
SPARSE: Privacy–Aware and Collusion Resistant
Location Proof Generation and Verification

Mohammad Reza Nosouhi∗†, Shui Yu∗, Marthie Grobler†, Yong Xiang∗, and Zuqing Zhu‡
∗School of Information Technology, Deakin University, Melbourne, Australia

† CSIRO’s Data61, Melbourne, Australia
‡ School of Information Science and Technology, University of Science and Technology of China, Hefei, China
Email: ∗{mnosouhi, shui.yu, yong.xiang}@deakin.edu.au; †Marthie.Grobler@data61.csiro.au; ‡zqzhu@ieee.org

Abstract—Recently, there has been an increase in the number
of location–based services and applications. It is common for
these applications to provide facilities or rewards for users who
visit specific venues frequently. This creates the incentive for
dishonest users to lie about their location and submit fake check–
ins by changing their GPS data. To solve this issue, different dis-
tributed location proof schemes have been proposed to generate
location proofs for mobile users. However, these schemes have
some drawbacks: (1) they are vulnerable to either Prover–Prover
or Prover–Witness collusions, (2) the location proof generation
process is slow when users adopt a long private key, and (3)
their implementation requires some hardware changes on mobile
devices. To address these issues, we propose the Secure, Privacy–
Aware and collusion Resistant poSition vErification (SPARSE)
scheme to generate private location proofs for mobile users.
SPARSE has a distributed architecture designed for ad–hoc
scenarios in which mobile users generate location proofs for
each other. Since we do not integrate any distance bounding
protocol into SPARSE, it becomes an easy–to–implement scheme
in which the location proof generation process is independent of
the length of the users’ private key. We provide a comprehensive
security analysis and simulation which show that SPARSE
provides privacy protection as well as security properties for
users including integrity, unforgeability and non–transferability
of the location proofs. Moreover, it achieves a highly reliable
performance against collusions.

Index Terms—collusion attacks detection and prevention;
location–based services; location privacy; location proof systems.

I. INTRODUCTION

The recent advancements in smartphone technology and po-
sitioning systems have resulted in appearance of new location–
based services and applications. These services use real-time
position data of a mobile user to provide his/her requested
information such as the nearest ATM, restaurant or retail store
[1–3]. Many of these applications like Yelp and Foursquare
provide a benefit or reward for users who check–in regularly
at specific locations (refer to [4] for other examples of such
applications). However, it is possible for dishonest users to
submit fake check–ins by changing their GPS data to gain
more benefit. For example, in a research study, Zhang et al
[5] found that 75% of Foursquare check–ins are false and
submitted by dishonest users to obtain more rewards.

To address this issue, different systems have been intro-
duced so far to prevent users from submitting fake location
claims. These systems are called location proof systems in the

literature [4], [6–12]. Generally, there are two types of such
systems depending on the system architecture: centralized
and distributed location proof systems. In the centralized
location proof systems [4], [6], [7], a trusted fixed wireless
infrastructure (like a WiFi access point) is employed at each
site to check the physical presence of mobile users and
generate location proofs (LPs) for them. A user can then
submit his/her location claim with the service provider using
the received LP. However, it might be too expensive for the
service provider to employ a large number of access points
(APs) for different sites or there might be some sites in
which no fixed wireless infrastructure is accessible. For these
scenarios, distributed location proof systems [8–12] have been
proposed in which mobile users collaborate with the system
and generate LPs for each other. In the literature, the user
who wants to make a location claim and another user who
generates a LP for him/her are called prover and witness,
respectively.

Location proof systems can face different security and
privacy challenges that must be addressed. Some of these chal-
lenges are common between both centralized and distributed
location proof systems. For example, a dishonest user might
submit a LP request with a neighbor AP in the centralized
scenario or a mobile witness in the distributed scenario on
behalf of a remote malicious prover. This attack is called a
Terrorist Fraud or a Prover–Prover collusion in the literature
[13], [14]. On the other hand, there are attacks that target the
distributed location proof systems only. The reason is that in
these systems, LPs are generated by mobile users which are
not always trusted. For example, a dishonest witness might
collude with a remote malicious prover and generate a fake
LP for him/her. This is known as a Prover–Witness collusion
in the literature [8]. Moreover, to preserve location privacy of
users, the system must keep provers and witnesses anonymous
during LP generation phase.

To the best of our knowledge, none of the current distributed
location proof schemes can address all of these challenges
at the same time. For example, the most recently proposed
systems in this field are STAMP [8] and PROPS [12]. In
these systems, the Bussard–Bagga distance bounding protocol
[13] is integrated into the system to prevent Terrorist Frauds
although Bay et al [15] has already broken this protocol
and illustrated its inadequency in preventing Terrorist Fraud



[15–17]. Furthermore, employing a distance bounding (DB)
protocol prevents these systems from generating LPs fast
when the users adopt a long private key [6]. The reason is
that in DB protocols, users must perform an n–stage fast–
bit–exchange process where n is the number of bits that the
user’s private key has. Obviously, this process takes long for
large values of n (refer to [13] and [18] for more information
about DB protocols). In addition, in these systems, the Prover–
Witness collusions are not detected and prevented using a
reliable mechanism. For example, in PROPS these collusions
are prevented by using the LP shares. This method works
only when the number of colluding users is less than the
number of shares needed. In STAMP, these collusions are
detected based on the LP transaction history between users.
It considers a high likelihood of collusion for a user who
has obtained most of his/her LPs from a specific group of
witnesses. Although they have reached to a 90% success rate
for collusion detection, this is not regarded as a high level of
reliability.

In this paper, we propose the Secure, Privacy–Aware and
collusion Resistant poSition vErification scheme (SPARSE)
which provides secure and private LP generation and verifi-
cation for mobile users. In the proposed scheme, we do not
employ a DB protocol for protection against Terrorist Fraud.
Instead we adopt a time–limited approach to make SPARSE
resistant to these attacks. This introduces two advantages.
Firstly, the speed of LP generation becomes independent of
the length of the users’ private key. Secondly, the costs of
the system implementation is reduced since implementing
a DB protocol requires some hardware changes on mobile
devices [6]. Moreover, to address Prover–Witness collusions,
we do not allow provers to choose their witnesses. Instead,
the system performs a witness selection mechanism by which
some witnesses are chosen and qualified to generate LPs for
a specific prover. We show that by using this method, if
the service provider creates necessary incentives for users to
collaborate with the system and generate LP for each other,
the success probability of these collusions is negligible.

The following are our contributions:

• We propose SPARSE, a secure and privacy–aware dis-
tributed location proof scheme for mobile users. Security
analysis shows that SPARSE achieves the necessary
properties of a secure and private location proof system
including integrity, unforgeability and non–transferability
of the LPs.

• We introduce a new witness selection mechanism and in-
tegrate it into the system to make SPARSE reliable when
witnesses collude with a malicious prover to generate LPs
for him/her.

• The reliability of the proposed scheme against Prover–
Witness collusions is assessed through simulation which
shows that the system achieves protection success rates
better than 98%.

The rest of our paper is organized as follows. After a short
review of the related work in section II, we introduce the

proposed SPARSE scheme in section III. A comprehensive
security analysis is provided in Section IV. Finally, after
presenting the simulation results in Section V, we conclude
the paper in Section VI.

II. RELATED WORK

Previously proposed location proof systems can be classi-
fied into two categories depending on the system architecture:
centralized and distributed systems. Since our proposed sys-
tem has a distributed architecture, we focus on reviewing the
previous research studies that are related to the distributed
location proof systems.

One of the earliest distributed location proof systems is
APPLAUS which has been proposed by Zhu et al [9]. In the
proposed system, nearby mobile devices exchange information
via their short–range Bluetooth interface to generate LPs
for each other. Each mobile device registers a set of M
public/private key pairs with a trusted Certificate Authority
(CA) where the M public keys are the pseudonyms of a user.
To protect the privacy of users, the mobile devices change their
pseudonyms periodically. However, this approach imposes
high communication and operation overhead because of the
necessity of periodically changing pseudonyms and generating
dummy LPs.

Another location proof system with a distributed architec-
ture has been proposed by Davis et al [10] in which a privacy–
preserving alibi (location proof) system is introduced. In the
proposed mechanism, users do not reveal their identity during
alibi generation. A user’s identity is only disclosed when
he/she decides to submit his/her alibi to a judge. However,
they have not considered collusions and attacks in their
designed system.

LINK, introduced by Talasila et al [11] is another dis-
tributed location proof protocol in which users collaborate
with the system to verify the location of each other. In LINK,
neighbour users are contacted by the prover via short–range
wireless interface such as Bluetooth. Then, they send their
verification messages to a trusted and centralized Location
Certification Authority (LCA). The LCA determines the valid-
ity of the claim using three parameters, i.e., the spatiotemporal
correlation between the users, each user’s trust scores, and
history of the trust scores. However, privacy issues have not
been considered in the protocol design since a prover must
broadcast his/her ID to the neighbor verifiers.

One of the main weaknesses of these kinds of location proof
systems is that they are vulnerable against Prover–Witness
collusions as witness nodes are not always trusted. A witness
can generate a LP for a user while one or both are not at the
claimed location. PROPS introduced by Gambs et al [12] is an
example of distributed location proof protocols which has not
proposed a reliable solution for Prover–Witness collusions. It
allows users to act as witnesses and generate LPs for other
users in a private way.

To the best of our knowledge, no good solution has been
proposed yet to address Prover–Witness collusions although
some significant efforts have been made so far. For example,



Fig. 1: The system architecture of SPARSE Scheme

in STAMP (Wang et al [8]) which is the most recent and
significant work in this area, an entropy–based trust model
is presented to solve this issue. However, their method is not
able to detect or prevent Prover–Witness collusions with a very
high level of certainty. Moreover, to protect STAMP against
Terrorist Frauds, the authors have utilized the Bussard–Bagga
protocol [13] while it has been shown that the Bussard–Bagga
protocol can not provide the necessary protection against
Terrorist Frauds [15–17] (this problem is faced by PROPS
as well [12]). Furthermore, the computation time required by
STAMP to generate LPs becomes long for large keys [8].
Although different novel methods have been introduced so
far, each of these have their own constraints, i.e., privacy
issues [4], [6], [11], vulnerability against collusions [8–12],
high level of computation and communication cost [9], and
expensive implementation [6], [7].

III. THE SPARSE SCHEME

A. System Model

Fig. 1 presents the proposed system architecture. As you
see, SPARSE has a distributed architecture and consists of
three types of entities:

Prover: A mobile user who wants to prove his/her location
to a verifier.

Verifier: The entity that is authorized to assess and verify
the provers’ location proofs.

Witness: A mobile user who has accepted to generate a LP
for his/her neighbor provers.

In the following we present some assumptions regarding
our threat and trust model:

– Users (provers and witnesses) send their messages to each
other via their short–range communication interfaces such as
WiFi or Bluetooth.

– To obtain a fake LP, dishonest provers might provide
the witnesses with fake information about their location or

TABLE I: List of Notations

Notation Description
‖ Concatenation symbol

Su(m) Signature of user u on message m

Eent(m) Encryption of message m using public key of entity ent

Loc GPS coordinates related to the prover’s location

Loc
′

The witness’s location

time The current time

IDP The prover’s ID

IDW The witness’s ID

change the contents of a LP generated for him/her or another
user. They might also collude with other users (provers or
witnesses) to achieve their goal.

– Users never share their private key with each other [6–8].
– Witnesses are assumed to be untrusted. Thus, they may

collude with a remote dishonest prover and issue a fake LP for
him/her. Moreover, both provers and witnesses are untrusted
from a privacy point of view.

– The verifier is supposed to be a trusted entity which does
not publish users’ identity and their data.

In the next subsection, we introduce our proposed location
proof scheme, SPARSE.

B. SPARSE

The proposed scheme is executed in two separate phases:
Location Proof Generation, and Location Claim & Verification
(see fig. 2). Refer to table I for a short description about the
cryptographic notations that are used in this paper. 1) Location
Proof Generation:

a. Prover: The prover starts the protocol by sending the
following message m1 to the verifier to inform it that he/she
wants to submit a location claim.

m1 = EV erifier(Req‖SProver(Req)),

where Req = IDP ‖Loc is the prover’s request.
b. Verifier: Upon receiving m1, the verifier randomly

selects K witnesses among those who are present at Loc.
Then, it generates a unique ID for this location proof (IDLP )
and sends it to the prover and selected witnesses.

c. Witness: After receiving IDLP , a selected witness
generates a random sequence number rs and broadcasts the
following message m3 through its predefined short–range
communication interface (Bluetooth or WiFi) for a period T
(e.g., 100 ms).

m3 = IDLP ‖rs

After this time, another rs is generated and broadcasted in a
similar way. This process is repeated until the witness receives
a response from the prover.

d. Prover: When the prover device receives m3, it first
ensures that the IDLP is the same as the one already received
from the verifier. Otherwise, it just discards m3 and continues



Fig. 2: Message exchange diagram for the proposed scheme.

to listen to the channel. If they are same, the prover must
immediately compute message m4 and send it to the witness:

m4 = IDLP ‖rs‖EV erifier(rs‖SProver(rs))

e. Witness: Upon receiving m4, provided that the IDLP in
m4 is the same as the current location proof ID, the witness
checks to see whether this rs is the last sequence number that
had been broadcasted by itself. If it is, the witness generates
the following location proof LP and sends it to the prover.

LP = EV erifier(m5‖SWitness(m5)),

where m5 = m4‖Loc
′‖time‖IDW . Otherwise, the following

null LP is sent to the prover:

LP = EV erifier(m5‖SWitness(m5)),

where m5 = null‖IDW .

2) Location Claim & Verification:
a. Prover: The prover generates the following location

claim LC using the K received LP s from the K selected
witnesses and submits it with the verifier:

LC = EV erifier(m6‖SProver(m6)),

where m6 = LP1‖LP2‖ . . . ‖LPK‖IDP .
b. Verifier: After the verifier receives the LC, it checks the

following items:
• Are the two IDP s received through messages m1 and
LC the same?

• Is the prover’s signature on m6 correct regarding the
claimed IDP ?

• For each LPi, (i = 1, . . . ,K):
– Is the witness with identity IDW among the selected

witnesses?
– Is the witness signature on m5 correct regarding the
IDW ?

– Are time and Loc in an acceptable range of the
current time and Loc

′
respectively?

– Are the two random sequences rs in m4 same?
• Is the number of non–null LPs greater than a predefined

threshold KT ?

If all the above checks are passed successfully, the verifier
accepts this LC. Otherwise, the prover’s claim is rejected.

IV. SECURITY AND PRIVACY ANALYSIS

In this section, a comprehensive security and privacy analy-
sis is presented to show that SPARSE achieves the fundamen-
tal security and privacy properties of a secure and privacy–
aware location proof system described in [7], [10] and [12].

Resistance to Distance Frauds: In a distance fraud, a
malicious prover tries to convince an honest witness (or a
verifier) that his physical distance to the witness (or verifier)
is less than what it really is. In SPARSE, the prover must sign
and encrypt the random sequence rs in a limited time T over a
short–range communication interface. If a malicious prover is
not located in the communication range of the witness, he/she
can not proceed with the attack. Thus, for him/her the only
way to get the fake location verified is to collude with another
user. In this section, we analyze the SPARSE performance
against collusions separately.

Unforgeability: We consider several scenarios: If a dishon-
est prover wants to generate a LP by himself (without proving
his proximity to a selected witness), the verifier will detect
this. Note that the verifier checks the received IDW with the
signature on m5. Since users do not share their private key,
this prover can not compute the witness signature on m5 even
if he knows the identity of each selected witness. Moreover,
if a malicious user wants to forge another user’s LP, again
the prover will detect it. The reason is that he must sign
messages m1 and m6 using the victim’s private key which
is not accessible for him. Furthermore, if a malicious witness
who is not among the selected witnesses wants to generate a
LP for a prover, the issued fake LP is detected by the verifier
since the identity of the malicious witness is compared with
the identity of all the selected witnesses.

Non–Transferability: If a malicious user wants to submit
a LP which has been generated for another prover P , the
verifier will find it because P ’s signature is on rs which does
not match with the attacker’s ID. Note that the attacker can
not see and manipulate the LP’s contents since it has been
encrypted using the verifier’s public key. Even if he knows the
P ’s ID and wants to impersonate P by submitting his request
using a new m1, he must forge the P ’s signature which is
unlikely without having the P ’s private key. Moreover, the
presence of time in m5 makes it impossible for him to use
this LP later.

Resistance to Mafia Frauds: In this attack, an adversary
tries to convince an honest witness that an honest prover
is in the vicinity of the witness while he/she is not really
(readers can refer to [13] and [15] for detailed information
about Mafia Frauds). We assume an adversary A is going to
perform a Mafia Fraud on a remote prover P and witness
W who are both honest. We model A with a witness W̄ and
a prover P̄ . The time–limited process performed in stages
1.d and 1.e prevents P̄ from sending rs to W̄ for obtaining
the P ’s signature on it because there is not much time to do



Fig. 3: The success probability of Prover–Witness collusions. (A) β = 40% (B) β = 60% and (C) β = 80%

so. If this process takes longer than T , the witness will send
another rs which invalidates the previous rs. Thus, the attack
is defeated.

Prover & Witness Location Privacy: Since all the mes-
sages that contain the prover’s and witness’ ID are encrypted
with the verifier’s public key, they can only be seen by the
verifier. Moreover, we have employed the sign–then–encrypt
model to generate SPARSE messages. This makes it infeasible
for a curious entity or an eavesdropper to check the prover’s
or witness signature with the public key of all the users and
find their identity.

Resistance to Terrorist Frauds (Prover–Prover collu-
sions): In this attack, a remote malicious prover colludes with
an adversary who is close to an honest witness to convince
the witness that he/she is in its vicinity. Now, imagine an
adversary A that is close to an honest witness W wants to
collude with a remote dishonest prover P and answers to
W ’s challenges on behalf of P . In this case, A must send
rs to P to sign and encrypt it and then sends it back to A for
submission with W . However, there is not enough time for
them to do so because the validity of this rs is only for a short
period T . After this time, the witness will broadcast a new rs
and reject all the messages m4 which have the previous rs.
Thus, SPARSE is resistant to this type of attacks.

Resistance to Prover–Witness Collusions: Upon receiving
a specific prover’s request, it is the verifier that selects some
witnesses to generate LPs for him/her. Later, in the Location
Claim & Verification phase, the verifier rejects any LPs
generated by witnesses not selected by the verifier. Thus, the
prover is not permitted to collect a LP from any witness
he/she likes. This makes it very difficult for a malicious
prover to set up a successful Prover–Witness collusion. In
this case, he has to increase the size of his collusion group
to improve his chances of winning. In other words, he must
collect at least KT non–null LP to become successful. More
precisely, if there are at least KT colluding witnesses among
the K selected witnesses, the attack will succeed. However,
we show that this happens with a negligible probability. For
this reason, suppose the malicious prover is colluding with KC

dishonest witnesses which are located at his desired location
L. We assume N is the number of all witnesses present at
L (including the dishonest witnesses) and x is the number
of the colluding witnesses who are selected by the verifier to

generate LP. Obviously, for KC < KT we have Ps = 0, where
Ps is the attack success probability. For KT ≤ KC < K we
have:

Ps = P (x ≥ KT )

= P (x = KT ) + P (x = KT + 1) + . . .+ P (x = KC)

=

KC∑
j=KT

P (x = j) =

∑KC

j=T

(
KC

j

)(
N−KC

K−j
)(

N
K

)
Note that the malicious prover must collude with the witnesses
who are physically present at L. This makes it too difficult
to have a large KC , specifically, for the applications where
performing a large size collusion is too expensive. However,
we assume he can select KC > K. In this case, if KT = K
is selected by the system, we have:

Ps = P (x = KT ) =

(
KC

K

)(
N
K

) =
KC !(N −K)!

N !(KC −K)!

Simulation results show that Ps is negligible if system param-
eters are carefully chosen (see section V for more details).
Specifically, for large values of N , the attack is defeated with
a high probability. Note that if the service provider creates
enough incentives for the witnesses to collaborate with the
system, we will have a large N . Therefore, SPARSE can
significantly reduce the success probability of these collusions.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of SPARSE
against Prover–Witness collusions. We adopt the same con-
figuration with which STAMP [8] performance has been
evaluated. Total number of users is set to 1000 and we suppose
an average of 5% of these users are present at each location.
Moreover, the threshold KT = K is adopted which means no
null LP is accepted by the verifier. It is also assumed that the
malicious prover sets up a collusion group of size KC which
is varied from 1% to 7% of all the users. An aggregation rate
β is allocated to each collusion group which represents the
percentage of colluding users who are located at the desired
location during the time at which the attack is performed.
Thus, β = 0.7 means that 70% of colluding users are present
at the given location during the attack.

Fig. 3 shows the success probability of Prover–Witness
collusions for different values of β and K. As you see, the



Fig. 4: The average number of colluding witnesses that are selected by the verifier for (A) K = 8 (B) K = 10 and (C) K = 12

attack has a maximum success probability of 0.012 and 0.07
for β = 40% and 60% respectively when 7% of users collude
with the malicious prover. This means that the system can
prevent Prover–Witness collusions with the minimum success
rates 0.988 and 0.993 for the mentioned situations. Even if
80% of colluding users are located at the intended location
(i.e. β = 80%) and the malicious prover colludes with 5%
of users, the system prevents the attack with the success
rates 0.98, 0.99, 0.997, and 0.999 for K = 7, 8, 10, and
12, respectively while in STAMP the maximum success rates
0.95, 0.92 and 0.65 have been achieved for different collusion
tendencies when 5% of users collude. In fact, STAMP has
a relatively poor performance against provers with a low
collusion tendency. This is because they decide on the users’
LP transaction history. Thus, for the malicious provers who
have a diverse transaction history, STAMP does not offer
a reliable performance (e.g. with a collusion tendency 0.2,
STAMP achieves a collusion detection rate 0.65 when 5% of
users collude with the malicious prover). However, SPARSE
reaches the prevention success rates better than 0.98 regardless
of the prover’s past LP transactions. You can also see in Fig.
4 the average number of colluding witnesses who are selected
by the verifier for different values of K and β. As you see,
the number of selected dishonest witnesses are less than K
which means that even for β = 70% and with 6% colluding
users, the scheme is resistant to these collusions if T is chosen
close to K.

VI. SUMMARY AND FUTURE WORK

In this paper we have proposed SPARSE, a distributed lo-
cation proof system for mobile users. The main distinguishing
characteristic of the proposed system is that it provides a so-
lution for the Terrorist Fraud and Prover–Witness collusions,
the two issues from which the current distributed location
proof systems suffer. Moreover, we have not employed the
traditional distance bounding protocols. This not only results
in fast location proof generation by the witnesses (because
they become independent of the length of users private key),
but also provides an easy–to–implement system architecture.
The performed security analysis and simulations show that
SPARSE provides the fundamental security and privacy prop-

erties and prevents the Prover–Witness Collusion with success
rates better than 0.98.

REFERENCES

[1] M. L. Damiani, “Location privacy models in mobile applications: con-
ceptual view and research directions”, GeoInformatica, vol. 18, no. 4,
pp. 819–842, Oct. 2014.

[2] H. Liu, X. Li, H. Li, J. Ma and X. Ma, “Spatiotemporal Correlation–
Aware Dummy-Based Privacy Protection Scheme for Location–Based
Services”, in IEEE INFOCOM, 2017.

[3] M. R. Nosouhi, V. H. Pham, S. Yu, Y. Xiang, and M. Warren, “A Hybrid
Location Privacy Protection Scheme in Big Data Environment”, IEEE
GLOBECOM, 2017.

[4] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs”, In ACM HotMobile, 2009.

[5] Z. Zhang, L. Zhou, X. Zhao, G. Wang, Y. Su, M. Metzger, H. Zheng,
and B. Y. Zhao, “On the Validity of Geosocial Mobility Traces”, ACM
Workshop on Hot Topics in Networks (HotNets), 2013.

[6] C. Javali, G. Revadigar, K. B. Rasmussen, W. Hu, S. Jha, “I Am Alice, I
Was in Wonderland: Secure Location Proof Generation and Verification
Protocol”, Local Computer Networks (LCN), 2016 IEEE 41st Conference
on, Dec 2016.

[7] W. Luo and U. Hengartner, “VeriPlace: A privacy–aware location proof
architecture”, In Proc. ACM GIS, pp. 23–32, 2010.

[8] X. Wang, A. Pande, J. Zhu, P. Mohapatra, “STAMP: Enabling Privacy–
Preserving Location Proofs for Mobile Users”, IEEE/ACM Transactions
on Networking, vol. 24, no. 6, pp. 3276–3289, Dec 2016.

[9] Z. Zhu and G. Cao,“Towards privacy–preserving and colluding–resistance
in a location proof updating system” IEEE Transactions on Mobile
Computing, vol. 12, no. 1, pp. 51–64, Jan. 2011.

[10] B. Davis, H. Chen, and M. Franklin, “Privacy preserving alibi systems”,
In Proc. ACM ASIACCS, 2012.

[11] M. Talasila, R. Curtmola, and C. Borcea, “Link: Location verication
through immediate neighbors knowledge”, Springer, LNICST 73, 2012.

[12] S. Gambs, M. O. Killijian, M. Roy, and M. Traore, “PROPS: A Privacy–
preserving location Proof System”, IEEE 33rd International Symposium
on Reliable Distributed Systems, 2014.

[13] L. Bussard and W. Bagga, “Distance–bounding proof of knowledge to
avoid real–time attacks”, In Security and Privacy in the Age of Ubiquitous
Computing, New York, NY, USA: Springer, 2005.

[14] G. Avoine, C. Lauradoux, and B. Martin, “How Secret–sharing can
Defeat Terrorist Fraud”, In Proceedings of the 4th ACM Conference on
Wireless Network Security, WiSec’11, Hamburg, Germany, June 2011.

[15] A. Bay, I. Boureanu, A. Mitrokotsa, I. Spulber, S. Vaudenay, “The
Bussard–Bagga and Other Distance–Bounding Protocols under Attacks”,
International Conference on Information Security and Cryptology, In-
scrypt, 2012.

[16] I. Boureanu, S. Vaudenay, “Challenges in distance bounding”, IEEE
Security & Privacy, 13 (1), pp. 41–48, 2015.

[17] I. Boureanu, A. Mitrokotsa, S. Vaudenay, “Practical and provably secure
distance bounding”, Journal of Computer Security, pp. 229–257, 2015.

[18] K. B. Rasmussen and S. C. Apkun, “Realization of RF Distance
Bounding”, in Proceedings of the USENIX Conference on Security, 2010.


