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Abstract—In this paper, we design and implement a dis-
tributed network virtualization hypervisor (NVH) system, namely
DPVisor, which can provide superior network programmability
based on protocol-oblivious forwarding (POF) to realize hghly-
available, scalable and protocol-independent virtual sdfvare-
defined network (vSDN) slicing. The experimental comparisas
indicate that DPVisor achieves comparable performance as &
Visor (i.e., an OpenFlow-based ONOS benchmark), in terms of
the message processing latency, message processing thiqug,
and failure recovery time. Moreover, to optimize the performance
of distributed NVH systems, we carefully adjust the consigncy

for the tenants, and bridge the communications between the
substrate switches and the vSDNs’ controllers. Hence, from
the perspective of each controller, it directly managesvihe

tual switches in its vSDN, while all the substrate switchiesw

the NVH as the centralized controller for flow management.

Previously, people have developed a few NVH systems to
realize vSDN slicing,e.g., FlowVisor [11], OpenVirteX [6],

and SR-PVX [8]. Even though these NVH systems have been
proven to be effective, there are still a few unaddressectsss

model used in the state synchronization of NVH instances and that restrict their practicalness, especially for beingdis a
propose a local cache based scheme to balance the tradeoffarge-scale, complicated and heavy-loaded substrateonetw

between the consistency and availability of network status
Our experimental results confirm that the message processin
throughput of distributed NVH systems can be greatly improwed
(i.e., for both DPVisor and ONVisor), while the data consistency
among NVH instances is still maintained well.

Index Terms—Software-defined networking (SDN), Network
virtualization, Distributed network hypervisor, Consistency mod-
el, Protocol-oblivious forwarding (POF).

I. INTRODUCTION

This is because the NVH systems in [6, 8, 11] were all
based on a centralized architecture, which means that &sing
NVH sits in between the vSDNs’ controllers and substrate
switches to handle all the flow management messages. This,
however, makes the system vulnerable to NVH failuies,

a single failure on the NVH can bring down the services of
all the vSDNSs. Therefore, the centralized architecturenoan
guarantee high-availability, which is known to be vital in
network design, especially for wide-area networks [12,. 13]
Moreover, since it needs to translate and forward all the

ECENTLY, network virtualization has attracted intensivdoW management messages, the single NVH can become the

allows an infrastructure provider (InP) to dynamicallycsli

address these reliability and scalability issues, one can t

logically-isolated virtual networks over a shared sulistral® design a logically centralized but physically distriedt
network according to the demands from service provide@gchitecture for the NVH system, similar to the efforts made
(SPs) [3, 4]. Meanwhile, SPs can operate the virtual netsrorf@! the control plane of SDN [14, 15]. Nevertheless, the giesi
(i.e, the tenants) by leveraging the principle of softwareand implementation of such a distributed NVH system still
defined networking (SDN) to ensure flexibility and networkave not been fully explored before.

programmability. Therefore, by combining network virtzat

In this work, we design and implement a distributed N-

tion with SDN, the InP can slice virtual SDNs (vSDNs) [5]VH system to realize highly-available, scalable and prokoc
and offer SPs the flexibility of running their own protocotla INdependent vSDN slicing. Specifically, the NVH system take
applications on the vSDNSs [6-9], to accelerate the deplcmméhe architecture in Fig. 1 and is developed based on the well-

of new services and facilitate network innovations.

known ONOS platform [15]. By following our previous idea

Although network virtualization with vSDNs enhances th! [8], we first expand the NVH module in ONOS to add in the

network system’s performance in terms of programmabili

pport of protocol-oblivious forwarding (POF) [16]. Henc

and adaptivity, the task can never be accomplished withdd€ Programmability and flexibility of the NVH system can

an effective network virtualization hypervisor (NVH) sgst

be significantly improved to accomplish protocol-indepemtd

[10]. Specifically, the NVH system needs to abstract the ¥SDN slicing. Then, we transform the centralized NVH system

sources in the substrate network, virtualize substrateckes

into a distributed one by creating distributed NVH instance
and letting them use east/west-bound communications to-mai
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vSDNSs. In other words, each NVH instance only needs to
manage a subset of the substrate network directly, and all
the instances communicate with each other to synchronize



network status. Therefore, the workload can be distributed scheme that can not only improve the systems’ message
to the NVH instances to achieve better scalability, and when processing throughput significantly but also maintain the
an NVH instance breaks down, another one can take over its data consistency among NVH instances well.
management tasks instantly for realizing high-availgpili The rest of the paper is organized as follows. Section Il
provides a brief survey of the related work to explain the
background and motivation of this work. The design and
implementation of our distributed NVH system are described
in Section Ill. We discuss the experimental evaluationswf o
proposed NVH system in Section IV, and the performance
optimization and related results are presented in Section V
Finally, Section VI summarizes the paper.

Controller of vSDN 1 Controller of YSDN 2 ---. Controller of vSDN N
t t t IIl. RELATED WORK
p A. Network Virtualization Hypervisors (NVHSs)
Distributed NVH System | NVH

The NVH system is a key component to realize vSDN
slicing, and for a comprehensive survey on the previoudesud
on NVH, one is recommended to refer to [10]. FlowVisor
[11] was the first NVH system that can create OpenFlow-
based vSDNs over a shared substrate network. To isolate the
message processing in different vSDNs, FlowVisor defines th
concept of “flowspace” to represent the subsets of OpenFlow-
supported header fields. This means that the vSDNs created by
FlowVisor cannot use overlapped header space, which greatl
Fig. 1. Architecture of distributed NVH system for vSDN ig. limits the scalability and flexibility of vSDN slicing. Anber

drawback of FlowVisor is that it can only create vSDNs whose

Next, we conduct experiments to compare our distributeédpologies are the same as that of the substrate network.
NVH system, namely DPVisor, with the original OpenFlowAl-Shabibi et al. [6] successfully addressed the limitations
based ONOS benchmarke, ONVisor [17, 18]), in terms of of FlowVisor by designing and implementing OpenVirteX,
the message processing latency, message processingthrowdpich inherits the overall architectural design of Flowdfis
put, and failure recovery time. The results demonstraté tHaut resolves the issues caused by the flowspace. Specifically
DPVisor achieves comparable performance as ONVisor f@penVirteX allows the tenants to use overlapped headeespac
all the three metrics. This confirms that our design adds &nd specify the topologies for their vSDNs.

POF support to significantly improve the programmability However, FlowVisor and OpenVirteX are both based a
and flexibility of the distributed NVH system without caugin centralized architecture, which means that the InP woulg on
noticeable performance degradation. Finally, to optinttze use a single NVH instance to manage all the vSDNs. To
performance of the distributed NVH system, we carefullgddress the reliability and scalability issues caused gy th
adjust the consistency model used in the state synchramizatcentralized architecture, a distributed NVH system is réelsi

of NVH instances. Specifically, we propose a local cache9]. In [20], Bozakovet al. proposed AutoSlice, which uses
based scheme to balance the tradeoff between the congistenaltiple FlowVisor instances to act as the NVH system and
and availability of network status. As a result, the messadéstribute the workload in multiple SDN domains. However,
processing throughput of distributed NVH system can I®nce AutoSlice relies on a single management module to
greatly improvedi(e., for both DPVisor and ONVisor), while conduct vSDN slicing in each SDN domain, it is not a truly
the data consistency among NVH instances is still mainthindistributed system and thus cannot ensure high avaikaditit
well. Our major contributions can be summarized as followg21], the authors laid out the design of a distributed NVH

o We design and implement DPVisor, which is the firstystem, namely, FlowN. However, FlowN only provides a

distributed NVH system that can realize highly-availableontainer-based controller for tenants to install the iappl
scalable and protocol-independent vSDN slicing. tions for their vSDNs, which means that each tenant cannot
« We experimentally demonstrate the scalability and availeploy its own vSDN controller in FlowN. This limits the
ability of DPVisor with a real network testbed. To the bediexibility of vSDN slicing. Moreover, since FlowN runs all
of our knowledge, this is the first demonstration of sucthe tenant applications on a single container-based déariro
a distributed NVH system. Experimental results verifit is actually not a truly distributed NVH system. Lastly but
that DPVisor can achieve comparable performance as litst least, the authors only discussed the architecturagules
OpenFlow-based counterparte(, ONVisor). of FlowN in [21] but did not include any experimental results

o We carefully analyze the performance bottleneck of the Note that, FlowVisor, OpenVirteX and FlowN are all based
distributed NVH systems based on ONOBe( both on the OpenFlow protocol [22], which is the most popular
DPVisor and ONVisor), and design a local cache basgudotocol to support SDN. Nevertheless, as OpenFlow-based
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match fields are all based on the existing network proto- [ Tenant Application ] [ Tenant Application ]
cols, an OpenFlow switch can only parse and match to the
fields that have already been standardized in the OpenFlow
specifications. This would make the data plane protocol-
dependent and cause compatibility issues. The same issues

Micro Service
Virtualization Layer
Virtualize & De-virtualize

Micro Service
Virtualization Layer

Virtualize & De-virtualize

limit the programmability and flexibility of OpenFlow-base
NVH systems,i.e, it would be difficult to create vSDNs | Virtual Network | | Virtual Network |

to support new protocols that have not been included in Hypervisor Core Hyperwsor Core
the OpenFlow specifications. For instance, even though the Syne
OpenFlow specifications have already evolved to version 1.5 T oA el
that includes44 match fields, FlowVisor, OpenVirteX and [ Prowder& Protocol Prowder&ProtocoI ]
FlowN were all developed based on OpenFlow v1.0, which

only includes12 match fields. Fig. 2. Architectural design of DPVisor.

The protocol-dependent and compatibility issues induced
by OpenFlow can be resolved by leveraging the efforts made
to realize protocol-independent forwarding (PIF) [23]. tdo frequently considered in realizing distributed controbm
specifically, by incorporating protocol-oblivious forveing Systems for SDN. The strong consistency model ensures that
(POF) [16] in the NVH system, we realized SR-PVX in [8]€ach instance always reads the most updated data, and thus
which allows tenants to customize the packet forwarding bé-certain data has not been updated to all the instances, it
haviors in their vSDNs in an arbitrary manner. The basic idéannot be read. The Raft consensus protocol [32] implerdente
of POF is straightforward,e,, it first abstracts all the packetin ONOS takes the strong consistency model, which would
fields to be processed in the data plane affsgt, length} apparently give too much priority to consistency and lirhi t
tuples, whereffset tells the start bit-location of a packet fieldSystem’s processing throughput due to lack of data avéithabi
andlength indicates the field’s length in bits, and then define8nother alternative is the eventual consistency modelcvhi
a flow instruction seti(e, POF-FIS [16, 24]) to assist thedoes not enforce that each instance read the most updated dat
packet processing in POF switches. As all the instructions |inStead, the data Updates on an instance will be visiblelto al
POF-FIS locate data in packets witloffset, length} tuples, the others eventually through data synchronization ambag t
the POF switches can operate on any bits in packets, withdigtances. Although the eventual consistency model caremak
being restricted by pre-defined protocols. Hence, POF céata available quickly to achieve relatively high procegsi
greatly enhance the data plane programmability for spfhroughput, it might sacrifice consistency too much. To the
which has already been experimentally demonstrated in d@st of our knowledge, how to design a hybrid combination
previous studies [24—30]. However, as SR-PVX was developgtithe consistency models for the distributed NVH system,
based on OpenVirteX, it also takes the centralized ardhitec Which can optimize the tradeoff between the consistency and
and cannot avoid the resulting reliability and scalabilityues. availability of data has not been studied before.

Il. SYSTEM DESIGN AND IMPLEMENTATION

B. Distributed Control Plane Systems
Recently, ONOS [15] has been developed as an opébﬁ—DIStrIbUted NVH System based on ONOS

source network operating system that is based on a distdbut Fig. 2 shows the architectural design of DPVisor, which is a
architecture motivated by the performance, scalabilityl alistributed NVH system designed based on ONOS. Here, each
availability requirements of large-scale networks. A rece NVH instance consists of four major modules as follows.
project in ONOS has tried to expand its scope on networke Provider & Protocol: This module is in charge of the
virtualization and realized a distributed NVH systetire.( south-bound protocol stack, and it communicates with
ONVisor) for ONOS [17]. Nevertheless, ONVisor was still substrate switches and forwards the obtained network
developed based on OpenFlow, and could not realize protocol status to the Hypervisor Core. We modify the original
independent vSDN slicing. More importantly, it is known Provider & Protocol module of ONOS to add in the
that ONVisor uses the strong consistency model in the s- support of POF. Hence, the POF-based flow entries and
tate synchronization of NVH instances, which might affect flow tables can be encoded flow Mod andTable Mod
its processing throughput as we will explain in this paper. messages, respectively, and sent to the substrate POF
Hence, we should also evaluate alternative ways for the stat switches by this module.
synchronization of NVH instances to see whether a betters Hypervisor Core: This module realizes the abstraction
tradeoff between data consistency and processing thramighp  of the substrate network. Specifically, all the substrate
would be feasible for distributed NVH systems. network elements gg., switches and links) and their
Note that, in a distributed system, the consistency model statistics are collected by the Hypervisor Core, and
of data synchronization can take different forms to balance they are stored and synchronized in the NVH instances
the tradeoff between the consistency and availability dhda  according to certain consistency models. Therefore, the
[31]. Among them, the strong consistency model, the evéntua NVH instances can have a logically centralized view of
consistency model, or a hybrid combination of them have been the network. Fig. 2 also shows the submodules in the



Hypervisor Core. Among them, the Device and Topoldnacludes the translation of the virtual switch IDs and outpu
gy submodules handle the network status regarding therts in the messages to substrate switch IDs and output
substrate switches and topology, respectively, the Flgyorts, respectively. Moreover, if the virtual output pamt &

Rule submodule builds the flow entries to be installed iRlow_Mod message is connected to a virtual link, DPVisor
the substrate switches for parsing and processing packets, add extendable POF instructions in tiow _Mod mes-

the Flow Table submodule translates the protocols defingalge for inserting the corresponding tenant ID and link ID in
by tenants into POF-based flow tables, and the netwadtk Fig. 3 shows the overall message processing procedure in
virtualization with vSDNs is realized by the VirtualDPVisor, which indicates that once tlt¢ow Mod messages
Network submodule. are de-virtualized in the Virtualization Layer, they wileb
Virtualization Layer: This module realizes the majordispatched to the Flow Rule submodule in Hypervisor Core in
functionalities for network virtualization. First of allhe Fig. 2. Then, the Flow Rule submodule will find the master
Micro Service submodule allows each vSDN to specifidVH instances of the messages’ substrate switches and send
its own service, which is identified by the Virtualizationthe messages to them if necessary. Finally, Bhew_Mod
Layer according to the unique tenant ID of the vSDNmessages will be sent to the substrate switches by the Rrovid
Secondly, the packets/messages from the substrate &efrotocol modules in the master instances.

work carry their tenant IDs, based on which they will

be forwarded to the porre;ponding VSDNSs' services QY packet Processing for Network Virtualization

the Virtualize & De-virtualize submodule. In the oppo-
site direction, the Virtualize & De-virtualize submodule

translates all the messages from the VSDNs' services ir\@?DN slicing with DPVisor. Specifically, we insert a Virtual
)

Fig. 4 illustrates the packet format that we design to realiz

what the substrate switches can understand based on éwork Header fieldi(g., G bytes) after the Ethemet header
mapping between the virtual and substrate networks. each packet to assist the packet processing for network

Tenant Application: This module carries the services Ofv|rtt)uiillz_|e_it|on.t'll'ge ﬂil?. TgntS'ngs Otf.fmf[?] sug-gﬁlldsea ige
the vSDNs, which works as a controller instance for each™Y ' '€Nnan sub-tield 1o dentity the v and the

VSDN. Since the messages to/from this module are ca é/_te Link ID sub-field to determine the packet’s output \aitu

gorized by the Micro Service submodule in the \ﬁrtualiza—mk' Hence, DPVisor can easily c_ategorlze the flows in the
tion Layer, our design ensures that the operations of t gbstrate network according to their Virtual Network Heaade

VSDNs are independent and isolated. Moreover, as e cﬁcording to the principle of POF, the Virtual Network Heade

NVH i incl T Applicati le thgan be represeqtgd by a tuple afi@ bits, 48 bitg}, and it can
Instance includes a Tenant Application module, t 8e added, modified and deleted by leveraging the POF-FIS.

gﬁy:i‘l ;ﬂ;p(lj?;?riet?:?;g)gu?fl 02?5 :";,/ ?gnl\tlr ;?ngé?lﬁre;;?lsﬁlote that, since we just insert the Virtual_ Network I_—|e_adeeraf
our DPVisor is a truly distributed NVH system. t_he Ethernet headt_ar bu_t dq not _overwrlt_e any existing packet

field, the network virtualization with DPVisor is transpat¢o
upper-layer protocols. Therefore, protocol-independ&idN
slicing is feasible, which is realized with the proceduréig.
Categorized by micro sewice‘ 5 in each substrate POF switch.

l

Devirtualize message to substrate [
network aware message

Message from tenants

Ethernet | Virtual Network Header [ P I Payload ‘

[ TenantD | LinkID |

No

Master instance for

>t Fig. 4. Packet format to realize vSDN slicing with DPVisor.
destination subsrate

Send to master instance

] During the initialization of each vSDN, DPVisor installs
Send to substrate switch flow entries in each related substrate switch to let it idgittie
packets that belong to the vSDN based their Virtual Network

Headers. Specifically, the flow entries allow the substrate

Send to substrate switch

Fig. 3. Message processing procedure in DPVisor. switch to determine a packet's tenant ID and forward it to

B. Message Processing in DPVisor

When DPVisor receives a message from the data plane
will virtualize and dispatch the message to the correspandi

the corresponding pipeline for further processing. Hehe, t
pipeline refers to a sequence of flow tables that are defined
and installed by the vSDN’s controller. As explained in Fig.
5, upon receiving a packet, a substrate switch first deteysnin
whether it directly comes from an end-hdstf yes, the
acket is forwarded to the pipeline defined by its tenant for

vSDN according to the input port. Messages belonging to
different vSDNs are categorized by the isolated micro ses/i  lin this work, we assume that the mapping between an end-maosits
On the other hand, the Virtualization Layer accesses thealir VSDN can be determined by the input port that the end-hostexdad to on

the substrate switch. Therefore, if a substrate switch aeéscoming packet

network store in the Hypervisor Core to de-virtualize thginoyt the Virtual Network Header, it examines the packetiput port to
messages from the vSDNs’ controllers. The de-virtualmati find the corresponding vSDN.



processing. Otherwise, the switch deletes its Virtual Mekw instance that first registers its interest to serve will meeo
Header and then sends it to its processing pipeline. Silyilathe master NVH instance, and the subsequent ones will be
before outputting the packet, the switch first checks whethisuffered in the FIFO queue in order. Then, when the master
its next hop is an end-host or another substrate switch, andtance fails, DPVisor makes the first NVH instance in the

then take the actions accordingly. FIFO queue as the new master instance.
HeanWbeas . Heartbeats N{beats
Packet from Y Y
| Slave NVH | Master NVH | Slave NVH| \Master NVH | NVH \ \Slave NVH |
an end-host? . -
Delete virtual Send to pipeline ) Sub Switch
network header defined by the tenant Substrate Swich ubstrate Swid
(a) Before failure b) After failure recovery

Add in virtual Fig. 6. Failure recovery in DPVisor.

network header

IV. EXPERIMENTAL BENCHMARKING

Fig. 5. Packet processing procedure in each substratehswitc In this section, we discuss the experimental evaluations
of DPVisor and use the original OpenFlow-based distributed
NVH system in ONOSi(e., ONVisor [17]) as the benchmark.

Output to an
end-host?

Yes

D. Failure Recovery in DPVisor

Fig. 6 explains how DPVisor realizes instant failure reagve A- Message Processing Latency
with the distributed NVH system. Specifically, in DPVisor, First of all, we would like to test whether DPVisor can pro-
when multiple NVH instances connect to the same substraiess messages from the substrate network as fast as ONVisor.
switch, one acts as the master NVH and the rest of them diiee experimental setup is shown in Fig. 7, and to measure the
slave NVHs. The master NVH has the authority to manageessage processing latency, we only deploy one NVH instance
the substrate switche.g., collecting the switch’s status andin both DPVisor and ONVisor. This is because even though
installing flow entries/tables in it, while the slave onesocal DPVisor and ONVisor are distributed NVH systems, their
connect to the switch but cannot manage it. The substraigeration principle determines that at any given time intsta
switches only sendPacket_In messages to the master NVHonly one NVH instanceife., the master NVH) will process
while the state synchronization between the master ane@ slave messages to/from a switch. Moreover, we would like to
NVHs is accomplished by east/west-bound communicationgsonduct stress tests to see how well a single NVH instance can

Since both DPVisor and ONVisor use ONOS’s workingerform under message flooding. The stress tests are ikalize
principle on NVH failure recovery, they manage the mastgrshwith the Cbench tool [34], which can generate a large number
of NVH instances with a Raft state machine [32], which is imef Packet In messages within a short period of time and
plemented based on the Atomix framework [33]. Specificallypeasure the response time of SDN control plane. Note that,
in the distributed NVH systems.¢€., DPVisor and ONVisor), since Chbench was originally developed for the performance
the mastership of NVH instances changes when the madtenchmarking of OpenFlow controllers, we extend its prokoc
NVH instance’s Raft session expireésg., a failure happens stack to make it POF-compatible and the new version of
on the instance. Here, a Raft session refers to the sesstisench can be found at [35]. In the experiments, we use
between the Raft client on the master NVH instance and o@&ench to emulate a substrate network that has a linear
of the Raft servers on the NVH instances that store the R&pology with 10 to 100 substrate switches, and the NVH
state machine [33]. In normal operation, when a Raft serveystem creates vSDNs with the same topologies.
receives a heartbeat message from this session, it willtapda The message processing latency is defined as the time period
the session time-stamp to the current time. Hence, eackrsefvom when a substrate switch sends o&aaket_In message to
can check the session time-stamp in a polling way to detesmiwhen the same switch receives the corresponBamtet_Out
whether the session has been expired. If it finds that the timessage from the NVH system. The Cbench tool and the
difference between the current time and session time-stamgNVH system both run on Linux servers (Lenovo RD540), each
longer than the preset session timeout, it determinesttlea¢ t of which is equipped with a 2.10GHz Intel Xeon CPU and
is an NVH failure and will invoke the NVH failure recovery32GB DDR3 memory. Table | compares the average message
mechanism. processing latencies of DPVisor and ONVisor. It can be seen

Note that, before the failure recovery, DPVisor actuallthat the message processing latencies of DPVisor and ONViso
selects the subsequent master NVH in advance to save #&he similar, and the latency of DPVisor is only slightly lamg
recovery time. Specifically, each NVH instance can conrectthan that of ONVisor. These results confirm that even though
a substrate switch and register its interest to serve thelswiwe add in POF support in DPVisor, the implementation would
in a first-in-first-out (FIFO) queue. This means that the NViot cause significant performance degradation in terms of



TABLE |
RESULTS ONAVERAGE PROCESSINGLATENCY PERMESSAGE(MSEC)

# of Substrate Switches 10 20 30 40 50 60 70 80 90 100
DPVisor 0.065 | 0.064 | 0.078 | 0.097 | 0.121 | 0.144 ] 0.168 | 0.193 | 0.223 | 0.251
ONVisor 0.065 | 0.063 | 0.074 | 0.091 | 0.114 | 0.132 ] 0.159 | 0.187 | 0.209 | 0.244

x10*

w

message processing latency. Meanwhile, we notice that the
latencies of DPVisor and ONVisor increase when the topology
of the vSDN scales up. This is because the NVH systems
spend longer time on the processing in the Virtualizatiopdra
when the topology of the vSDN becomes larger.
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Then, we conduct experiments to evaluate the message 1 Nurfbemmwmsta;sces 7
processing throughput of the distributed NVH systems. Here
the experimental setup is similar as that in Fig. 7, with thlyo Fig. 8. Results on message processing throughput of dittdoNVH
differences that{1,3,5,7} NVH instances will be deployed Systems.
in each distributed NVH system and the number of substrate
switches is fixed agl5 (i.e., so does the number of virtual o o }
switches). When multiple NVH instances are deployed in Airtualization, which is |ntr|nS|caIIy_ more flex_lble tharhe _
NVH system, each instance directly manages a roughly eq@ft€nFlow protocol stack, we optimize the implementation
number of substrate switches. For instance, if there arefOF it in DPVisor for high efficiency. Secondly, we optimize
instances in an NVH system, each instance directly manad@g distributed message processing procedure in DPVisor to

15 substrate switches. In the experiments, to emulate peactigV0id frequent context switches of I/O threads. Specificedl
scenarios, each time when the vSDN controller receives@fuce the overhead due to east/west-bound communications

Packet_In message, we make it randomly chodsevirtual W€ design DPVisor to cache the messages to the master NVH

switches and sendFlow_Mod messages to them. In otherdnStance on the slave ones for a short time periogl, (10
words. eachPacket In m_essage corresponds to a flow or msec) and then send them out as a batch. Finally, we separate
Flow Mod messag_es in the experiments. the message dispatching thread from the I/O thread in DPViso

to avoid the interference between them, and thus the I/Gthre
would not be blocked easily when messages arrive at DPVisor
in a relatively high speed.

B. Message Processing Throughput

o

f\\n W
I C. Failure Recovery Time
C°"t'°"e£’fVSDN Finally, we test how fast the distributed NVH systems can
K sysiem ; recover from an NVH instance failure. This time, since we
" (DPVisor or ONVisor) need to send real traffic through the substrate/virtualches,

we replace the Cbench tool with our self-developed software
based POF switch [36]. The experiments use a distributed
NVH system that include$3,5, 7} NVH instances and con-

€3 swsva s Substrate Network (Emulated by Cbanch) nect the substrate switch with an end-host that runs Ostinat
[37] for traffic flow generation. Specifically, the end-host
Fig. 7. Experimental setup for measuring message progpéaiency. generate20 new flows per second and sends them to the

VvSDN continuously. Upon receiving the flows, the substrate

Fig. 8 shows the experimental results on the message pswitch will forward Packet In messages to the distributed
cessing throughput of DPVisor and ONVisor. It is promisinglVH system. During this process, we manually shut down
to see that for both ONVisor and DPVisor, the messag®m NVH instance in the NVH system and measure how fast
processing throughput increases with the number of degloyie can recover from the failure. Here, we define the recovery
NVH instances. This verifies that the distributed NVH syséentime as the period from when the substrate switches receive
do achieve better scalability than the centralized onesatWh the lastPacket Out message from the failure NVH instance
even more promising is that compared with ONVisor, DPVisdo when they receive the firRole Request message from the
can achieve comparable or even higher message processieq master NVH instance. Fig. 9 shows the results on failure
throughput. This is because when designing and implemgntirecover time. It can be seen that the failure recovery time of
DPVisor, we carefully optimize the distributed operatians DPVisor and ONVisor is similar. Meanwhile, we notice that
it. Our optimization is mainly from three aspects. Firstiythe failure recovery time can decrease slightly with the beam
since DPVisor uses the POF protocol stack to realize netwarkNVH instances. This is because when there are more NVH



instances in the distributed NVH system, the failure can liee leader. To this end, we can see that our local cache based
detected slightly earlier from the statistical view point. scheme can achieve a semantic of linearizable write [32, 38]
Note that, since both DPVisor and ONVisor leverage thend sequential read.e.,, maintaining the correct update order
default failure detection mechanism and parameter setupadfthe virtual network store. Therefore, with the local cach
ONOS, their failure recovery time is arouidseconds. This based scheme, the distributed NVH system still uses thagstro
is mainly due to the setup of heartbeat messages in ON@8nsistency model for write operations, but bypasses it for
and if we shorten the period defined for heartbeat timeoat, tall the read operations. Note that, during network openatio
failure recovery time can be shortened accordingly. Howeveead operations are conducted much more frequently than
using a shorter timeout period can increase the possilaifity write operations, and thus our design can greatly improge th
false alarms too, and thus we do not change the defaultgettiprocessing throughput of the NVH system.

V. PERFORMANCEOPTIMIZATION
A. Bottleneck Analysis

In the distributed NVH systems based on ONOS, the state
synchronization among the NVH instances uses the Raft con-
sensus protocol [32], which is based on the strong congigten
model. This means that both the “read'e( NVH instances
check the network status) and “writel'e, NVH instances
update the network status) operations in the NVH system have : :
to be coordinated by the leader instance of the distributé¢d N Number of NVH Instances
system, such that the operations will not be conducted tiil
leader instance can make sure that the majority of the instan
are aware of them. This could lead to over-protection for the
read operations and greatly limit the processing througbpu

~
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Fig. 9. Results on failure recovery time of distributed NVystems.

both DPVisor and ONVisor.
B. Local Cache based Scheme Update In Order: Update In Order:
Raft Client IS
In order to address the performance bottleneck discussed |iecasir *\ @/ Local Store
in the previous subsection, we design a local cache based u,mate.nﬁ\ Write/Read Operations Update In Order

scheme to improve the efficiency of read operations in the
distributed NVH systems. Fig. 10 shows the principle of the
local cache based scheme. Here, DPVisor still leverages the
Raft consensus protocol [32] implemented in ONOS, which
means that each NVH instance has a Raft client to access
the replicated state machine in the Raft servers on cert&ig. 10. Principle of the local cache based scheme.
NVH instances through a Raft session. Note that, among the
Raft servers, Raft protocol first determines a leader thmoug To verify the effectiveness of the local cache based scheme,
leader election, and then the remaining servers just become implement it in DPVisor and ONVisor and conduct exper-
its followers. We can refer to the leader and all the follosveiiments to measure their message processing throughput with
as the Raft cluster. the setup in Section IV-B. Here, we also use the distributed
As shown in Fig. 10, all the write operations are fed intdlVH systems that utilize the eventual consistency model for
the Raft cluster by the Raft clients. When the leader reseivstate synchronization as the benchmarks. Note that, the eve
these operations, it writes Raft logs to its local virtualwark tual consistency model can completely relax the restristio
data store, sends the logs to the followers in batch, and theithe strong consistency model, in the way that each NVH
responds to the Raft client about the fact that the operatianstance just performs read or write operations at will and
have been committed. When an operation has been committheén updates the results to the other instances in the best
the result will be published by the Raft server that the tlieeffort manner. However, the eventual consistency model can
is connected to with a monotonic sequence number. Theagcrifice data consistency for data availability, which |wil
the client will reorder the results published from the Raftot happen when using the strong consistency model or the
servers according to the sequence number, and send thertotal cache based scheme. Fig. 11 shows the experimental
the local cache one by one. In the case that a published rese#iults on the message processing throughput. It can be seen
is lost, the client will contact the server for republishitige  that the NVH system with the local cache based scheme
result. Hence, the local cache will see the updated resultsaichieves a comparable message processing throughputas tha
the correct sequence. Fig. 10 also shows that the local cadiithe system with the eventual consistency model, whilé the
based scheme lets write operations be executed through ttiveughput is significantly higher than that of the systerthwi
Raft client, while for the read operations, they are exatut¢he strong consistency modek., around4 times higher when
directly on the local cache to bypass expensive remote tallshe number of NVH instances i& The results of DPVisor are

Leader

Replicate State Machine

Follower

Follower

Raft Server Cluster




plotted in Fig. 12, which indicates the similar trend. Hence
the results verify that the processing throughput of disted
NVH system can be greatly improved with our local cache
based schema.é., for both DPVisor and ONVisor).
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Fig. 13. Percentage of correct update order in DPVisor.
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2 ]
. jiﬁ cannot guarantee that all the NVH instances see the newest
s Number of b Insiances ! network status in read operations. Hence, we perform more
experiments to measure the performance of DPVisor on data
Fig. 11. Results on message processing throughput of ONViso inconsistency. In the experiments, the distributed NVHeys

still includes {3,5,7} NVH instances, and we update the
distributed virtual network store on one NVH instance once
e ‘ per second and measure the synchronization time among all
| [Beventual onsisency ] the NVH instances. Since during the synchronization time,
the NVH instances cannot process control messages with the
newest network status, we use the synchronization time to
derive the number of control messages that are processed by
DPVisor with outdated network status and plot the results

x10*

[
N

=
=)

©
T

~

Processing Throughput (flow-entries/s)
o

ot iﬁ ] in Fig. 14. The results indicate that the percentage of data
, inconsistency of the local cache based scheme is belo%
3 Number of Mk Instances 7 and much smaller than that of the eventual consistency model
This verifies that the local cache based scheme can maintain
Fig. 12. Results on message processing throughput of DRViso the data consistency among NVH instances well.

Note that, the strong consistency model makes sure that
the read operations on all the NVH instances always obtain
state updates in the same order, which cannot be achieved
by the eventual consistency model. However, keeping the
correct update order in all the NVH instances is essential
to realize effective vSDN slicing. For example, a newly-
added virtual port should only be seen by the NVN instances o
after the virtual switch that the port belongs to has been - i i
added in them. Therefore, we conduct experiments to compare 3 s 7
DPVisor's performance on keeping the correct update order, Number of NV Instances
when being implemented with the local cache based schepe 14
and the eventual consistency model. In the experiments, we
choose the number of NVH instances in DPVisor within
{3,5,7}, update the distributed virtual network store on one
NVH instance continuously, and record all the updates on
other NVH instances. Then, we calculate the percentagesof th We designed and implemented a distributed NVH system
updates whose orders are the same as the original ones on éasied on ONOS, namely, DPVisor, to realize highly-avaéabl
NVH instance,i.e., the percentage of correct update orderscalable and protocol-independent vSDN slicing. We first
and plot the minimum results in DPVisor in Fig. 13. Thexpanded the NVH module in ONOS to add in the support of
results can be used as a performance metric to measure ¢he B&F for enabling protocol-independent vSDN slicing. Then,
consistency in the distributed NVH system. It can be seen thee transformed the centralized NVH system into a distridute
the local cache based scheme always ensu®8%; correct one by creating distributed NVH instances and letting them
update order, but the eventual consistency model cannot euse east/west-bound communications to maintain a logicall
achieve oveb% correct update order. These results confirmentralized view of the substrate network and vSDNs. The
the advantage of the local cache based scheme on maintairirgerimental comparisons indicated that DPVisor achieved
data consistency in the distributed NVH system. comparable performance as ONVisare( an OpenFlow-

Compared with the strong consistency model, both thmsed ONOS benchmark), in terms of the message processing
local cache based scheme and eventual consistency mdaaency, message processing throughput, and failure eggov
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time. In order to optimize the performance of distributed®NV [19] H. Huanget al., “Embedding virtual software-defined networks over
systems, we also carefully adjusted the consistency maeel u

in the state synchronization of NVH instances and proposec[izg]
local cache based scheme to balance the tradeoff between theslicing for software-defined networks,” iRroc. of CoONEXT Student
consistency and availability of network status. Our experni-

tal results confirmed that the message processing thrngh%ﬂ
of distributed NVH systems could be greatly improvée.(

for both DPVisor and ONVisor), while the data consistendi?]

among NVH instances was still maintained well.
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