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Abstract: We design and experimentally demonstrate a network nervoussystem that can lever-
age multilayer telemetry to realize artificial intelligence (AI) assisted network reconfigurations (i.e.,
reflexes) in a software-defined IP over elastic optical network, for application-aware provisioning.
OCIS codes: (060.1155) All-optical networks; (060.4261) Networks, protection and restoration.

1. Introduction
Recently, IP over elastic optical networks (IP-over-EONs)have attracted intensive interests since they can effectively
combine the benefits of IP and EON layers to handle the ever-growing network applications that have various quality-
of-service (QoS) requirements [1]. Meanwhile, the programmability and application-awareness of IP-over-EONs can
be further enhanced by leveraging the centralized network control and management (NC&M) provided by software-
defined networking (SDN),i.e., realizing software-defined IP-over-EONs (SD-IPoEONs) [2]. However, despite of
the advantages, it is never easy to comprehensively monitora complex network system as SD-IPoEON and realize
timely and fine-grained network adjustments in it, for addressing the specific need of each individual application.
This is because application-level monitoring would flood the network controller with tremendous status data, and each
application might define an unique way for determining exceptions and making network adjustments. On the other
hand, the issue cannot be resolved solely from the application side either, since the applications usually only know
end-to-end (E2E) QoS parameters, but are not aware of what happening inside the network.

This dilemma motivates us to consider leveraging the joint effort of both the network controller and the applica-
tions. Specifically, the applications realize application-level (App-level) monitoring in a distributed manner and only
send alarms out when there are exceptions, while the controller collects the digested information (i.e., the alarms) to
combine with its own lightpath-level (λ -level) monitoring for reaching intelligent NC&M decisions. This mechanism
actually mimics the principle of the nervous system of humanbody. Hence, we refer to it as a network nervous system
(NNS), which consists of a few App-level monitors (i.e., the sensors) and an artificial intelligence assisted (AI-assisted)
network controller (i.e., the brain). In this work, we lay out the design of the NNS for an SD-IPoEON, prototype it in
a real network testbed, and demonstrate its effectiveness for application-aware service provisioning experimentally.

2. Network Nervous System
Fig. 1(a) shows our design of the NNS for an SD-IPoEON. The data plane is a common IP-over-EON, where the EON
layer consists of fiber links and bandwidth-variable wavelength-selective switches (BV-WSS’) for setting up light-
paths, and the IP layer is built with OpenFlow switches (OF-SWs) and application servers. The OF-SWs are equipped
with optical ports for communicating with each other through the EON layer, and the servers run applications with
various QoS requirements. The control plane consists of a centralized controller and a few distributed App-level mon-
itors. Based on its QoS requirements, each App-level monitor collects concerned E2E QoS parameters (e.g., latency
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Fig. 1. (a) Architecture of NNS, APP: application, ML-INT: multilayer telemetry, TED: traffic engineering database, OF-
SW: OpenFlow switch, BV-WSS: bandwidth-variable wavelength-selective switch, (b) Operation procedures of NNS.



and jitter) and uses a threshold-based mechanism to flag exceptions. Meanwhile, the AI-assisted controller performs
multilayer telemetry (ML-INT) on each lightpath to gatherλ -level monitoring results such as packet loss rate, optical
signal-to-noise ratio (OSNR),etc, and combines them with the alarms from the App-level monitors as the input to
its AI module. The AI-assisted network control module has been trained to learn the correlation among applications’
multilayer provisioning schemes, their affected QoS parameters, the multilayer telemetry results, and hard/soft failure
scenarios to identify and locate the root causes for the alarms accurately. Here, the multilayer provisioning schemes of
the applications are obtained from the traffic engineering database (TED). Then, the controller invokes necessary net-
work adjustments (i.e., AI-assisted reflexes) to restore the affected QoS parameters. Fig. 1(b) illustrates the operation
procedures for normal provisioning (Steps a- f ) and exception handling (Steps 1-7).
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Fig. 2. SD-IPoEON testbed with NNS, (a) Data plane configuration, PM: port monitor, OSA: optical spectrum analyzer,
EDFA: Erbium-doped fiber amplifier, and (b) Control plane configuration, OF-AG: OpenFlow agent.

3. Experimental Testbed and Demonstrations
To verify the effectiveness of the proposed NNS, we build an SD-IPoEON testbed, prototype the NNS in it, and perform
proof-of-concept demonstrations. The SD-IPoEON’s data plane in Fig. 2(a) includes 8 optical nodes and 13 fiber links
in the EON layer, and 3 OF-SWs and 4 servers in the IP layer. Here, each optical node is built with commercial
1×9 BV-WSS’, and each OF-SW equips with one or more 10 Gbps optical transceivers. Specifically, the OF-SW that
directly connects toNode 1 has two optical transceivers (Ports a andb) whose central wavelengths are 1551.72 and
1552.52 nm, respectively, while those connecting toNodes 4 and 8 (Ports c andd) operate at 1548.52 and 1550.92 nm,
respectively. To realizeλ -level monitoring, we insert 8 optical spectrum analyzers (OSAs) in the EON layer, which
run automatic scripts to collect and analyze optical spectra and report key metrics such as central wavelength(s), peak
power and OSNR, and we also program a port monitor (PM) on eachOF-SW to collect metrics related to its optical
transceiver(s),e.g., central wavelength, in/out optical power, and packet throughput. The collected metrics are sent to
the AI-assisted controller in the control plane, as shown inFig. 2(b). The controller is developed based on the ONOS
platform [3] and TensorFlow, and it manages the BV-WSS’ and the OF-SWs through OpenFlow agents (OF-AGs) and
direct connections, respectively. We implement each App-level monitor based on iPerf [4], which runs in each server
to gather the applications’ E2E QoS parameters, including bandwidth, latency, packet loss rate,etc.

In the experiments, we set up a lightpath betweenPorts b andc using path 1-2-3-4, and use it to carry applica-
tion traffic. Meanwhile, we turn on all the remaining electrical/optical devices in the testbed to emulate a relatively
complicated network environment. The experiments consider two scenarios. In the first scenario, we assume that the
application using the lightpath is delay-sensitive and itsexception threshold on E2E latency is 2 msec. Then, with
the E2E latency in Fig. 3(a), the App-level monitor detects exceptions from aroundt = 40 seconds. However, it is
not a easy task to quickly locate the root cause of such exceptions in an SD-IPoEON. This is because the excessive
E2E latency can be induced by a number of soft failures, such as congestion(s) in OF-SW(s), malfunctions of optical
transceivers, excessive power loss on the lightpath,etc. Fortunately, our AI-assisted controller has been trainedto get
the job done quickly. Upon receiving the exception reports from the App-level monitor, the controller pulls out the
λ -level monitoring results from the PM forPort c and the OSA connecting to the input ofNode 4, since they are the
closest to the lightpath’s destination. Then, the controller finds that there are sudden drops on the input power meas-
ured by the PM and the OSA (as shown in Fig. 3(b)), which have time correlations with the E2E delay increases in
Fig. 3(a)1. Hence, the exceptions are most likely caused by the excessive power loss on the lightpath. Next, based on

1The prolonged exceptions in Figs. 3(a) and 3(b) are shown forthe sake of explaining the time correlation between the E2E latency and power
loss, while in the actual operation of our system, exceptions can be detected and resorted within a few seconds.



its previous training with the samples in Fig. 3(c), the AI-assisted controller determines that the part that has excessive
power loss should be segment 3-4, and decides to reroute the lightpath over path 1-2-5-6-7-4 and restore the E2E la-
tency. The training samples in Fig. 3(c) basically teach thecontroller that for the concerned lightpath, excessive power
drops at the input ofNode 4 are strongly correlated with the additional loss on segment 3-4. This can be understood as
that the erbium-doped fiber amplifier (EDFA) on segment 3-4 has relatively small gain and/or dynamic range.
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Fig. 3. Experimental results of exception scenario on E2E latency, (a) E2E latency from App-level monitor, (b) Power
measurements fromλ -level monitoring, and (c) Training samples for AI-assisted controller.

Note that, in the first scenario, the sudden power loss on the lightpath can also be detected by a threshold-based
mechanism, and thus it cannot fully justify the necessity and advantage of the proposed NNS. Therefore, for the
second scenario, we consider the case in which the exceptions are induced by the combined effect of multiple root
causes, which can hardly be detected with a threshold-basedmechanism. Here, we assume that the application using
the lightpath is bandwidth-sensitive and cannot tolerate an E2E bandwidth lower than 8 Gbps. Fig. 4(a) shows the E2E
bandwidth measured by the App-level monitor, which starts to flag exceptions to the controller sincet ≈ 55 seconds.
Nevertheless, the relatedλ -level monitoring results in Fig. 4(b), which are the input power collected by the PM for
Port c and the OSNR measured by the OSA connecting to the input ofNode 4, do not show clear time correlation with
the exceptions. Promisingly, based on the learned correlation among the input power, the OSNR, and the operation
state of the lightpath on E2E bandwidth (i.e., with the training samples in Fig. 4(c)), the controller canstill quickly
determine that the exceptions are caused by the combined effect of OSNR degradation (major) and power loss (minor)
on the lightpath. Note that, the data points for normal operations and exceptions actually overlap with each other in
Fig. 4(c), and thus we cannot detect the exceptions with a simple threshold-based mechanism. Next, the controller can
investigate more to locate the soft failure on the lightpathand restore the applications’s E2E bandwidth accordingly.
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Fig. 4. Experimental results of exception scenario on E2E bandwidth, (a) E2E bandwidth from App-level monitor, (b)
Input power and OSNR measured byλ -level monitoring, and (c) Training samples for AI-assisted controller.

4. Summary
We designed and experimentally demonstrated the NNS for realizing application-aware service provisioning in an SD-
IPoEON. Experimental results indicated that with the NNS, our AI-assisted network controller can leverage multilayer
telemetry results to detect and locate the root causes of application exceptions and resolve them successfully.
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