On the Distance Spectrum Assignment in Elastic Optical Networks

Haitao Wu, Fen Zhou, Senior Member, IEEE, Zuqing Zhu, Senior Member, IEEE, Yaojun Chen

Abstract—In elastic optical networks (EONs), two lightpaths sharing common fiber links might have to be isolated in the spectrum domain with a proper guard-band to prevent crosstalk and/or reduce physical-layer security threats. Meanwhile, the actual requirements on guard-band sizes can vary for different lightpath pairs because of various reasons. Therefore, in this work, we consider the situation in which the actual guard-band requirements for different lightpath pairs are different, and formulate the distance spectrum assignment (DSA) problem to investigate how to assign the spectrum resources efficiently in such a situation. We first define the DSA problem formally and prove its \mathcal{NP}-hardness and inapproximability. Then, we analyze and provide the upper and lower bounds for the optimal solution of DSA, and prove that they are tight. In order to solve the DSA problem time-efficiently, we develop a two-phase algorithm. In its first phase, we obtain an initial solution and then the second phase improves the quality of the initial solution with random optimization. We prove that the proposed two-phase algorithm can get the optimal solution in bipartite DSA conflict graphs and can ensure an approximate ratio of $O(\log(|V|))$ in complete DSA conflict graphs, where $|V|$ is the number of vertices in the conflict graph, i.e., the number of lightpaths to be considered. Numerical results demonstrate our proposed algorithm can find near-optimal solutions for DSA in various conflict graphs.

Index Terms—Elastic Optical Networks (EONs), Distance Spectrum Assignment (DSA), Physical-Layer Security.

I. INTRODUCTION

RECENTLY, with the rapid growth of traffic demands in backbone networks, how to utilize the spectral resources in optical fibers efficiently and intelligently has become a key challenge for all-optical networks. To address this challenge, flexible-grid elastic optical networks (EONs) have been proposed to enhance the agility of bandwidth allocation in the optical layer [1, 2]. Specifically, in EONs, the bandwidth-variable transponders (BV-Ts) and wavelength-selective switches (BV-WSS’s) establish lightpaths with several narrow-band (i.e., 12.5 GHz) and spectrally-contiguous frequency slots (FS) and realize data transmissions over them [3]. Therefore, EONs can offer just-enough bandwidth to traffic demands from upper-layer networks, with the fine bandwidth allocation granularity of an FS [4, 5]. For instance, in Fig. 1, there are three lightpath requests in an EON, i.e., R_1, R_2 and R_3, and their bandwidth requirements are 2, 4 and 3 FS, respectively. The spectrum assignments of these lightpaths are illustrated at the bottom of Fig. 1 with blocks in different colors.

Note that, in order to minimize the potential physical-layer security threat due to inter-channel crosstalk [6], the spectrum assignments of two lightpaths should be separated by a sufficient guard-band when their routing paths share one or more fiber links [7, 8]. These guard-bands, as shown in Fig. 1, can have different sizes, which are not trivial since they determine the impact of inter-channel crosstalk between the lightpaths. In general, the stronger the crosstalk level is or the higher the security requirement is, a larger sized guard-band should be applied. Since the crosstalk level can be affected by many factors such as the required bandwidth, the number of common fiber links and the lightpaths’ modulation-levels [9] while the security requirement would depend on the defense of various physical-layer attacks, e.g., eavesdropping and jamming attacks [10], the actual guard-band requirements in EONs would change for different lightpath pairs. Nevertheless, the guard-bands’ sizes and the way in which we deploy them would generate spectrum fragmentation and hence significantly influence the spectrum utilization in EONs [11, 12].

Therefore, the service provisioning scheme that uses guard-bands with constant sizes [13] might not be suitable to handle the situation in which the crosstalk levels and/or the security requirements of lightpath pairs are diverse. For instance, a fixed-sized guard-band might be insufficient to mitigate a strong crosstalk level while result in spectrum waste for satisfying a relatively low security requirement. Hence, it would be relevant to study how to realize spectrum assignments with various guard-band sizes efficiently.

![Fig. 1. Spectrum assignments with guard-bands in EONs.](image-url)
In this paper, we put forward a new spectrum assignment model, which uses guard-bands with different sizes to adapt to the crosstalk level or the security requirement of each lightpath pair in an EON. Our model is named as distance spectrum assignment (DSA). We consider the network planning problem in which all the lightpath requests and their routing paths are known, the spectral resources in the EON are sufficient to serve all the requests, and the mutual crosstalk levels or security requirements of the lightpath pairs are also known. With all the aforementioned information, DSA tries to achieve efficient spectrum assignment that can not only use guard-bands with various sizes to adapt to the mutual crosstalk levels or security requirements of the lightpaths, but also minimize the maximum FS index used in the EON. Note that, to the best of our knowledge, the problem described by DSA has never been studied theoretically in the literature. Moreover, as we will explain in the paper, it is an extremely challenging problem. Hence, we explore the characteristics of the DSA problem and provide some interesting and insightful theoretical results to support future studies in this direction. The contributions of this work can be summarized as follows.

- To the best of our knowledge, this is the first work to formally study the DSA problem. We prove the \(\mathcal{NP} \)-hardness of the problem and analyze its inapproximability, and also formulate an integer linear programming (ILP) model to solve it exactly.
- We formally provide the upper and lower bounds of the optimal solution of DSA and prove that they are tight.
- We propose a two-phase algorithm to solve the DSA problem time-efficiently, and study its performance in various DSA situations, which are represented by different conflict graphs. Specifically, in a conflict graph, each vertex represents a lightpath while an edge signifies the guard-band requirement between two lightpaths. In its first phase, the algorithm generates an initial solution, which is proven to be the optimal solution in bipartite conflict graphs and can guarantee an approximate ratio of \(O(\log|V|) \) in complete conflict graphs. The second phase improves the initial solution with a random optimization procedure, whose convergence performance are also analyzed mathematically.

The rest of this paper is organized as follows. Section II presents our motivation and the related work. In Section III, we model the DSA problem and analyze its hardness. The upper and lower bounds of the optimal solution of DSA are analyzed in Section IV. In Section V, we transform DSA into a permutation-based optimization problem (POP), and with this transformation, the two-phase algorithm is developed in Section VI. The performance of the two-phase algorithm is theoretically analyzed in Section VII, and the numerical results for performance evaluation are presented in Section VIII. Finally, Section IX summarizes the paper.

II. MOTIVATION AND RELATED WORK

With the recent advances in optical devices and transmission techniques, the concept of EON has been proposed to make the resource management in the optical layer more flexible and hence attracted intensive research interests [1–4, 7, 11–15]. The authors of [1] systematically discussed the enabling technologies and building blocks of EONs, e.g., bandwidth-variable wavelength cross-connects (BV-WXC), and laid out the network architecture of EON, which enables flexible bandwidth allocation with a fine granularity to provide just-enough bandwidth to customer traffic demands. Hence, compared with the traditional fixed-grid wavelength-division multiplexing networks, EON can significantly improve the utilization efficiency of spectrum resources. Note that, since the channel spacing in EONs becomes much narrower than that in WDM networks, the usage of guard-bands, i.e., the unused FS in between the spectrum assignments of two spectrally adjacent lightpaths, becomes more tricky. Specifically, if the guard-bands are not properly chosen, the physical impairments in fibers would induce crosstalk between the lightpaths and thus their quality-of-transmission (QoT) would be deteriorated. Moreover, the crosstalk between two spectrally adjacent lightpaths can be easily utilized to realize physical-layer attacks such as eavesdropping and power jamming [6, 7, 10, 16], and mixed modulation attacks can also degrade the quality of high-bit-rate phase-modulated lightpaths with cross-phase modulation [17]. Therefore, we have to carefully choose the guard-bands to reduce the risk of physical-layer attacks, the degradation of QoT and the nonlinear penalty in EONs [6, 10, 17].

In order to realize spectrally efficient lightpath provisioning, the routing and spectrum assignment (RSA) problem has already been intensively studied. In [4], RSA has been formally defined along with the discussion on its complexity, and an ILP model and two time-efficient heuristics have been designed to solve the RSA problem. The authors of [13, 18] have considered to provision multicast requests in EONs with the multicast-capable routing, modulation-level, and spectrum assignment (RMSA). Moreover, the RSA/RMSA algorithms for more sophisticated service provisioning schemes, such as advance reservation [19], spectrum defragmentation [20], and virtual network embedding [21], have also been investigated before. However, most of the previous studies on RSA assumed that the guard-bands use a constant size for all the lightpath pairs. Note that, the work in [9] had already revealed that the filtering characteristics of optical components can make the selection of guard-band sizes extremely sophisticated. Therefore, using a fixed guard-band size does not coincide with the practice and thus the problem of DSA, i.e., the spectrum assignment with various guard-band sizes should be investigated in a timely manner.

In general, the wavelength assignment (WA) problem in WDM networks (each request in WA problem is assigned with a fixed-wavelength frequency) and the spectrum assignment (SA) problem in EONs (each request in SA problem is assigned with a number of FS, the details of distinction between the WA and SA are shown in Table I) can both be studied by leveraging the graph coloring method [22] in conflict graphs that are constructed based on the routing results of lightpaths. Specifically, WA can be solved by finding the chromatic number of the conflict graph [23, 24] while SA can be solved with the interval chromatic number [4, 25]. Nevertheless, DSA differs from the classical graph coloring
problem [22] in two aspects: 1) each vertex in the conflict graph, which represents a lightpath, is assigned with a set of contiguous colors (i.e., FS) according to the bandwidth demand rather than only one color; and 2) the distance of the color sets of two adjacent vertices is no longer one but a positive integer, representing the guard-band requirement, which is not identical for all the vertex pairs. More specifically, DSA is similar to the fractional coloring problem [26], with two differences: 1) contiguous colors should be assigned to each vertex in DSA, while this is not the case for fractional coloring; and 2) various distances between adjacent color sets should be kept in DSA while color sets only need to be disjoint in the latter one. For clarity, Table I provides the comparison of the four coloring related problems that have been discussed above, i.e., the classical coloring, the fractional coloring, the traditional SA, and the DSA problem. We can see that DSA is apparently a new combinatorial optimization problem, which has not yet been studied before. In the next section, we will formally define the DSA problem.

III. DISTANCE SPECTRUM ASSIGNMENT (DSA) PROBLEM

In an EON, a set of FS is available in each optical fiber to carry lightpaths. Hence, efficient spectrum assignment algorithms are needed to optimize the spectrum usages of lightpaths under the spectrum contiguous and non-overlapping constraints [2]. Meanwhile, in DSA, to address the crosstalk level and/or security requirement of each lightpath pair, we need to choose a proper guard-band to insert.

A. Problem Description

For DSA, we consider the network planning problem in which all the lightpath requests and their routing paths are known, the spectral resources in the EON are sufficient to serve all the requests, and the mutual crosstalk levels or security requirements of the lightpath pairs are also known (i.e., the required guard-band sizes are given for all the spectrally adjacent lightpath pairs). Then, DSA tries to achieve efficient spectrum assignment that can not only accommodate all the lightpath requests to satisfy all the constraints, but also minimize the maximum used FS index (MUFI) in the EON.

To solve DSA, we construct a conflict graph based on the known information regarding the lightpaths. Specifically, we first use a vertex to represent each lightpath and assign a weight to it for its bandwidth demand in FS, and then we connect two vertices with an edge if there would be crosstalk between their lightpaths or a guard-band has to be inserted in between the lightpaths’ spectrum assignments due to certain customer-specified security reasons. Note that, a weight is also assigned to each edge in the conflict graph to represent the actual required guard-band size. Figs. 2 and 3 and Table II show an illustrative example on how to construct the conflict graph. There are four lightpaths with the information in Table II and their routing paths in a 4-node ring topology is illustrated in Fig. 2. Then, we assume that the guard-band requirements for the lightpaths are shown in Fig. 3(a), where for simplicity, we use the number of common links in two lightpaths’ routing paths as their guard-band requirement. Note that, previous experimental investigation has suggested that the crosstalk level between two spectrally adjacent lightpaths is positively correlated with the number of common links in their routing paths [9]. For instance, since the routing path of R_1, i.e., B-A-D, shares two common links with that of R_4 (C-B-A-D), the required guard-band size between them would be at least 2 FS. In the conflict graph in Fig. 3(a), the number inside a cycle is the bandwidth demand in FS while the number on an edge indicates the required guard-band size. Based on the conflict graph in Fig. 3(a), we can figure out that optimal solution of DSA is that in Fig. 3(b), where the assigned FS to each lightpath are marked with red braces.

![Fig. 2. Lightpaths in Table II in a 4-node ring topology.](image)

B. DSA model and Integer Linear Program

Note that, since we only consider the spectrum assignment problem in DSA, which is already a relatively complex problem as we will explain below, we assume that the routing and guard-band information on the lightpaths are known and thus for each instance of DSA, the conflict graph has already been constructed. Therefore, from now on, we concentrate on how to obtain the optimal spectrum assignments for the lightpaths (i.e., the optimal solution of DSA) based on a known conflict
For ease of discussion, we also use the conflict graph in our discussions. The DSA problem can then be defined as a graph, and consider various types of conflict graphs in our analysis. We first introduce the following notations for DSA.

Necessary Notations:

- \(G(V, E)\): The DSA conflict graph, where \(V\) is the set of vertices, and \(E\) is the set of the conflict edges.
- \(\mathbb{N}^+\): The set of natural numbers for representing the FS indices in the spectrum domain, which starts from 1.
- \(v_i\): \(v_i \in V\) represents the \(i\)-th lightpath request.
- \(v^s_i\): The integer weight signifies bandwidth demand of lightpath \(v_i\) in the number of contiguous FS.
- \(w_{v_i}\): The set of contiguous FS assigned to \(v_i\).
- \(v_i^s, v_i^e\): The start-index and end-index of \(w_{v_i}\).
- \(e, v_iv_j\): The edge \(e \in E\) connecting \(v_i\) and \(v_j\), which represents that the lightpaths of \(v_i\) and \(v_j\) share common link(s). For convenience, we also use \(v_iv_j\) to represent an edge \(e\).
- \(d_{v_i}(d_{v_i,v_j})\): The positive integer weight that represents the least guard-band size between lightpaths \(v_i\) and \(v_j\).
- \(B\): \(B \in \mathbb{N}^+\) is a reasonably large integer.

For ease of discussion, we also use \(G(V, E, \{v^p_i\}, \{d_{v_i,v_j}\})\) to represent a DSA graph, i.e., making the weights of vertices and edges explicit. Our objective is to minimize the MUIF in the EON. Note that, it is also possible that the conflict graph \(G\) is not a fully connected one. In that case, we can partition \(G\) into a few connected components, solve the DSA problem in them, and then get the MUIF in all the components as the final solution. Hence, we will ignore the cases of non-connected conflict graph in our discussions. The DSA problem can then be defined as

Minimize \(\max_{s \in \mathbb{N}^+} (s)\) \hspace{1cm} (DSA), \hfill (1)

where \(s \in \mathbb{N}^+\) is the index of a used FS. Meanwhile, DSA should be subject to the following constraints:

Bandwidth Requirement Constraint: Each lightpath should be assigned with enough FS to satisfy its bandwidth demand. In other words, the cardinality of FS set assigned to a vertex \(v_i \in V\) should be equal to its weight:

\[|w_{v_i}| = v^s_i, \quad \forall v_i \in V\] \hfill (2)

Spectrum Continuity Constraint: The FS assigned to a lightpath should be the same on each fiber link in its routing path. Basically, since each lightpath is pre-routed and represented by a vertex in the conflict graph, this constraint will always be satisfied automatically.

Spectrum Contiguity Constraint: The FS assigned to a vertex should be contiguous in \(\mathbb{N}^+\), i.e., \(w_{v_i}\) can be expressed as \(\{v_i^s, v_i^e + 1, \ldots, v_i^e - 1, v_i^s\}\), where \(v_i^s, v_i^e \in \mathbb{N}^+\).

Spectrum Set Distance Constraint: To satisfy the guard-band requirements, the distance between the FS sets assigned to two spectrally adjacent lightpaths should be large enough. Specifically, for each edge \(v_iv_j \in E\), the distance between \(w_{v_i}\) and \(w_{v_j}\) in \(\mathbb{N}^+\) should not be smaller than the edge’s weight:

\[\text{distance}(w_{v_i}, w_{v_j}) \geq d_{v_i,v_j}, \quad \forall v_i,v_j \in E, \quad (3)\]

where,

\[\text{distance}(w_{v_i}, w_{v_j}) = \min_{s \in w_{v_i}, t \in w_{v_j}} |s - t| - 1.\]

The DSA problem is \(\mathcal{NP}\)-hard, which will be proven formally in the next subsection. To solve DSA exactly, we formulate an ILP model to obtain the optimal spectrum assignment scheme.

Decision Variables:

- \(x^a_i\): Integer variable to represent the value of \(v_i^s\).
- \(x^b_i\): Integer variable to represent the value of \(v_i^e\).
- \(y\): Integer variable to represent the upper bound of \(x^a_i\).
- \(o_{v_iv_j}\): Boolean variable for each edge \(v_iv_j\) to represent the order of \(x^a_i\) and \(x^b_j\), i.e., if \(x^a_i > x^b_j\), we have \(o_{v_iv_j} = 1\), and \(o_{v_iv_j} = 0\) otherwise.

Objective Function:

Minimize \(y\) \hspace{1cm} (ILP-DSA), \hfill (4)

s.t. Eqs. (5)-(10).

C. Hardness and Inapproximability Analysis

To analyze the hardness of the DSA problem, we introduce the Minimum Hamilton Path problem (MHP) [27], whose objective is to find a minimum Hamilton path in a weighted complete graph. MHP is strongly \(\mathcal{NP}\)-hard [27].

If the conflict graph of a DSA instance is complete, which means every two vertices \(v_i\) and \(v_j\) are directly connected. Hence, the FS sets assigned to the lightpaths should be pairwise disjoint. If the complete graph satisfies the triangle inequality, i.e., \(d_{v_iv_k} + d_{v_kv_j} \geq d_{v_iv_j}\), \(\forall v_i,v_j,v_k \in V\), owing to this inequality, any Hamilton path satisfies the spectrum set distance constraint of DSA. Therefore, in this case, the DSA problem is equivalent to the MHP problem. If the triangle inequality cannot be satisfied in the complete graph, then the
solution of DSA might be longer than a Hamilton path. This is because the spectrum set distance constraint might not be satisfied by a Hamilton path. Precisely speaking, the distance between two vertices \(v_i, v_j \in V \) in a Hamilton path may be smaller than the required spectrum distance \(d_{v_i v_j} \). Hence, the solution of DSA might be longer than a Hamilton path. This indicates the hardness of DSA.

Theorem 1: MHP \(\leq P \) DSA

Proof: To prove the \(\mathcal{NP} \)-hardness of DSA, we just need to prove: 1) any instance \(I \) of MHP can be polynomial-time reduced to an instance \(I' \) of DSA, and 2) the solution of \(I' \) can be converted to that of \(I \) in polynomial time.

We get \(I' \) from \(I \) by giving the biggest edge weight \(b \) to each vertex of \(I \) as its weight and keeping the edges' weights unchanged. Then, we have \(d_{v_i v_j} + b + d_{v_k v_j} \geq d_{v_i v_j} \), \(\forall v_i, v_j, v_k \). With this reduction, each vertex pair in a Hamilton path in \(I' \) should satisfy the spectrum set distance constraint. Hence, the solution of \(I \) equals that of \(I' \) minus \(b \), where \(|V|\) is the number of vertices. For example, in Fig. 4, if we set the weights of the four vertices (i.e., \(v_1, v_2, v_3, v_4 \)) to 3, which is the biggest edge weight, the MHP instance \(I \) becomes a DSA instance \(I' \). The minimum Hamilton path can be obtained by solving the DSA instance, which is shown in Fig. 4 with red color. The total weight of the minimum Hamilton path is 5, which is obtained by subtracting 12 from the solution of \(I' \). Therefore, we prove that the DSA problem is also \(\mathcal{NP} \)-hard.

To analyze the inapproximability of DSA, we first introduce some terminologies and definitions.

- \(C(G) \): The condensation graph of a DSA conflict graph \(G(V, E, \{ v_i^a \}, \{ d_{v_i v_j} \}) \). For the conflict graph, the vertex set \(V \) can be partitioned into \(\chi(G) \) independent sets. We merge the vertices in the same set as a single super-vertex and assign the maximum weight of the vertices in the set as the weight of the super-vertex. Then, each super-vertex pair in the new graph might have multiple edges. Among these edges, we only keep the one with the biggest weight and remove the others. Finally, we obtain the condensation graph of \(G \).
- \(V_C(G) \): Set of the vertices in \(C(G) \) and \(|V_C(G)| = \chi(G) \).
- \(E_C(G) \): Set of the edges in \(C(G) \).
- \(v_i^f \) and \(v_i^{w_f} \): \(v_i^f \) is the vertex with the \(i \)-th biggest weight and \(v_i^{w_f} \) is its weight.
- \(w_i^c, v_i^b \) and \(v_i^a \). Their definitions are similar as those of \(w_i^c \) and \(v_i^b \) and \(v_i^a \).
- \(e_i^f \) and \(d_{e_i^f} \): \(e_i^f \) is the edge with the \(i \)-th biggest weight and \(d_{e_i^f} \) is its weight.
- Maximal clique \(\psi \) and Maximal clique set \(\Psi \): Given a graph \(G(V, E) \), we call a subgraph \(\psi(v_i^a, E_{\psi}) \subseteq G(V, E) \) a clique when \(v_i^a \) and \(E_{\psi} \) is a complete graph. A clique \(\psi(v_i^a, E_{\psi}) \) is a maximal clique if and only if there is no clique \(\psi \subseteq G \) and \(\psi \not\subseteq \psi \). We use \(\Psi(G) \) to denote the set of maximal cliques in \(G \). In the example in Fig. 5, there are three maximal cliques \(v_1, v_2, v_3 \), and thus \(\Psi(G) = \{ v_1, v_2, v_3 \} \) as indicated in the figure.

To study the feature of DSA's optimal solution, we start with the bipartite graphs whose chromatic number \(\chi(G) \) is 2.

Fig. 4. Example on reducing MHP to DSA in polynomial time.

![Fig. 4. Example on reducing MHP to DSA in polynomial time.](image-url)
Hence, if a solution reaches this lower bound, it is optimal.

For vertex $u \in V$ under the four constraints of the DSA problem.

Proof: Due to the spectrum set distance constraint, the inequality in Eq. (11) holds for the optimal solution of the DSA problem.

\[
\max_{\psi \in \Psi(G)} (|\text{MHP}(\psi)| + \psi^w) \leq |\text{opt}(G)| \leq \sum_{i=1}^{\chi(G)-1} d_i^e + \sum_{i=1}^{\chi(G)} v_i^w. \tag{11}
\]

\[
\text{Proof:} \quad \text{Firstly, we prove } |\text{opt}(G)| \leq \sum_{i=1}^{\chi(G)-1} d_i^e + \sum_{i=1}^{\chi(G)} v_i^w. \text{ To achieve this inequality, we just need to find proper spectrum assignments for all the vertices in } G(V,E) \text{ and the MUFI would not be bigger than } \sum_{i=1}^{\chi(G)-1} d_i^e + \sum_{i=1}^{\chi(G)} v_i^w.
\]

Hence, we can first treat $C(G)$ as a conflict graph and find a proper spectrum assignment P^* for $C(G)$. Since each super-vertex $v_i' \in V_{C(G)}$ represents an independent set of G (i.e., its weight is the maximum weight of the vertices in the independent set of G and edge $v_i'v_j' \in E_{C(G)}$ is the largest-weighted edge between the independent sets represented by v_i' and v_j'), we can utilize P^* to find a proper spectrum assignment for G by packing the vertices in v_i' into the FS set $w_{v_i'}$ (as shown in the example in Fig. 7). Therefore, if the MUFI of P^* does not exceed $\sum_{i=1}^{\chi(G)-1} d_i^e + \sum_{i=1}^{\chi(G)} v_i^w$, we prove the inequality. Here, the solution P^* can be obtained with Algorithm 1.

In Algorithm 1, we start from an arbitrary vertex in $C(G)$, e.g., v_i', and get the FS set $w_{v_i'}$ by setting $v_i'^b = 1, v_i'^w = v_i'^b$. We select the largest-weighted incident edge of v_i', e.g., $e_i' = v_i'v_j'$, and the corresponding adjacent vertex v_j' is chosen as the next vertex. Then, we assign $w_{v_j'}$ by setting $v_j'^b = v_j'^w + d_{e_i'} + 1, v_j'^w = v_j'^b + v_j'^w - 1$. After that, we select the largest-weighted incident edge of v_j' to a vertex whose FS set has not been assigned. The same procedure is repeated until all the vertices in $C(G)$ are assigned with FS sets, and it terminates in $\chi(G) - 1$ steps.

The assignment P^* satisfies all the constraints in DSA, since we select the largest-weighted incident edge in each step.
Algorithm 1: Process Get P^*

Input : $C(G)$

Output: A proper spectrum assignment P^* for $C(G)$

1 $P^* \leftarrow \emptyset$
2 $V_C^i \leftarrow \text{Random Select } v_i^j; \ % \ Let v_i^j \text{ be Current Vertex}$
3 $V_C^{in} \leftarrow v_i^j$
4 $V_C^{out} \leftarrow 1$
5 $V_C^{in} \leftarrow V_C^{in}$
6 $P^* \leftarrow P^* \cup [V_C^{in}, V_C^{out}]$
7 $\text{mark } V_C^i \text{ visited};$
8 while $C(G) \text{ still has unvisited vertices do}$
9 \hspace{1em} \text{search the vertex } v' \text{ which is the farthest neighbour of } V_C^i \text{ among the unvisited vertices in } C(G)$
10 \hspace{1em} e^{in} as the edge linking v' and V_C^i
11 \hspace{1em} $V_C^{in} \leftarrow v_i^j; \ % \ Let v' \text{ be Next Vertex}$
12 \hspace{1em} $V_C^{out} \leftarrow v_i^j$
13 \hspace{1em} $V_C^{in} \leftarrow V_C^{in}$
14 \hspace{1em} $V_C^{out} \leftarrow V_C^{out} + \frac{d_{e^{in}}}{2} + 1$
15 \hspace{1em} $P^* \leftarrow P^* \cup [V_C^{in}, V_C^{out}]$
16 \hspace{1em} $\text{mark } V_C^i \text{ visited};$
17 \hspace{1em} return P^*

Hence, P^* is a proper spectrum assignment, and the MUIF of P^* equals $\sum_{i=1}^{\chi(G)^{-1}} d_{e^{in}} + \sum_{i=1}^{\chi(G)^{-1}} v_i^w \leq \sum_{i=1}^{\chi(G)^{-1}} d_{e^{in}} + \sum_{i=1}^{\chi(G)^{-1}} v_i^w$. By now, the inequality of the right side is proven.

Next, we prove the left side. As a maximal clique ψ is a subgraph of G, we have $|\text{opt}(\psi)| \leq |\text{opt}(G)|$. Hence, we just need to prove $|\text{MHP}(\psi)| + \psi^w \leq |\text{opt}(\psi)|$ for any ψ. If we assume that $P(\psi)$ is an optimal proper spectrum assignment for ψ, the FS sets assigned to all the vertices would be mutually disjoint since ψ is a complete subgraph. The distance between any two FS sets in $P(\psi)$ would not be smaller than the weight of the edge connecting the two vertices. Hence, the value of solution $P(\psi)$ would not be smaller than the length of the minimum Hamilton path plus the total weight of all the vertices, i.e., $|\text{MHP}(\psi)| + \psi^w \leq |P(\psi)| = |\text{opt}(\psi)|$. Consequently, we finish the proof.

In general, it is known that calculating the chromatic number of a graph is extremely difficult. Hence, we provide a more practical method to calculate the bounds. For a graph G, we have $\chi(G) \leq \Delta(G) + 1$ according to the Brook’s theorem [29], where $\Delta(G)$ is the maximum degree of G. With a DSA conflict graph $G(V, E, \{v_i^w\}, \{d_{v_i,v_j}\})$, we sort the edges and vertices in G in the descending order of their weights, respectively. To avoid confusion, we rename the sorted edges and vertices by denoting the i-th largest-weighted edge as e_i^w and the vertex with the i-th biggest weight as v_i^w, i.e., $d_{e_i^w} \geq d_{e_{i+1}^w}, v_i^w \geq v_{i+1}^w, \forall i < j, e_i^w, e_j^w \in E, v_i^w, v_j^w \in V$. Then, we have the following corollary.

Corollary 2: If $G(V, E, \{v_i^w\}, \{d_{v_i,v_j}\})$ is a DSA conflict graph, we have $|\text{opt}(G)| \leq \sum_{i=1}^{\chi(G)} d_{e_i^w} + \sum_{i=1}^{\chi(G)} v_i^w$.

Proof: Based on the construction procedure of $C(G)$ and the Brook’s Theorem, we have $\chi(G)^{-1} \sum_{i=1}^{\chi(G)} d_{e_i^w} + \sum_{i=1}^{\chi(G)} v_i^w \leq \chi(G)^{-1} \sum_{i=1}^{\chi(G)} d_{e_i^w} + \sum_{i=1}^{\chi(G)} v_i^w \leq \chi(G)^{-1} \sum_{i=1}^{\chi(G)} d_{e_i^w} + \sum_{i=1}^{\chi(G)} v_i^w$. Then, with Theorem 4, we can verify the proof.

In order to make a fast estimation for the bounds of the DSA’s optimal solution, we can say that the MUIF would not exceed the total weight of $\Delta(G)$ largest-weighted edges plus the total weight of $\Delta(G) + 1$ largest-weighted vertices in G.

Corollary 3: The two bounds obtained in Theorem 4 are tight.

Proof: $\chi(G)$ and ψ are vital for the two bounds. If $G(V, E)$ is a perfect graph 3, then the two bounds can converge under certain conditions. For instance, bipartite graphs are perfect graphs. For a bipartite graph $G(V, E)$, each $\psi(v_j)$ just contains one edge. As a result, the lower bound $\max_{\psi \in \Psi(G)} |\text{MHP}(\psi)| + \psi^w$ becomes $\max_{v_i, v_j \in E} \{d_{v_i,v_j} + v_i^w + v_j^w\}$. In this case, $|\text{opt}(G)|$ reaches this lower bound according to Theorem 3. Moreover, when $\chi(G) = 2$, the upper bound equals $\max_{v_i \in E} \{d_{v_i} + v_i^w\}$. When ψ^w are the weights of two adjacent largest-weighted vertices and d_{v_i,v_j} is also the maximum weight of the edges, the upper bound equals the lower bound. Hence, the two bounds are tight.

V. ORDERED DISTANCE SPECTRUM ASSIGNMENT (ODSA)

In order to solve DSA efficiently, we simplify it to an ordered DSA (ODSA) problem, which we will prove that can be solved optimally in polynomial time. Basically, ODSA bears the same objective and constraints of DSA, and besides, it imposes a new vertex order constraint as follows. The vertices should be ordered such that the start-FS indices of vertices are in the ascending order, i.e.,

$$O_i = (v_{i_1}, v_{i_2}, ..., v_{i_k}) : v_{i_k}^w \geq v_{i_1}^w, \forall j > k$$

With the ordered vertices, ODSA becomes a much easier problem than DSA. We formulate the ILP model for ODSA:

$$\text{Minimize } y \quad (\text{ILP-ODSA}),$$

$$\text{s.t. } \text{Eqs. (14)-(18)}.$$

3A graph G is perfect if $\chi(G) = \max_{\psi \in \Psi} |\psi(G)|$ [22].
The time complexity of Algorithm 2 is \(O(|E|)\). We prove that Algorithm 2 can solve optimally with a greedy algorithm and then improve the vertex order with the nested partitions method (NPM) [31].

VI. TIME-EFFICIENT APPROXIMATION ALGORITHM FOR DSA

For any DSA problem, if the vertex order \(i.e., \) in the ascending order of the start-FS index \(i.e., \) in the optimal solution is known beforehand, then it can be transformed into an ODSA problem and solved optimally by Algorithm 2 in polynomial time. Inspired by this, we develop a two-phase algorithm to solve DSA. Specifically, in the first phase, we use a greedy strategy to generate an initial vertex order, and then the second phase utilizes NPM to improve the initial order.

A. First Phase Greedy Algorithm (FPGA)

For a DSA conflict graph \(G(V, E, \{w_v\}, \{d_{v_i}v_j\})\), we can get the initial vertex order with the following procedure. Firstly, we start from any vertex \(v_i \in V\), and find the FS set for \(v_i\) with a greedy strategy, \(i.e., \) \(v_i^b = 0\) and \(v_i^s = v_i^b\). Meanwhile, we set a variable \(O_i\) to record the order of vertices according to the assigned FS sets. Hence, \(O_i\) takes \(v_i\) as the first element. Then, we find the vertex \(v_j\) from the vertices that are not yet in \(O_i\) to ensure that \(v_j^b\) is the minimum to satisfy the constraints of DSA for all the vertices that are in \(O_i\). We insert this \(v_j\) into \(O_i\) and assign the corresponding FS
set to it. The same procedure is repeated until all the vertices have been included into O₁. After |V| while-loops, |V| vertex orders \{O₁, O₂, ..., O₉\} have been generated and we choose the one that results in the minimum MUF as our initial order. Algorithm 3 gives the procedure of the proposed First Phase Greedy Algorithm (FPGA). In Lines 1-3, starting from j = 1, we initialize O₂ as ∅ and use s₁ to record the current MUF used in O₂, whose initial value is 0. Then, in Lines 4-20, with the |V| while loops, we generate |V| vertex orders. As mentioned above, Lines 5-8 let v_j be added into O₂, assign the FS set to it, and update s_j as s₀ = v₀. In the for-loop covering Lines 9-20, we organize the remaining vertices for O₂, one by one using the aforementioned greedy strategy. Finally, we select the vertex order that results in the minimum MUF. We can see that there are three cascading loops in Algorithm 3, and thus its time complex is O(|V|^3 · Δ), where |V| is the number of vertices and Δ is the maximum degree of G.

Algorithm 3: Procedure of FPGA

\begin{verbatim}
Input : G(V, E, \{v_i\}, \{d_{uv_j}\})
Output: An initial vertex order and an initial MUF
1. j ← 1;
2. O₁ ← ∅; % initialize vertex order O₁
3. s₁ ← 0; % record the MUF of O₁
4. while j ≤ |V| do
5. O₂ ← O₁ ∪ \{v_j\};
6. v₀ ← 1;
7. v₀ ← v₀;
8. s₀ ← v₀;
9. for i = 2 : |V| do
10. v ← ∅; % v is the next vertex entering O₂
11. v ← B; % B is large enough
12. v ← 0;
13. for k = 1 : |V| do
14. if v_k ≤ O₂ then
15. v ← \max_{v_k \in (O₂)} \{v_k + d_{uv_k} + 1\};
16. if v_k < v then
17. v ← v_k;
18. O₂ ← O₂ \{v\};
19. v ← v_k;
20. s₀ ← max{s₀, v}
21. j ← j + 1; O_j ← ∅; s_j ← 0;
22. O' = \arg \min_{O_j} s_j; s' = \arg \min_{O_j} s_j;
23. O' = \arg \min_{O_j} s_j; s' = \arg \min_{O_j} s_j;
\end{verbatim}

After getting the initial vertex order O' and initial MUF value s', we utilize NPM to improve the initial solution. In the next subsection, we will provide the details of NPM and our two-phase algorithm.

B. Two-phase Algorithm

The NPM method was proposed in [31] to leverage a general random method to solve global optimization problems, which includes POP. Specifically, we consider the following problem

\[\theta^* = \arg \min_{\theta} f(\theta), \]

where θ is the entire solution space and f(θ) : Θ → R is the objective function. Firstly, NPM gives a partitioning scheme to partition Θ systematically, and then it uses a iterative approach to optimize f(θ). In each iteration, NPM operates on a solution space η, which is a subset of Θ from the partitioning scheme and is named as the most promising region. Then, according to the partitioning scheme, we divide the most promising region η into M(η) disjoint subregions, and we call Θ \ η surrounding region. Note that, if the partition scheme obtains a region, then we say the region is valid, and if a valid region σ is formed by partitioning a valid region η, then σ is a subregion of η and η is called the super region of σ. Therefore, η is divided into M(η) disjoint subregions. Next, each of the M(η) subregions and the surrounding region are sampled by a random sampling scheme and we use the objective function to evaluate the samples and calculate the promising index for each subregion. If the promising index of a subregion among the M(η) subregions of η turns to be the best one, we set this subregion as the most promising region in the next iteration. If the surrounding region is proven to be the best, the method will backtrack to another region to be the next most promising region (e.g., a region that contains the previous most promising region or a subregion of Θ that contains the best sample). The most promising region is then partitioned and sampled with the procedure discussed above.

For DSA, the entire solution space Θ is the |V|! vertex orders and the objective function is Algorithm 2. In the second phase of the time-efficient approximation algorithm for DSA, the partitioning scheme is as follows: we first divide Θ into n disjoint subregions by choosing v₁, v₂, ..., v_\frac{Y}{2} as the first vertex in the ordered vertices, and then each of the |V| subregions is divided into |V| - 1 subregions by selecting the second vertex and so on so forth. Fig. 8 provides an illustrative example on the partitioning scheme for DSA. The random sampling scheme samples the surrounding region and each subregion uniformly and the most promising region will backtrack to the least superset if the promising index in the surrounding region is the best. The vertex order O' obtained by Algorithm 3 is the original most promising region.

![Fig. 8. Example on the partitioning scheme for DSA.](image_url)
proximation algorithm) and NPM (i.e., a random optimization algorithm). For Algorithm 3, as DSA is intractable according to Theorem 2, we focus on analysis on some specific graph types, e.g., complete graphs and bipartite graphs. For NPM, we provide two of its key properties, i.e., the convergence performance and the number of expected iterations.

A. Approximate Ratio of FPGA in Special Graphs

1) Complete Graph with Triangle Inequality: If a DSA conflict graph $G(V, E)$ is a complete graph, the FS sets assigned to the vertices must be pairwise disjoint. Hence, to satisfy the bandwidth requirement and spectrum configuration constraints, the union of the FS sets assigned to the vertices has a fixed cardinality, denoted as $V^w = \sum_{v_i} v^w_i$. Consequently, the optimization objective in this case is equivalent to minimizing the sizes of the guard-band between any two spectrally adjacent FS sets under the spectrum set distance constraint.

An algorithm, called Nearest Neighbor (NN) to solve MHP, can guarantee an approximate ratio for complete conflict graphs that satisfy the triangle inequality. Algorithm 4 shows the procedure of NN.

Algorithm 4: Procedure of NN

Input: $G(V, E), v_i, \{d_{v_i}\}$

Output: A Hamilton path P

1. set CurrentVertex ← v_i;
2. mark v_i visited;
3. while G still has unvisited vertices do
 4. find vertex v which is the nearest neighbor to CurrentVertex among all the unvisited vertices in G;
 5. CurrentVertex ← v;
 6. mark CurrentVertex visited;
 7. $P ← P \cup \{v\}$;
4. return P.

Let $|NN(G)|$ denote the length of the Hamilton path produced by Algorithm 4 and $|MHP(G)|$ denote the length of the minimum Hamilton path. Then according to [27, 32], we have the approximate ratio $\frac{|NN(G)|}{|MHP(G)|} \leq \frac{1}{2}(|\log_2(|V|)| + 1)$.

For a complete DSA conflict graph $G(V, E, \{v^w_i\}, \{d_{v_i}\})$ that satisfies the triangle inequality, we apply Algorithm 3 to G.

Note that, while the whole-loop in Algorithm 3 obtains a vertex order O_j in the j-th iteration. There is a proper spectrum assignment induced by O_j, which in fact represents a Hamilton path in G. Then, we have Lemma 1.

Lemma 1: If the conflict graph G is a complete graph that satisfies the triangular inequality, the Hamilton path induced by the order O_j from Algorithm 3 is equivalent to the result from Algorithm 4 with input v_j.

Proof: We assume that the order O_j obtained in the j-th while-loop of Algorithm 3 is $(v_{j_1}, v_{j_2}, ..., v_{j_n})$, where $v_{j_1} = v_j$. At first we have $|O_j| = 1$, which means that only v_{j_1} is included in order O_j. Then, with the greedy strategy of Algorithm 3, v_{j_2} is the nearest neighbor to v_{j_1} in G. Supposing this inference is true when $|O_j| = k$, where $k < |V|$, we assert $v_{j_{k+1}}$ is the nearest neighbor of v_{j_k} among those vertices that are not yet in O_j. After we have included the first k vertices in O_j, the innermost for-loop of Algorithm 3 searches the $(k+1)$-th vertex i.e., $v_{j_{k+1}}$, whose FS start-index is the smallest among those unordered vertices. We use v_i to denote the nearest neighbor of v_{j_k} among all the unordered vertices. Since the triangle inequality is held, the spectrum set distance constraint for $v_{j_{k+1}}$ only comes from v_i, i.e., $v_{j_{k+1}} = v_i^w + d_{v_i}v_{j_{k+1}} + 1$. As $d_{v_i}v_i$ is the smallest guard-band size, $v_{j_{k+1}} = v_i^w + d_{v_i}v_i + 1$ reaches the minimum. Therefore, using the greedy strategy, we can get $v_{j_{k+1}} = v_i$ and the proof is verified.

In fact, we select the minimum one from $\{O_1, O_2, ..., O_n\}$ after $|V|$ while-loops in Algorithm 3. Let $|FPGA(G)|$ be the final output value and $\text{opt}(G)$ be the optimal value for a DSA conflict graph G. Then, according to Lemma 1 and the analysis above, $|FPGA(G)| - |V^w|$ and $\text{opt}(G) - |V^w|$ are the length of the Hamilton path produced by Algorithm 4 and $|MHP(G)|$ respectively. Then, we get the following theorem.

Theorem 6: If $G(V, E, \{v^w_i\}, \{d_{v_i}\})$ is a complete DSA conflict graph that satisfies the triangle inequality, the approximate ratio of Algorithm 3 would not be larger than $\frac{1}{2}(|\log_2(|V|)| + 1)$.

Proof: According to the analysis above, we have $|FPGA(G)| - |V^w| \leq \frac{1}{2}(|\log_2(|V|)| + 1)$. As $|FPGA(G)| \geq \text{opt}(G)$, we have $|FPGA(G)| - |V^w| \leq \frac{1}{2}(|\log_2(|V|)| + 1)$.

2) Bipartite Graphs: Then, we consider the case in which the DSA conflict graph is a bipartite graph. Before the analysis, we introduce the following definition.

Definition 1: For a bipartite graph $G(V_1, V_2)$, V_1 and V_2 are the two parts of the vertices in G. We call its vertex labeling is good if the vertices are labeled in the way that the vertices in V_1 are labeled as the first $|V_1|$ ones, i.e., $v_1, v_2, ..., v_{|V_1|} = V_1$, and apparently, the remaining vertices are all in V_2 and labeled as $\{v_{|V_1|+1}, v_{|V_1|+2}, ..., v_{|V|}\} = V_2$.

For a bipartite graph $G(V_1, V_2)$, the time needed to get a good vertex labeling is $O(|E|)$.

Theorem 7: If a DSA conflict graph $G(V, E, \{v^w_i\}, \{d_{v_i}\})$ is a bipartite graph and we label its vertices in a good way, Algorithm 3 can get the optimal solution for DSA.

Proof: Let V_1 and V_2 be the two parts of a bipartite V. According to Algorithm 3 and Theorem 3, we just need to prove the MuFI obtained with order O_1 in Algorithm 3 equals $\max \{d_{v_i}v_i + v^w_i + v^w_j\}$. After v_1 has entered O_1, since V_1 is an independent set, Algorithm 3 includes vertices $v_{i+1}, v_{i+2}, ..., v_{|V_1|}$ in sequence and $v^w_i = 1, 1 \leq i \leq |V_1|$. Also, because V_2 is an independent set, $v^w_i = \max \{d_{v_i}v_i | v_i, v_j \in E^{\infty}\}$. Therefore, considering

4Actually, for this special case, Double Minimum Spanning Tree algorithm [33] of MHP can be utilized for DSA, which can guarantee a 2-approximation ratio with the similar proof of Theorem 6.
the four constraints of DSA, we get the MUFI of O_1 as
\[
\max \{d_{v_i v_j} + u_i^v + u_j^v\}.
\]

B. Convergence Performance and Expected Number of Iterations of Two-phase Algorithm

1) Convergence Performance: For Algorithm 3, we assume that the partitioning scheme has been defined and let Σ denote the set of all the valid regions, where $\sigma(0)$ is the initial region state, i.e., the initial vertex order that is obtained, and $\sigma(k) \in \Sigma$ is the region state of the k-th iteration. Then, \[\{\sigma(k)\}_{k=0}^\infty\] is the iteration sequence and the region state $\sigma(k+1)$ depends on the estimated values of the promising index in the state $\sigma(k)$, which is related with the sampling points. Therefore, \[\{\sigma(k)\}_{k=0}^\infty\] is a Markov chain with state space Σ, and we have Theorem 8 as [31].

Theorem 8: $\eta \in \Sigma$ is an absorbing state of the Markov chain \[\{\sigma(k)\}_{k=0}^\infty\], if and only if η is the optimal vertex order for DSA.

Proof: Firstly, we prove the “if” part and use Algorithm 2 as the object function $f(\cdot)$ to evaluate the promising index of a region. If we assume that η is the optimal vertex order for DSA, then the transition probability of staying in η is: $P_{\eta \eta} = P[f(\eta) = f(\eta)] = 1$. Hence, η is an absorbing state. Next, we prove the reverse. Supposing ξ is an absorbing state and ξ does not represent the optimal order for DSA, the transition probability of not staying in ξ is: $P_{\xi \theta} = P[f(\xi) > f(\theta)] \geq P[\text{randomly select a point } \theta \in \Theta \text{ and } f(\theta) < f(\xi)] > 0$. This inequality reveals that ξ is a transient state, which leads to a contradiction. Therefore, we finish the proof.

2) Expected Number of Iterations: The expected number of iterations to reach the optimal vertex order directly impacts the time-efficiency of our two-phase algorithm. To evaluate the expected number of iterations, we need to introduce several random variables and symbols [34]. We use Σ to represent the state space, σ_{opt} to represent the optimal solution regions, i.e., the optimal vertex order. We define $\Sigma_1 = \{\eta \in \Sigma | \sigma_{opt} \subseteq \eta\}$, i.e., the valid regions that include σ_{opt} and $\Sigma_2 = \{\eta \in \Sigma | \sigma_{opt} \not\subseteq \eta\}$, i.e., the valid regions that do not include σ_{opt}. Then, we have $\Sigma = \sigma_{opt} \cup \Sigma_1 \cup \Sigma_2$. We use Y_η to denote the number of visits of a state $\eta \in \Sigma$ and use T_η to represent its hitting time (the first time of visiting this state). Besides, we denote the probability of an event under constraint that the chain starts in a state $\eta \in \Sigma$ as $P_\eta[\text{event}]$.

According to [34], the number of iterations for the Markov chain to reach an absorbing state Y equals the number of iterations to visit all the transient states plus one (i.e., the transition to the absorbing state), which is $Y = 1 + \sum_{\eta \in \Sigma_2} Y_\eta + \sum_{\eta \in \Sigma_2} Y_\eta$.

As Σ is finite, we get the expected number of iterations as
\[
\mathbb{E}[Y] = 1 + \sum_{\eta \in \Sigma_1} \mathbb{E}[Y_\eta] + \sum_{\eta \notin \Sigma_2} \mathbb{E}[Y_\eta].
\]

Theorem 9: Let $\sigma(0)$ be the initial vertex order provided by Algorithm 3. The expected number of iterations for our two-phase algorithm to get the optimal solution for DSA is
\[
\mathbb{E}[Y] = 1 + \sum_{\eta \in \Sigma_1} \frac{1}{P_{\eta}[T_{\sigma_{opt}} < T_\eta]} \cdot P_{\eta}[T_\eta < \min\{T_{\sigma(0)}, T_{\sigma_{opt}}\}] + \sum_{\eta \in \Sigma_2} P_{\eta}[T_\eta < \min\{T_{\sigma(0)}, T_{\sigma_{opt}}\}] + \frac{1}{P_{\eta}[T_{\sigma_{opt}} < T_\eta]} \cdot P_{\eta}[T_\eta < \min\{T_{\sigma(0)}, T_{\sigma_{opt}}\}],
\]
\[\tag{22}\]

Proof: As given in [31], the expected number of visits to the transient states is
\[
\mathbb{E}[Y_\eta] = \begin{cases} P_{\eta}[T_{\sigma_{opt}} < T_\eta], & \eta \in \Sigma_1, \\ P_{\eta}[T_\eta < \min\{T_{\sigma(0)}, T_{\sigma_{opt}}\}], & \eta \in \Sigma_2. \end{cases}
\]
\[\tag{23}\]

By substituting Eq. (23) in Eq. (21), we finish the proof.

In each iteration, we at most take n sampling points in the n valid regions. Each sampling and calculating of the promising index will use the Procedure O-L, whose time complexity is $O(|E|)$. Therefore, the expected time complexity for the second phase is $O(|V| \cdot |E| \cdot \mathbb{E}[Y])$.

Although we have Theorem 9, calculating the expected number is still tough. Hence, we leverage the approximation stochastic model in [34]. Specifically, in each iteration, if the promising index of the surrounding region is the best, we backtrack to the entire solution space Θ. Let P_0 be the probability of the two-phase algorithm moving towards the correct direction, i.e., backtracking if the optimal solution is not in the current most promising region and selecting the correct subregion otherwise. Then, we have Theorem 10.

Theorem 10: Assuming the above approximation stochastic model is held, the expected number of iterations for two-phase algorithm to find the optimal solution for DSA is
\[
\mathbb{E}(|Y|) = \frac{1}{P_0} \left(1 - \frac{(1 - P_0)^n}{n!}\right) - \sum_{d=0}^{n-2} \frac{(n-d)!}{n!} \left(1 - \frac{P_0}{P_0^m - 1}\right)^d \cdot \left(\frac{1}{P_0^m - 1} \cdot \frac{P_0 - P_0^m}{1 - P_0}\right),
\]
\[\tag{24}\]

where $n = |V|$ is the number of vertices in G.

Proof: Theorem 10 can be proved using the similar procedure that proves Theorem 2 in [34].

With the approximate expected number, we can set the stopping criteria to terminate the two-phase algorithm under certain probability significance. We utilize the expected number in Eq. (24) and apply the Markov inequality: $P(|Y| \geq \varepsilon) \leq \frac{1}{\varepsilon} \mathbb{E}(|Y|)^\alpha$ to get the upper bound of the number of iterations for finding the optimal solution for DSA.

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed two-phase algorithm. As DSA is a new spectrum assignment model, there is no existing heuristic algorithm for comparison. Hence, we applied Pure Random Algorithm (PRA) as the benchmark algorithm, in which we randomly selected a vertex order at each iteration and calculate the optimal solution.
for this vertex order by using Algorithm 2. The ILP model for DSA was solved by MATLAB2015a with the CPLEX toolbox and the approximate solutions from our two-phase algorithm and PRA were both obtained with MATLAB2015a under the same number of iterations. We run 30 independent simulations on each conflict graph and average the results to ensure sufficient statistical accuracy. We set the probability of moving in the correct direction as $P_0 = 0.5$ in Eq. (24) and the significance probability as 90%. All the simulations run on a computer with 3.2 GHz Intel(R) Core(TM) i5-4690S CPU and 8 GBytes RAM.

A. Simulation Setup

We perform simulations in different scenarios:

- **Random graphs**: We use the NetworkX package [35] to generate random graphs, in which each vertex pair is directly connected with a probability of 0.5, as DSA conflict graphs. The weights of vertices and edges are randomly chosen within $[1, |V|]$. Specifically, Fig. 9 shows the six random graphs that are used in the simulations. They have $|V| \in [14, 19]$. Hence, we assessed the performance of Algorithm 3 and our two-phase algorithm under the pure random conditions.

- **Complete graphs with random weights**: To reveal the effectiveness of the two-phase algorithm, we also use complete conflict graphs with $|V| \in [14, 19]$, whose vertex and edge weights were also randomly chosen within $[1, |V|]$, as the DSA conflict graphs.

- **Edge number**: By intuition, the more edges or the larger the biggest guard-band size that a conflict graph has, the bigger its MUFI is. Therefore, we apply the two-phase algorithm on six random conflict graphs, each of which has 14 vertices and the number of edges ranges within $[15, 30, 45, 60, 75, 90]$ as shown in Fig. 10. The vertex and edge weights are still chosen randomly as above.

- **14-node NSFNET and 28-node US Backbone**: To mimic the realistic situations, we run simulations on two practical EON topologies, i.e., the 14-node NSFNET and the 28-node US Backbone [13]. Here, each lightpath request is randomly generated and we use the shortest path to route it. The guard-band requirement between two lightpaths is computed as the number of common links on their routing paths. Following these principles, DSA conflict graphs are constructed and we applied the two-phase algorithm to solve the DSA problems.

B. Simulation Results

1) Random Graphs: Table III presents the average MUFI computed by PRA, FPGA, two-phase and ILP-DSA, respectively for the six random topologies in Fig. 9. The relative gaps (errors-optimal ratios) with a 95% confidence interval are shown in Fig. 11. Table III, both the initial solutions from FPGA and the improved solutions from the two-phase algorithm are better than those from PRA under the same number of iterations. We also observe that the solutions are truly improved in the second phase, since the MUFI from the two-phase algorithm are closer to the optimal one obtained from FPGA, as shown in Fig. 11. Another notable fact is that the results of Fig. 9(b) are better than those in Fig. 9(a). We observe that there is a vertex with degree one in the topology of Fig. 9(b), which is different from Fig. 9(a). This fact implies that the topology does have impact on the final MUFI.

2) Random Complete Graphs: Table IV presents the average MUFI obtained in the six random complete graphs. The relative gaps with a 95% confidence interval are shown in Fig. 12. We can observe the similar trends as discussed above for random conflict graphs. Moreover, we can see that both the relative gaps and the confidence intervals in complete graphs are smaller than those in random graphs for two-phase, FPGA and PRA. This can be interpreted as follows. In complete graphs, the FS set assigned to certain vertices could be overlapped, and hence the optimal value of MUFI would be smaller. However, the overlapping FS sets make it more difficult for the three algorithms to optimize the spectrum assignment, which leads to smaller relative gaps.
and confidence intervals in complete graphs.

<table>
<thead>
<tr>
<th>Table IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Results for Random Complete Graphs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># vertices</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA</td>
<td>169.0</td>
<td>194.1</td>
<td>238.7</td>
<td>259.1</td>
<td>283.3</td>
<td>297.3</td>
</tr>
<tr>
<td>FPGA</td>
<td>145.0</td>
<td>164.7</td>
<td>197.4</td>
<td>216.5</td>
<td>234.4</td>
<td>246.1</td>
</tr>
<tr>
<td>Two-phase</td>
<td>143.6</td>
<td>163.6</td>
<td>196.6</td>
<td>213.3</td>
<td>231.3</td>
<td>241.5</td>
</tr>
<tr>
<td>ILP-DSA</td>
<td>142.4</td>
<td>160.5</td>
<td>191.1</td>
<td>207.6</td>
<td>223.7</td>
<td>231.8</td>
</tr>
</tbody>
</table>

3) Edge number: Fig. 13 plots the simulation results on six random graphs in Fig. 10. The results on MUFI from two-phase algorithm and ILP-DSA are marked as purple and blue bars respectively, and the approximate ratio is plotted in red line. It can be seen that the approximate ratio of the two-phase algorithm increases with the number of edges in the conflict graph.

These results coincided well with the intuitive observation that the more edges or the bigger edge weights that a graph has, the more spectrum resources that DSA would consume. The feature also inspires us that a good routing algorithm should be used to reduce the common links and thus further improve the quality of the results for DSA in EONs.

4) 14-vertex NSFNET and the 28-vertex US Backbone: We evaluate the performance of two-phase algorithm with two practical EON topologies. In Table V, we can see that ILP-DSA can only get the optimal solution when the number of lightpaths is within 50. Meanwhile, our two-phase algorithm can obtain almost the same solutions as ILP-DSA.

Based on all these observations, we can conclude that our proposed two-phase algorithm can approximate the optimal solution for DSA well.

IX. Conclusions

In this paper, we studied the DSA problem in EONs. By reducing MHP and graph coloring to DSA, we have proven that DSA is \(NP\)-hard and inapproximable. Then, we analyzed and provided the upper and lower bounds for the optimal solutions of DSA, and proved that they are tight. Next, by leveraging a vertex order and developing a polynomial-time algorithm (i.e., Algorithm 2), we transformed DSA into POP. Then, we developed a two-phase algorithm to solve DSA time-efficiently. For the first phase (i.e., Algorithm 3) in the algorithm, we theoretically proved that its time complexity is \(O(|\mathcal{V}|^3 \cdot \Delta)\), and it can get the optimal solution for bipartite conflict graphs and guarantee an approximate ratio of \(O(\log(|\mathcal{V}|))\) for complete conflict graphs with triangle inequality. The second phase utilized a random optimization algorithm, and we applied theoretical analysis to obtain the expected number of iterations for getting the optimal solution. The numerical simulation results demonstrated that our two-phase algorithm can find the near-optimal solutions for DSA in various conflict graphs.

Acknowledgments

The preliminary version of this paper has been published as a post-deadline paper [36] in the proceedings of the 21st European Conference on Networks and Optical Communications (NOC 2016).

References

TABLE V

<table>
<thead>
<tr>
<th>ILP-DSA</th>
<th>Two-phase</th>
<th>PRA</th>
</tr>
</thead>
<tbody>
<tr>
<td># requests</td>
<td># requests</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>201</td>
</tr>
<tr>
<td>50</td>
<td>420</td>
<td>423</td>
</tr>
<tr>
<td>60</td>
<td>—</td>
<td>469</td>
</tr>
<tr>
<td>70</td>
<td>—</td>
<td>598</td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSFNET</th>
<th>Backbone</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>76</td>
</tr>
<tr>
<td>153</td>
<td>177</td>
</tr>
<tr>
<td>US</td>
<td>50</td>
</tr>
<tr>
<td>Backbone</td>
<td>150</td>
</tr>
<tr>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>70</td>
<td>250</td>
</tr>
<tr>
<td>80</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILP-DSA</th>
<th>Two-phase</th>
<th>PRA</th>
</tr>
</thead>
<tbody>
<tr>
<td># requests</td>
<td># requests</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>30</td>
<td>186</td>
<td>189</td>
</tr>
<tr>
<td>50</td>
<td>351</td>
<td>363</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>1339</td>
</tr>
<tr>
<td>2843</td>
<td>4666</td>
<td></td>
</tr>
<tr>
<td>3784</td>
<td>7743</td>
<td></td>
</tr>
<tr>
<td>6347</td>
<td>13020</td>
<td></td>
</tr>
<tr>
<td>8140</td>
<td>17303</td>
<td></td>
</tr>
</tbody>
</table>

References

