistency
and availability of network status. As a result, the message
processing throughput of distributed NVH system can be
greatly improved (i.e., for both DPVisor and ONVisor), while
the data consistency among NVH instances is still maintained
well. Our major contributions can be summarized as follows.

• We design and implement DPVisor, which is the first
distributed NVH system that can realize highly-available,
scalable and protocol-independent vSDN slicing.

• We experimentally demonstrate the scalability and avail-
ability of DPVisor with a real network testbed. To the best
of our knowledge, this is the first demonstration of such
a distributed NVH system. Experimental results verify
that DPVisor can achieve comparable performance as its
OpenFlow-based counterpart (i.e., ONVisor).

• We carefully analyze the performance bottleneck of the
distributed NVH systems based on ONOS (i.e., both
DPVisor and ONVisor), and design a local cache based

scheme that can not only improve the systems’ message
processing throughput significantly but also maintain the
data consistency among NVH instances well.

The rest of the paper is organized as follows. Section II
provides a brief survey of the related work to explain the
background and motivation of this work. The design and
implementation of our distributed NVH system are described
in Section III. We discuss the experimental evaluations of our
proposed NVH system in Section IV, and the performance
optimization and related results are presented in Section V.
Finally, Section VI summarizes the paper.

II. RELATED WORK

A. Network Virtualization Hypervisors (NVHs)

The NVH system is a key component to realize vSDN
slicing, and for a comprehensive survey on the previous studies
on NVH, one is recommended to refer to [10]. FlowVisor
[11] was the first NVH system that can create OpenFlow-
based vSDNs over a shared substrate network. To isolate the
message processing in different vSDNs, FlowVisor defines the
concept of “flowspace” to represent the subsets of OpenFlow-
supported header fields. This means that the vSDNs created by
FlowVisor cannot use overlapped header space, which greatly
limits the scalability and flexibility of vSDN slicing. Another
drawback of FlowVisor is that it can only create vSDNs whose
topologies are the same as that of the substrate network.
Al-Shabibi et al. [6] successfully addressed the limitations
of FlowVisor by designing and implementing OpenVirteX,
which inherits the overall architectural design of FlowVisor
but resolves the issues caused by the flowspace. Specifically,
OpenVirteX allows the tenants to use overlapped header space
and specify the topologies for their vSDNs.

However, FlowVisor and OpenVirteX are both based a
centralized architecture, which means that the InP would only
use a single NVH instance to manage all the vSDNs. To
address the reliability and scalability issues caused by the
centralized architecture, a distributed NVH system is desired
[19]. In [20], Bozakovet al. proposed AutoSlice, which uses
multiple FlowVisor instances to act as the NVH system and
distribute the workload in multiple SDN domains. However,
since AutoSlice relies on a single management module to
conduct vSDN slicing in each SDN domain, it is not a truly
distributed system and thus cannot ensure high availability. In
[21], the authors laid out the design of a distributed NVH
system, namely, FlowN. However, FlowN only provides a
container-based controller for tenants to install the applica-
tions for their vSDNs, which means that each tenant cannot
deploy its own vSDN controller in FlowN. This limits the
flexibility of vSDN slicing. Moreover, since FlowN runs all
the tenant applications on a single container-based controller,
it is actually not a truly distributed NVH system. Lastly but
not least, the authors only discussed the architectural design
of FlowN in [21] but did not include any experimental results.

Note that, FlowVisor, OpenVirteX and FlowN are all based
on the OpenFlow protocol [22], which is the most popular
protocol to support SDN. Nevertheless, as OpenFlow-based
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match fields are all based on the existing network proto-
cols, an OpenFlow switch can only parse and match to the
fields that have already been standardized in the OpenFlow
specifications. This would make the data plane protocol-
dependent and cause compatibility issues. The same issues
limit the programmability and flexibility of OpenFlow-based
NVH systems,i.e., it would be difficult to create vSDNs
to support new protocols that have not been included in
the OpenFlow specifications. For instance, even though the
OpenFlow specifications have already evolved to version 1.5
that includes44 match fields, FlowVisor, OpenVirteX and
FlowN were all developed based on OpenFlow v1.0, which
only includes12 match fields.

The protocol-dependent and compatibility issues induced
by OpenFlow can be resolved by leveraging the efforts made
to realize protocol-independent forwarding (PIF) [23]. More
specifically, by incorporating protocol-oblivious forwarding
(POF) [16] in the NVH system, we realized SR-PVX in [8],
which allows tenants to customize the packet forwarding be-
haviors in their vSDNs in an arbitrary manner. The basic idea
of POF is straightforward,i.e., it first abstracts all the packet
fields to be processed in the data plane as {offset, length}
tuples, whereoffset tells the start bit-location of a packet field
andlength indicates the field’s length in bits, and then defines
a flow instruction set (i.e., POF-FIS [16, 24]) to assist the
packet processing in POF switches. As all the instructions in
POF-FIS locate data in packets with {offset, length} tuples,
the POF switches can operate on any bits in packets, without
being restricted by pre-defined protocols. Hence, POF can
greatly enhance the data plane programmability for SDN,
which has already been experimentally demonstrated in our
previous studies [24–30]. However, as SR-PVX was developed
based on OpenVirteX, it also takes the centralized architecture
and cannot avoid the resulting reliability and scalabilityissues.

B. Distributed Control Plane Systems

Recently, ONOS [15] has been developed as an open-
source network operating system that is based on a distributed
architecture motivated by the performance, scalability and
availability requirements of large-scale networks. A recent
project in ONOS has tried to expand its scope on network
virtualization and realized a distributed NVH system (i.e.,
ONVisor) for ONOS [17]. Nevertheless, ONVisor was still
developed based on OpenFlow, and could not realize protocol-
independent vSDN slicing. More importantly, it is known
that ONVisor uses the strong consistency model in the s-
tate synchronization of NVH instances, which might affect
its processing throughput as we will explain in this paper.
Hence, we should also evaluate alternative ways for the state
synchronization of NVH instances to see whether a better
tradeoff between data consistency and processing throughput
would be feasible for distributed NVH systems.

Note that, in a distributed system, the consistency model
of data synchronization can take different forms to balance
the tradeoff between the consistency and availability of data
[31]. Among them, the strong consistency model, the eventual
consistency model, or a hybrid combination of them have been
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Fig. 2. Architectural design of DPVisor.

frequently considered in realizing distributed control plane
systems for SDN. The strong consistency model ensures that
each instance always reads the most updated data, and thus
if certain data has not been updated to all the instances, it
cannot be read. The Raft consensus protocol [32] implemented
in ONOS takes the strong consistency model, which would
apparently give too much priority to consistency and limit the
system’s processing throughput due to lack of data availability.
Another alternative is the eventual consistency model, which
does not enforce that each instance read the most updated data.
Instead, the data updates on an instance will be visible to all
the others eventually through data synchronization among the
instances. Although the eventual consistency model can make
data available quickly to achieve relatively high processing
throughput, it might sacrifice consistency too much. To the
best of our knowledge, how to design a hybrid combination
of the consistency models for the distributed NVH system,
which can optimize the tradeoff between the consistency and
availability of data has not been studied before.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. Distributed NVH System based on ONOS

Fig. 2 shows the architectural design of DPVisor, which is a
distributed NVH system designed based on ONOS. Here, each
NVH instance consists of four major modules as follows.

• Provider & Protocol: This module is in charge of the
south-bound protocol stack, and it communicates with
substrate switches and forwards the obtained network
status to the Hypervisor Core. We modify the original
Provider & Protocol module of ONOS to add in the
support of POF. Hence, the POF-based flow entries and
flow tables can be encoded inFlow_Mod andTable_Mod
messages, respectively, and sent to the substrate POF
switches by this module.

• Hypervisor Core: This module realizes the abstraction
of the substrate network. Specifically, all the substrate
network elements (e.g., switches and links) and their
statistics are collected by the Hypervisor Core, and
they are stored and synchronized in the NVH instances
according to certain consistency models. Therefore, the
NVH instances can have a logically centralized view of
the network. Fig. 2 also shows the submodules in the
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Hypervisor Core. Among them, the Device and Topolo-
gy submodules handle the network status regarding the
substrate switches and topology, respectively, the Flow
Rule submodule builds the flow entries to be installed in
the substrate switches for parsing and processing packets,
the Flow Table submodule translates the protocols defined
by tenants into POF-based flow tables, and the network
virtualization with vSDNs is realized by the Virtual
Network submodule.

• Virtualization Layer: This module realizes the major
functionalities for network virtualization. First of all,the
Micro Service submodule allows each vSDN to specify
its own service, which is identified by the Virtualization
Layer according to the unique tenant ID of the vSDN.
Secondly, the packets/messages from the substrate net-
work carry their tenant IDs, based on which they will
be forwarded to the corresponding vSDNs’ services by
the Virtualize & De-virtualize submodule. In the oppo-
site direction, the Virtualize & De-virtualize submodule
translates all the messages from the vSDNs’ services into
what the substrate switches can understand based on the
mapping between the virtual and substrate networks.

• Tenant Application: This module carries the services of
the vSDNs, which works as a controller instance for each
vSDN. Since the messages to/from this module are cate-
gorized by the Micro Service submodule in the Virtualiza-
tion Layer, our design ensures that the operations of the
vSDNs are independent and isolated. Moreover, as each
NVH instance includes a Tenant Application module, the
actual implementation of each vSDN controller is also
physically distributed but logically centralized. Therefore,
our DPVisor is a truly distributed NVH system.
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Fig. 3. Message processing procedure in DPVisor.

B. Message Processing in DPVisor

When DPVisor receives a message from the data plane, it
will virtualize and dispatch the message to the corresponding
vSDN according to the input port. Messages belonging to
different vSDNs are categorized by the isolated micro services.
On the other hand, the Virtualization Layer accesses the virtual
network store in the Hypervisor Core to de-virtualize the
messages from the vSDNs’ controllers. The de-virtualization

includes the translation of the virtual switch IDs and output
ports in the messages to substrate switch IDs and output
ports, respectively. Moreover, if the virtual output port in a
Flow_Mod message is connected to a virtual link, DPVisor
will add extendable POF instructions in theFlow_Mod mes-
sage for inserting the corresponding tenant ID and link ID in
it. Fig. 3 shows the overall message processing procedure in
DPVisor, which indicates that once theFlow_Mod messages
are de-virtualized in the Virtualization Layer, they will be
dispatched to the Flow Rule submodule in Hypervisor Core in
Fig. 2. Then, the Flow Rule submodule will find the master
NVH instances of the messages’ substrate switches and send
the messages to them if necessary. Finally, theFlow_Mod
messages will be sent to the substrate switches by the Provider
& Protocol modules in the master instances.

C. Packet Processing for Network Virtualization

Fig. 4 illustrates the packet format that we design to realize
vSDN slicing with DPVisor. Specifically, we insert a Virtual
Network Header field (i.e., 6 bytes) after the Ethernet header
of each packet to assist the packet processing for network
virtualization. The field consists of two sub-fields,i.e., the
3-byte Tenant ID sub-field to identify the vSDN and the3-
byte Link ID sub-field to determine the packet’s output virtual
link. Hence, DPVisor can easily categorize the flows in the
substrate network according to their Virtual Network Headers.
According to the principle of POF, the Virtual Network Header
can be represented by a tuple of {112 bits,48 bits}, and it can
be added, modified and deleted by leveraging the POF-FIS.
Note that, since we just insert the Virtual Network Header after
the Ethernet header but do not overwrite any existing packet
field, the network virtualization with DPVisor is transparent to
upper-layer protocols. Therefore, protocol-independentvSDN
slicing is feasible, which is realized with the procedure inFig.
5 in each substrate POF switch.

Ethernet Virtual Network Header IP Payload

Tenant ID Link ID

Fig. 4. Packet format to realize vSDN slicing with DPVisor.

During the initialization of each vSDN, DPVisor installs
flow entries in each related substrate switch to let it identify the
packets that belong to the vSDN based their Virtual Network
Headers. Specifically, the flow entries allow the substrate
switch to determine a packet’s tenant ID and forward it to
the corresponding pipeline for further processing. Here, the
pipeline refers to a sequence of flow tables that are defined
and installed by the vSDN’s controller. As explained in Fig.
5, upon receiving a packet, a substrate switch first determines
whether it directly comes from an end-host.1 If yes, the
packet is forwarded to the pipeline defined by its tenant for

1In this work, we assume that the mapping between an end-host and its
vSDN can be determined by the input port that the end-host connected to on
the substrate switch. Therefore, if a substrate switch seesan incoming packet
without the Virtual Network Header, it examines the packet’s input port to
find the corresponding vSDN.
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processing. Otherwise, the switch deletes its Virtual Network
Header and then sends it to its processing pipeline. Similarly,
before outputting the packet, the switch first checks whether
its next hop is an end-host or another substrate switch, and
then take the actions accordingly.
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Fig. 5. Packet processing procedure in each substrate switch.

D. Failure Recovery in DPVisor

Fig. 6 explains how DPVisor realizes instant failure recovery
with the distributed NVH system. Specifically, in DPVisor,
when multiple NVH instances connect to the same substrate
switch, one acts as the master NVH and the rest of them are
slave NVHs. The master NVH has the authority to manage
the substrate switch,e.g., collecting the switch’s status and
installing flow entries/tables in it, while the slave ones also
connect to the switch but cannot manage it. The substrate
switches only sendPacket_In messages to the master NVH,
while the state synchronization between the master and slave
NVHs is accomplished by east/west-bound communications.

Since both DPVisor and ONVisor use ONOS’s working
principle on NVH failure recovery, they manage the mastership
of NVH instances with a Raft state machine [32], which is im-
plemented based on the Atomix framework [33]. Specifically,
in the distributed NVH systems (i.e., DPVisor and ONVisor),
the mastership of NVH instances changes when the master
NVH instance’s Raft session expires,i.e., a failure happens
on the instance. Here, a Raft session refers to the session
between the Raft client on the master NVH instance and one
of the Raft servers on the NVH instances that store the Raft
state machine [33]. In normal operation, when a Raft server
receives a heartbeat message from this session, it will update
the session time-stamp to the current time. Hence, each server
can check the session time-stamp in a polling way to determine
whether the session has been expired. If it finds that the time
difference between the current time and session time-stampis
longer than the preset session timeout, it determines that there
is an NVH failure and will invoke the NVH failure recovery
mechanism.

Note that, before the failure recovery, DPVisor actually
selects the subsequent master NVH in advance to save the
recovery time. Specifically, each NVH instance can connect to
a substrate switch and register its interest to serve the switch
in a first-in-first-out (FIFO) queue. This means that the NVH

instance that first registers its interest to serve will become
the master NVH instance, and the subsequent ones will be
buffered in the FIFO queue in order. Then, when the master
instance fails, DPVisor makes the first NVH instance in the
FIFO queue as the new master instance.

Master NVH Slave NVH

HeartbeatsHeartbeats

Slave NVH

Substrate Switch

(a) Before failure (b) After failure recovery

Atomix (Raft State Machine)

NVH Slave NVH

HeartbeatsHeartbeats

Master NVH

Substrate Switch

Atomix (Raft State Machine)

Fig. 6. Failure recovery in DPVisor.

IV. EXPERIMENTAL BENCHMARKING

In this section, we discuss the experimental evaluations
of DPVisor and use the original OpenFlow-based distributed
NVH system in ONOS (i.e., ONVisor [17]) as the benchmark.

A. Message Processing Latency

First of all, we would like to test whether DPVisor can pro-
cess messages from the substrate network as fast as ONVisor.
The experimental setup is shown in Fig. 7, and to measure the
message processing latency, we only deploy one NVH instance
in both DPVisor and ONVisor. This is because even though
DPVisor and ONVisor are distributed NVH systems, their
operation principle determines that at any given time instant,
only one NVH instance (i.e., the master NVH) will process
the messages to/from a switch. Moreover, we would like to
conduct stress tests to see how well a single NVH instance can
perform under message flooding. The stress tests are realized
with the Cbench tool [34], which can generate a large number
of Packet_In messages within a short period of time and
measure the response time of SDN control plane. Note that,
since Cbench was originally developed for the performance
benchmarking of OpenFlow controllers, we extend its protocol
stack to make it POF-compatible and the new version of
Cbench can be found at [35]. In the experiments, we use
Cbench to emulate a substrate network that has a linear
topology with 10 to 100 substrate switches, and the NVH
system creates vSDNs with the same topologies.

The message processing latency is defined as the time period
from when a substrate switch sends out aPacket_In message to
when the same switch receives the correspondingPacket_Out
message from the NVH system. The Cbench tool and the
NVH system both run on Linux servers (Lenovo RD540), each
of which is equipped with a 2.10GHz Intel Xeon CPU and
32GB DDR3 memory. Table I compares the average message
processing latencies of DPVisor and ONVisor. It can be seen
that the message processing latencies of DPVisor and ONVisor
are similar, and the latency of DPVisor is only slightly longer
than that of ONVisor. These results confirm that even though
we add in POF support in DPVisor, the implementation would
not cause significant performance degradation in terms of
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TABLE I
RESULTS ONAVERAGE PROCESSINGLATENCY PERMESSAGE(MSEC)

# of Substrate Switches 10 20 30 40 50 60 70 80 90 100
DPVisor 0.065 0.064 0.078 0.097 0.121 0.144 0.168 0.193 0.223 0.251
ONVisor 0.065 0.063 0.074 0.091 0.114 0.132 0.159 0.187 0.209 0.244

message processing latency. Meanwhile, we notice that the
latencies of DPVisor and ONVisor increase when the topology
of the vSDN scales up. This is because the NVH systems
spend longer time on the processing in the Virtualization Layer
when the topology of the vSDN becomes larger.

B. Message Processing Throughput

Then, we conduct experiments to evaluate the message
processing throughput of the distributed NVH systems. Here,
the experimental setup is similar as that in Fig. 7, with the only
differences that{1, 3, 5, 7} NVH instances will be deployed
in each distributed NVH system and the number of substrate
switches is fixed as45 (i.e., so does the number of virtual
switches). When multiple NVH instances are deployed in an
NVH system, each instance directly manages a roughly equal
number of substrate switches. For instance, if there are3

instances in an NVH system, each instance directly manages
15 substrate switches. In the experiments, to emulate practical
scenarios, each time when the vSDN controller receives a
Packet_In message, we make it randomly choose5 virtual
switches and sendFlow_Mod messages to them. In other
words, eachPacket_In message corresponds to a flow or5

Flow_Mod messages in the experiments.

Substrate Network (Emulated by Cbench)

NVH System 

(DPVisor or ONVisor)

Controller of vSDN

Substrate SwitchS

vSDN

Fig. 7. Experimental setup for measuring message processing latency.

Fig. 8 shows the experimental results on the message pro-
cessing throughput of DPVisor and ONVisor. It is promising
to see that for both ONVisor and DPVisor, the message
processing throughput increases with the number of deployed
NVH instances. This verifies that the distributed NVH systems
do achieve better scalability than the centralized ones. What is
even more promising is that compared with ONVisor, DPVisor
can achieve comparable or even higher message processing
throughput. This is because when designing and implementing
DPVisor, we carefully optimize the distributed operationsin
it. Our optimization is mainly from three aspects. Firstly,
since DPVisor uses the POF protocol stack to realize network
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Fig. 8. Results on message processing throughput of distributed NVH
systems.

virtualization, which is intrinsically more flexible than the
OpenFlow protocol stack, we optimize the implementation
for it in DPVisor for high efficiency. Secondly, we optimize
the distributed message processing procedure in DPVisor to
avoid frequent context switches of I/O threads. Specifically, to
reduce the overhead due to east/west-bound communications,
we design DPVisor to cache the messages to the master NVH
instance on the slave ones for a short time period (i.e., 10

msec) and then send them out as a batch. Finally, we separate
the message dispatching thread from the I/O thread in DPVisor
to avoid the interference between them, and thus the I/O thread
would not be blocked easily when messages arrive at DPVisor
in a relatively high speed.

C. Failure Recovery Time

Finally, we test how fast the distributed NVH systems can
recover from an NVH instance failure. This time, since we
need to send real traffic through the substrate/virtual switches,
we replace the Cbench tool with our self-developed software-
based POF switch [36]. The experiments use a distributed
NVH system that includes{3, 5, 7} NVH instances and con-
nect the substrate switch with an end-host that runs Ostinato
[37] for traffic flow generation. Specifically, the end-host
generates20 new flows per second and sends them to the
vSDN continuously. Upon receiving the flows, the substrate
switch will forward Packet_In messages to the distributed
NVH system. During this process, we manually shut down
an NVH instance in the NVH system and measure how fast
it can recover from the failure. Here, we define the recovery
time as the period from when the substrate switches receive
the lastPacket_Out message from the failure NVH instance
to when they receive the firstRole_Request message from the
new master NVH instance. Fig. 9 shows the results on failure
recover time. It can be seen that the failure recovery time of
DPVisor and ONVisor is similar. Meanwhile, we notice that
the failure recovery time can decrease slightly with the number
of NVH instances. This is because when there are more NVH
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instances in the distributed NVH system, the failure can be
detected slightly earlier from the statistical view point.

Note that, since both DPVisor and ONVisor leverage the
default failure detection mechanism and parameter setup of
ONOS, their failure recovery time is around5 seconds. This
is mainly due to the setup of heartbeat messages in ONOS,
and if we shorten the period defined for heartbeat timeout, the
failure recovery time can be shortened accordingly. However,
using a shorter timeout period can increase the possibilityof
false alarms too, and thus we do not change the default setting.

V. PERFORMANCEOPTIMIZATION

A. Bottleneck Analysis

In the distributed NVH systems based on ONOS, the state
synchronization among the NVH instances uses the Raft con-
sensus protocol [32], which is based on the strong consistency
model. This means that both the “read" (i.e., NVH instances
check the network status) and “write" (i.e., NVH instances
update the network status) operations in the NVH system have
to be coordinated by the leader instance of the distributed NVH
system, such that the operations will not be conducted untilthe
leader instance can make sure that the majority of the instances
are aware of them. This could lead to over-protection for the
read operations and greatly limit the processing throughput of
both DPVisor and ONVisor.

B. Local Cache based Scheme

In order to address the performance bottleneck discussed
in the previous subsection, we design a local cache based
scheme to improve the efficiency of read operations in the
distributed NVH systems. Fig. 10 shows the principle of the
local cache based scheme. Here, DPVisor still leverages the
Raft consensus protocol [32] implemented in ONOS, which
means that each NVH instance has a Raft client to access
the replicated state machine in the Raft servers on certain
NVH instances through a Raft session. Note that, among the
Raft servers, Raft protocol first determines a leader through
leader election, and then the remaining servers just become
its followers. We can refer to the leader and all the followers
as the Raft cluster.

As shown in Fig. 10, all the write operations are fed into
the Raft cluster by the Raft clients. When the leader receives
these operations, it writes Raft logs to its local virtual network
data store, sends the logs to the followers in batch, and then
responds to the Raft client about the fact that the operations
have been committed. When an operation has been committed,
the result will be published by the Raft server that the client
is connected to with a monotonic sequence number. Then,
the client will reorder the results published from the Raft
servers according to the sequence number, and send them to
the local cache one by one. In the case that a published result
is lost, the client will contact the server for republishingthe
result. Hence, the local cache will see the updated results in
the correct sequence. Fig. 10 also shows that the local cache
based scheme lets write operations be executed through the
Raft client, while for the read operations, they are executed
directly on the local cache to bypass expensive remote callsto

the leader. To this end, we can see that our local cache based
scheme can achieve a semantic of linearizable write [32, 38]
and sequential read,i.e., maintaining the correct update order
of the virtual network store. Therefore, with the local cache
based scheme, the distributed NVH system still uses the strong
consistency model for write operations, but bypasses it for
all the read operations. Note that, during network operation,
read operations are conducted much more frequently than
write operations, and thus our design can greatly improve the
processing throughput of the NVH system.
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Fig. 9. Results on failure recovery time of distributed NVH systems.
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Fig. 10. Principle of the local cache based scheme.

To verify the effectiveness of the local cache based scheme,
we implement it in DPVisor and ONVisor and conduct exper-
iments to measure their message processing throughput with
the setup in Section IV-B. Here, we also use the distributed
NVH systems that utilize the eventual consistency model for
state synchronization as the benchmarks. Note that, the even-
tual consistency model can completely relax the restrictions
of the strong consistency model, in the way that each NVH
instance just performs read or write operations at will and
then updates the results to the other instances in the best
effort manner. However, the eventual consistency model can
sacrifice data consistency for data availability, which will
not happen when using the strong consistency model or the
local cache based scheme. Fig. 11 shows the experimental
results on the message processing throughput. It can be seen
that the NVH system with the local cache based scheme
achieves a comparable message processing throughput as that
of the system with the eventual consistency model, while their
throughput is significantly higher than that of the system with
the strong consistency model,i.e., around4 times higher when
the number of NVH instances is7. The results of DPVisor are
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plotted in Fig. 12, which indicates the similar trend. Hence,
the results verify that the processing throughput of distributed
NVH system can be greatly improved with our local cache
based scheme (i.e., for both DPVisor and ONVisor).
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Fig. 11. Results on message processing throughput of ONVisor.
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Fig. 12. Results on message processing throughput of DPVisor.

Note that, the strong consistency model makes sure that
the read operations on all the NVH instances always obtain
state updates in the same order, which cannot be achieved
by the eventual consistency model. However, keeping the
correct update order in all the NVH instances is essential
to realize effective vSDN slicing. For example, a newly-
added virtual port should only be seen by the NVN instances
after the virtual switch that the port belongs to has been
added in them. Therefore, we conduct experiments to compare
DPVisor’s performance on keeping the correct update order,
when being implemented with the local cache based scheme
and the eventual consistency model. In the experiments, we
choose the number of NVH instances in DPVisor within
{3, 5, 7}, update the distributed virtual network store on one
NVH instance continuously, and record all the updates on
other NVH instances. Then, we calculate the percentage of the
updates whose orders are the same as the original ones on each
NVH instance,i.e., the percentage of correct update orders,
and plot the minimum results in DPVisor in Fig. 13. The
results can be used as a performance metric to measure the data
consistency in the distributed NVH system. It can be seen that
the local cache based scheme always ensures100% correct
update order, but the eventual consistency model cannot even
achieve over5% correct update order. These results confirm
the advantage of the local cache based scheme on maintaining
data consistency in the distributed NVH system.

Compared with the strong consistency model, both the
local cache based scheme and eventual consistency model
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Fig. 13. Percentage of correct update order in DPVisor.

cannot guarantee that all the NVH instances see the newest
network status in read operations. Hence, we perform more
experiments to measure the performance of DPVisor on data
inconsistency. In the experiments, the distributed NVH system
still includes {3, 5, 7} NVH instances, and we update the
distributed virtual network store on one NVH instance once
per second and measure the synchronization time among all
the NVH instances. Since during the synchronization time,
the NVH instances cannot process control messages with the
newest network status, we use the synchronization time to
derive the number of control messages that are processed by
DPVisor with outdated network status and plot the results
in Fig. 14. The results indicate that the percentage of data
inconsistency of the local cache based scheme is below0.7%

and much smaller than that of the eventual consistency model.
This verifies that the local cache based scheme can maintain
the data consistency among NVH instances well.
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Fig. 14. Percentage of messages processed with outdated status.

VI. CONCLUSIONS

We designed and implemented a distributed NVH system
based on ONOS, namely, DPVisor, to realize highly-available,
scalable and protocol-independent vSDN slicing. We first
expanded the NVH module in ONOS to add in the support of
POF for enabling protocol-independent vSDN slicing. Then,
we transformed the centralized NVH system into a distributed
one by creating distributed NVH instances and letting them
use east/west-bound communications to maintain a logically
centralized view of the substrate network and vSDNs. The
experimental comparisons indicated that DPVisor achieved
comparable performance as ONVisor (i.e., an OpenFlow-
based ONOS benchmark), in terms of the message processing
latency, message processing throughput, and failure recovery
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time. In order to optimize the performance of distributed NVH
systems, we also carefully adjusted the consistency model used
in the state synchronization of NVH instances and proposed a
local cache based scheme to balance the tradeoff between the
consistency and availability of network status. Our experimen-
tal results confirmed that the message processing throughput
of distributed NVH systems could be greatly improved (i.e.,
for both DPVisor and ONVisor), while the data consistency
among NVH instances was still maintained well.
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