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Abstract—It is known that software-defined elastic optical
networks (SD-EONs) facilitate optical networking that provides
better network programmability, more powerful manageability,
and more flexible service provisioning capability. Moreover, the
hierarchical architecture of multi-broker based multi-do main SD-
EONs can not only improve the network scalability but also
maintain the autonomy of each administrative domain. In this
paper, we study why and how the brokers should cooperate with
each other to provision inter-domain lightpaths in multi-broker
based multi-domain SD-EONs. We first formulate a cooperative
market in which the brokers negotiate about their market shares
(i.e., the opportunities to provision inter-domain lightpaths) and
seek for a mutual agreement with Nash bargaining [1]. Then,
we design a mathematical model to describe the market as
well as the brokers’ behaviors in it. An effective algorithm is
derived from the model to solve the Nash bargaining problem for
allocating lightpath requests among the brokers. The proposed
algorithm also addresses the resource collision during request
provisioning and can achieve collision-free request allocation.
Extensive simulations verify the effectiveness of our proposal.

Index Terms—Software-defined elastic optical networks (SD-
EONs), Multi-broker, Cooperative game, Nash bargaining.

I. I NTRODUCTION

RECENTLY, with the rapid growth of emerging applica-
tions, backbone optical networks would need to undergo

dramatic changes to adapt to not only the tremendous traffic
increase but also the highly-dynamic traffic fluctuation [2].
For instance, dynamic lightpath establishment with flexible
bandwidth allocation and millisecond-scale setup time might
be required [3]. Hence, elastic optical networks (EONs), which
can be more flexible, adaptive and spectrum-efficient than the
traditional fixed-grid wavelength-division multiplexing(WD-
M) networks, have been considered as a promising future
backbone infrastructure [4]. Specifically, with sub-wavelength
switching capability, EONs can set up lightpaths by grooming
a series of spectrally-contiguous narrow-band (e.g., 12.5 GHz)
frequency slots (FS’) to provision just-enough bandwidths
[5, 6]. Moreover, by leveraging the idea of software-defined
networking (SDN), which decouples the control and data
planes and provides new networking possibilities with cen-
tralized network control and management (NC&M) [7], one
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can further explore the advantages of EONs to realize the
dynamic lightpath establishment for bandwidth-on-demand.
Specifically, software-defined EONs (SD-EONs) [8-10] can be
built to achieve effective spectrum management and enhanced
network programmability.

Meanwhile, we should notice that a practical backbone
network usually covers a relatively large geographical area,
and equips network elements from multiple vendors. Hence,
it is inevitable to extend the research to address multi-domain
SD-EONs. Considering the autonomy of each administrative
domain, the end-to-end service provisioning that traverses sev-
eral domains would be more complex to realize than that in a
single domain. Therefore, it is essential to design a service pro-
visioning framework that works effectively for multi-domain
SD-EONs. Previously, based on the idea that the domain
managers (DMs) collaborate in a peer-to-peer manner to provi-
sion inter-domain lightpaths, people have designed several flat
frameworks [10, 11]. However, later studies in [12, 13] have
suggested that the hierarchical framework, which introduces a
resource broker to coordinate the DMs, can achieve more cost-
effective and scalable inter-domain provisioning. Specifically,
the broker is placed at a higher NC&M level than the DMs and
works as a centralized orchestrator. Although the practicalness
of the hierarchical framework has already been experimentally
verified in [14] and the standardization regarding it is in
progress [15], the single-broker based scenario still bears a
few drawbacks. First of all, high availability can hardly be
realized with a single broker, since it is known that in Google’s
software-defined wide-area network (i.e., B4), management
plane failures outweigh those in the data plane [16]. More
importantly, the autonomy of each domain would be violated
as the broker plays a role of monopoly in such multi-domain
SD-EONs [17]. To address these issues, the multi-broker based
hierarchical framework was proposed in [18], which assumed
a management plane that consists of multiple market-driven
brokers that can compete or cooperate to obtain inter-domain
lightpath requests to serve. Therefore, each DM can subscribe
to several brokers and select the right one to grant the offer
of inter-domain lightpath provisioning. Specifically, driven by
the incentive of gaining more service offers from the DMs,
the brokers try to provide the most cost-effective provisioning
schemes to serve the DMs’ lightpath requests. Meanwhile, the
DM that submits an inter-domain lightpath request can choose
the “best” provisioning scheme freely according to its own
need, and thus the autonomy of each domain is guaranteed.

Note that, even though multiple brokers are placed in the
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management plane, the inter-domain lightpath provisioning
procedure is actually exactly the same as that in the conven-
tional hierarchical framework [12, 13], after each lightpath
request has been assigned to a broker. Hence, the practicality
of the multi-broker based hierarchical framework would not
be an issue. This has already been verified in our previ-
ous work [17], where we realized the multi-broker based
management plane with existing SDN protocol and software
platforms, and conducted experiments to demonstrate multi-
broker based inter-domain lightpath provisioning in a non-
cooperative market. Specifically, based on the fact that the
brokers have conflicting interests in gaining service offers from
the DMs, we came up with a simple market to let the brokers
compete with each other [17, 19, 20]. And when the DM
has collected the provisioning schemes as well as the bidding
prices from all the brokers that it subscribes to, it choosesthe
lowest bidder to grant the service offers. Nevertheless, this
non-cooperative scenario bears two drawbacks. Firstly, itonly
considers the competition among the brokers, which can easily
leads to the prisoners’ dilemma. This means that to win a
service offer, the brokers can only submit the lowest-possible
bids [17]. Hence, the non-cooperative market cannot secure
the brokers’ interests. Secondly, as the lightpath requests are
provisioned with the schemes from non-cooperative brokers,
joint optimization on resource allocation would not be feasible
and thus the DMs’ interests cannot be fully secured either.

On the other hand, if the brokers can cooperate with each
other based on the consensus that each of them would perform
worse otherwise, the market would become a better place
for both the brokers and DMs [21]. Hence, in this work, we
extend our preliminary study in [21] to investigate why and
how the brokers should cooperate when provisioning inter-
domain lightpaths. We first formulate a cooperative market
in which the brokers negotiate about their market shares (i.e.,
the opportunities to provision pending inter-domain lightpaths)
and seek for a mutual agreement with Nash bargaining [1]
based on their performance,i.e., their expected utilities and
reputations. Then, we design a mathematical model to de-
scribe the cooperative market and the brokers’ behaviors in
it. An algorithm is derived from the model to solve the Nash
bargaining problem for allocating lightpath requests among
the brokers. We also consider the resource collision during
lightpath provisioning and improve the proposed algorithmto
achieve collision-free request allocation. Extensive simulations
are used to verify the effectiveness of our proposal. The rest
of the paper is organized as follows. Section II surveys the
related work. The mathematical model for the cooperative
market to facilitate inter-domain service provisioning inmulti-
domain SD-EONs is discussed in Section III. In Section IV, we
propose the algorithm to solve the Nash bargaining problem
and improve it to achieve collision-free request allocation.
The performance evaluation is presented in Section V. Finally,
Section VI summarizes the paper.

II. RELATED WORK

Previously, people have carried out experiments to study
the performance of SD-EON on programmability, resiliency,

provisioning efficiency, and resource utilization [22-27]. How-
ever, these studies only discussed the single-domain scenario.
Then, with the awareness on the necessity of multi-domain
organization in backbone networks, researchers started to
consider multi-domain SD-EONs [9-12, 28]. In [10], Casellas
et al. proposed to coordinate the operations of an integrated
path computation module (PCE) and several OpenFlow con-
trollers (i.e., DMs) to realize service provisioning in multi-
domain SD-EONs. Our studies in [9, 11] proposed inter-
domain protocols to facilitate DMs to operate in a peer-to-
peer way for inter-domain service provisioning. Nevertheless,
these investigations on multi-domain SD-EONs relied on the
flat NC&M framework, which might not scale well.

To address the scalability issues, the hierarchical framework
that places a broker on top of the DMs for cross-domain
coordination has been designed in [12]. As a single broker
plays the role of monopoly and can violate the autonomy of
each domain, the market-driven multi-broker based hierarchi-
cal framework has been proposed in [18]. Note that, game
theory [1] provides us a powerful mathematical tool to ana-
lyze the competition and cooperation among rational players,
and hence, it has already been leveraged to solve various
problems in optical networks [29, 30]. In [18], the authors
discussed how the market-driven brokers should inter-operate
to facilitate cost-effective inter-domain service provisioning,
while the DMs provide intra-domain status and resources
to assist the brokers. Chenet al. leveraged game theory to
model the brokers’ inter-operation as a non-cooperative game
to analyze the competitive market behaviors of them [17, 20].
Specifically, the brokers (i.e., the players) bid for lightpath
provisioning services while the one that asks for the lowest
price would be selected by the DM as the winning bidder.
Nevertheless, in this non-cooperative market, the interests of
the brokers might not be secured because of the prisoners’
dilemma,i.e., the brokers have to decrease their service prices
for increasing the possibilities of being chosen by the DM.

O/E/O O/E/O

O/E/O

Fig. 1. Network architecture of multi-broker based multi-domain SD-EONs.

To avoid the issues brought by the vicious competition
among brokers, we formulated a cooperative market for the
brokers in [21]. Specifically, the brokers leverage Nash bar-
gaining to distribute the lightpath requests according to each
other’s expected profit,i.e., if a broker would expect a higher
profit per request, it would get a smaller number of requests,
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andvice versa. Compared with the non-cooperative market, the
major advantage of this scenario is that it allocates lightpath
requests among the brokers in a fairer way such that the overall
profit of all the brokers can be improved. Meanwhile, it ensures
that the Nash bargaining among the brokers would not degrade
their services to the DMs,i.e., the request blocking probability
would not increase. Note that, according to [31], which studied
cooperative resource allocation in wireless networks, it is
essential to design a time-efficient and sophisticated algorithm
to solve the Nash bargaining problem for partitioning the
market shares. This, however, has not been fully addressed in
[21], and the algorithm for allocating lightpath requests among
the brokers can still be improved. Also, the resource collision
during lightpath provisioning has not been resolved properly.

III. C OOPERATIVE MARKET FOR MULTI -BROKER BASED

INTER-DOMAIN SERVICE PROVISIONING

A. Network Architecture

Fig. 1 shows the network architecture of a multi-broker
based multi-domain SD-EON that uses cooperative market
for inter-domain service provisioning. The network employs
a hierarchical framework, and on top of the control and data
planes, we introduce a management plane to work as the
auction table of the brokers. The data plane is divided into
multiple administrative domains, each of which has a DM
in the control plane to manage the optical switches in the
domain for lightpath assembling. As each DM only main-
tains the information regarding its own domain, the brokers
are introduced in the management plane to obtain global
network information by integrating the intra-domain status
provided by the DMs and coordinate the DMs to build inter-
domain lightpaths. Specifically, if a DM is involved in the
provisioning of an inter-domain lightpath, it should abstract
and submit an intra-domain virtualized topology (ID-VT) to
the brokers, according to the service-level agreement (SLA)
between them. Here, the DMs are actually telecom operators,
while the brokers should be owned and operated by third-
party organizations just like the brokers in stock markets.
After obtaining all the required ID-VTs, each broker calculates
an inter-domain provisioning scheme with the routing and
spectrum assignment (RSA) algorithms in the service strategy
pool, prices the provisioning scheme, and returns the results
to the DM that initiated the inter-domain lightpath request.

Note that, there is no restriction on how many brokers that
a DM can subscribe to. Hence, in the extreme case, the DMs
and brokers can form a bipartite graph (i.e., one row is the
DMs and the other row is the brokers) with full connectivity
in between, which means that a DM can broadcast its inter-
domain lightpath requests to all the brokers in the management
plane. However, in practice, this would not be necessary, and
a DM only needs to subscribe to a subset of the brokers.

The multi-broker based architecture makes the inter-domain
service provisioning more diversified, which on one hand
offers DMs more options but on the other hand leads to
conflicting interests among the brokers. Note that, if we only
consider the competition among the brokers, the brokers can
easily be trapped in the prisoners’ dilemma [17]. Therefore,

the brokers should cooperate with each other based on the
presumption that each of them would perform worse oth-
erwise. This can be realized by introducing a cooperative
market in which the brokers negotiate about their market
shares and seek for a mutual agreement with Nash bargaining
[1]. Basically, with the market partition engine (MPE)1 in Fig.
1, the Nash bargaining result can be obtained for each broker,
i.e., a set of inter-domain lightpath requests is allocated to
it. Then, the broker will only handle the requests in its own
market share. Note that, the cooperative scenario would not
overlook the rationality of each broker since the principleof
Nash bargaining ensures that each broker will only agree to
be cooperative if its profit would decrease otherwise. Mean-
while, the cooperation among the brokers would not eliminate
their competition because the market share of each broker
still depends on the relative competitiveness of its service
against others’, and moreover, we allow the DMs to reject
the provisioning schemes that have unreasonably high prices,
for avoiding price alliances.

B. Inter-Domain Service Provisioning

1) Overall Procedure: We model an SD-EON withN
domains asG = Gn(Vn, En), n ∈ [1, N ], whereVn andEn

denote the node and fiber link sets inDomain-n, respectively.
Broker-k represents thek-th broker (k ∈ [1,K]) in the
management plane, and an inter-domain lightpath request is
denoted asri(si, di, Bi, Ti), wheresi and di are the source
and destination nodes (si ∈ Vn1

, di ∈ Vn2
, n1 6= n2), Bi is the

bandwidth requirement in Gb/s, andTi is the requested life-
time. Note that, although there are electrical IP routers atthe
edge of each domain to aggregate traffics, we assume that the
traffic in an inter-domain lightpathri would not be forwarded
to such IP routers before it reachesdi. This is because there
are practical demands to do so [16] and the lightpaths that are
terminated by the IP routers in between domains can be treated
as intra-domain lightpaths. Each inter-domain lightpath request
is submitted to the management plane by the DM that controls
the source domain, and the requests from the DMs are stored in
the request store queues of the brokers (as shown in Fig. 1) and
processed in batches at fixed intervals. The number of requests
handled by the brokers each time is denoted asM , which is not
a constant, and we useR = {ri, i ∈ [1,M ]} to represent the
request set. The provisioning scheme ofBroker-k for request
ri is SC(k, i). Based on this network model, the procedure of
multi-broker based inter-domain service provisioning in the
cooperative market is as follows.

• Step 1: Each inter-domain requestri is reported by the
DM of its source domain to the brokers, where they are
stored in the request store queues.

• Step 2: For eachri ∈ R, every broker

– collects ID-VTs from the related DMs, which submit
ID-VTs according tori and their SLAs with the broker;

– calculates feasible provisioning schemes as well as
the corresponding base costs with the global topology

1Note that, MPE should be owned and operated by a third-party organiza-
tion just like the brokers.
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Fig. 2. Example on DMs abstracting ID-VTs for different brokers, (a) Topology of a multi-domain SD-EON, (b) Spectrum usage on fiber links and procedure
to obtain VLs for 5→9, and (c) ID-VTs submitted to two brokers for serving an inter-domain lightpath fromNode 5 to Node 15.

aggregated from the ID-VTs, using the RSA algorithms
in its service strategy pool;

– chooses the provisioning scheme with the lowest base
cost and determines the service price for it.

• Step 3: The brokers report their provisioning schemes
and expected profits for the requests inR to MPE.

• Step 4: MPE requests for the resource collisions among
the submitted provisioning schemes from the DMs, which
check the provisioning schemes’ resource usages in their
domains and report conflicts.

• Step 5: MPE considers the resource collisions, determines
how to distribute the requests inR by solving the Nash
bargaining, and returns the results to the brokers.

• Step 6: After receiving the Nash bargaining result from
MPE, every broker informs the related DMs about its pro-
visioning schemes and corresponding service prices for
the requests in its market share. Once a DM agrees with
the deal, the broker gets the payment for its provisioning
service and then it coordinates the related DMs to build
the corresponding inter-domain lightpath.

2) Intra-Domain Virtualized Topology (ID-VT): Similar to
our previous work [17], an ID-VT inStep 2 consists of the
virtual links (VLs) that a DM abstracts from related path
segments for assisting the establishment of an inter-domain
lightpath in its domain. Specifically, a VL represents a path
segment that is from the source node to one border node in the
source domain, from one border node to the destination node
in the destination domain, or in between two border nodes in
an intermediate domain. The VL reports the information on
the physical length and spectrum usage of the path segment,
with which the brokers can calculate RSA schemes for the
inter-domain lightpath. Fig. 2 shows an intuitive example on
how the ID-VTs are abstracted by the DMs. Here, we have
two brokers,i.e., Broker-1 and Broker-2, and both of them
try to provision an inter-domain lightpath fromNode 5 to
Node 15. Since both of the domains in the multi-domain SD-
EON in Fig. 2(a) will be involved in the inter-domain service
provisioning, the brokers ask for ID-VTs from the two DMs.

We assume that the SLAs determine thatDM-1 needs to
abstract ID-VTs forBroker-1 based on shortest-path routing,
while Broker-2 should be offered with ID-VTs that consist of
VLs with the most available spectra. SinceDM-1 controls the
source domain of the inter-domain lightpath, it should abstract
VLs from the source node (i.e., Node 5) to each of the border

nodes. Then, with the topology and FS usages in Figs. 2(a) and
2(b), we can see that for the VL fromNode 5 to Node 9, DM-
1 uses the path segments 5→4→7→9 and 5→4→3→7→9 as
the VLs for Broker-1 and Broker-2, respectively. Hence, in
Fig. 2(c), although the two brokers obtain integrated ID-VTs
with the same connectivity, the VLs actually have different
physical characteristics (i.e., lengths and FS usages).

3) Brokers’ Pricing Strategy: In Step 2, after calculating
feasible provisioning schemes with the RSA algorithms in its
service strategy pool, each broker needs to first determine the
base costs of the schemes. Note that, although the broker can
coordinate multiple DMs to set up an inter-domain lightpath,
it still needs to pay the resource cost, which is the base costof
its service. In this work, we calculate the base cost ofBroker-k
provisioning a requestri as

Ck
i = Ti · (SU

k
i · cS +REk

i · cR), (1)

where SUk
i and REk

i refer to the spectrum utilization
and number of optical-electrical-optical (O/E/O) regenerators
needed for setting upri, cS and cR are the unit prices of
spectrum and regenerator usages, respectively, andTi is the
request’s life-time. With Eq. (1), the broker can select the
provisioning scheme with the lowest base cost to generate its
bid. Next, the broker should determine the profit ratioδki for
servingri, and the final service price for its bid would be

P k
i = Ck

i · (1 + δki ). (2)

Apparently, none of the market-driven brokers would admit
to provide services for free, and thus we assume that the
profit ratio has a minimum valueδmin > 0, i.e., we have
δki ≥ δmin. On the other hand, we have to ensure that the
brokers cannot inflate their service prices arbitrarily. This can
be done by letting the DMs reject the provisioning schemes
with unreasonably high prices. Therefore, through the whole
process, the DMs have the inter-domain lightpath requests
generated in their domains served cost-effectively, whichis a
must-have feature of telecom operators. Note that, the ultimate
undertaker ofP k

i in Eq. (2) is the DM’s client who submits the
lightpath request, and thus the DM will also have economic
gain from the process. However, since this paper mainly
focuses on the cooperative market of the brokers, we do not
consider the trading between the DMs and their clients.

Definition The satisfaction ratio represents the probability
that a DM would accept the provisioning service of a broker
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based on its price, which can be denoted as a function

fsr(g
k
i ) = fsr(

P k
i

Bi · Ti

), (3)

where gki is the normalized price.fsr(·) is a decreasing
function and would output zero whengki is too high.

Note that, in the cooperative market, each inter-domain
lightpath request from a DM is assigned to a broker based
on the solution of the Nash Bargaining. Hence, to ensure the
autonomy of the DM, we allow it to reject the provisioning
service of an assigned broker if the normalized service pricegki
is too high. For an inter-domain lightpath, the most intuitive
metric to measure its requested resources is the amount of
spectra occupied during its hold-time. Hence, the normalized
service price should be calculated asP

k

i

Bi·Ti

. Since the DMs
can reject the provisioning services with unreasonably high
prices, the broker has to optimize its service price carefully
instead of raising or lowering it excessively [32]. Therefore,
the broker’s pricing strategy should be maximizing the math-
ematical expectation of its profit. Specifically, with the lowest
base costCk

i , the broker needs to determine the profit ratio
δki by solving the following optimization

Maximize
δk
i

(Ck
i · δki ) · f̂sr

(

(1 + δki ) · C
k
i

Bi · Ti

)

, (4)

wheref̂sr(·) represents the estimated satisfaction ratio by the
broker. This is because in a practical scenario, the DMs’ sat-
isfaction ratio function should not be disclosed to the brokers
explicitly. On the contrary, the brokers should estimatefsr(·)
by submitting prices with different profit ratios to the DMs
and recording the acceptance ratio each time. Specifically,the
first several bids from each broker are used as the training
sequence, and the broker uses the normalized prices of the bids
as sampling points. The sampling points provide the estimated
satisfaction ratios for various normalized prices, and then we
perform curve-fitting to obtainf̂sr(·). Then, with f̂sr(·), the
broker solves Eq. (4) to get its service price for each bid.

4) Resource Collision: In Step 3, the brokers submit their
provisioning schemes as well as expected profits of each
request to MPE, where the Nash bargaining is solved for
allocating the requests inR to the brokers. We will discuss
the algorithm for solving the Nash bargaining in the next
section. But before that, we should note that there might be
resource collisions among the provisioning schemes submitted
by the brokers. This is because when the brokers calculate the
provisioning schemes, the network status in which none of the
pending requests are served is used. Hence, different brokers
may use the same network resources (i.e., the same FS’ and/or
O/E/O regenerators) to provision different requests.

In order to avoid resource collisions, MPE needs to collect
conflicting resource usages in the provisioning schemes from
the DMs, as shown inStep 4. Basically, each DM needs
to check the provisioning schemes that use its domain and
construct a collision graph as shown in Fig. 3. There are
three brokers to use a domain for provisioning four inter-
domain lightpath requests. Each node in Fig. 3 represents the
provisioning scheme from a broker for a specific request. We

Fig. 3. Example on the collision graph of provisioning schemes.

connect two nodes in the collision graph to indicate that the
two corresponding provisioning schemes have conflicts. For
instance, in Fig. 3, it can be seen that the provisioning scheme
from Broker-3 for r3 (i.e., SC(3, 3)) has resource collisions
with SC(1, 2), SC(2, 2) and SC(2, 4). To gain a collision-
free request allocation result, there should exists no edge
among the nodes selected. For example,SC(1, 1), SC(2, 2),
SC(2, 3)andSC(3, 4) can constitute a collision-free allocation
solution, which meansr1 and r4 are distributed toBroker-1
andBroker-3, respectively, whiler2 andr3 are distributed to
Broker-2. SC(1, 1), SC(3, 3), andSC(2, 4) can also make up a
collision-free solution, however,r2 cannot be allocated to any
broker since all the schemes to provisionr2 have collisions
with the nodes selected. Hence, when distributing the requests
in the Nash bargaining, MPE should try to avoid selecting the
nodes with a relatively high degree,e.g., the one representing
SC(3, 3) in Fig. 3.

IV. COLLISION-FREE REQUESTALLOCATION BASED ON

NASH BARGAINING

In this section, we briefly introduce the working principle
of Nash bargaining, based on which we propose an algorithm
to distribute the pending inter-domain lightpath requeststo the
brokers. The algorithm also considers the resource collisions
to achieve collision-free request allocation.

A. Nash Bargaining

Nash bargaining is for the bargaining scenario in whichK

players try to achieve a profit-based mutual agreement. We
use S = {(u1, · · · , uk, · · · , uK)|uk ≥ dk, k ∈ [1,K]} to
denote the profits that the players can obtain if they agree
to be cooperative for reaching an agreement, wheredk is the
profit of Player-k if it decides not to be cooperative (i.e., the
outcome of a non-cooperative game). Hence, the disagreement
point of the Nash bargaining isD = {(d1, · · · , dk, · · · , dK)}.
According to Nash’s theory [33], the solution of the Nash bar-
gaining (S,D) should satisfy Pareto-efficiency, which means
that it is impossible for a player to increase its profit without
sacrificing any other player’s profit. Moreover, Nash proved
that there exists a unique Nash bargaining solution, which can
be obtained by solving the following optimization.

Maximize
(u1,··· ,uK)∈S

K
∏

k=1

(uk − dk),

s.t. uk ≥ dk, ∀k ∈ [1,K].

(5)
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B. Nash Bargaining based Request Allocation

As Nash bargaining can precisely model the players’ behav-
iors in a cooperative market, we leverage it to distribute the
requests inR to the brokers,i.e., determining each broker’s
market share. Based on the optimization in Eq. (5), we
formulate the problem of request allocation as follows.

Input Parameters:
• δki : the profit ratio of provisioning schemeSC(k, i).
• Dk: the profit that Broker-k can obtain in the non-

cooperative market.
• Sk

i : the expected profit thatBroker-k can get in the coop-
erative market by provisioning requestri with SC(k, i).

• Ck
i : the base cost ofSC(k, i).

• Fk: the reputation ofBroker-k, which represents the ratio
that the DMs accepted the service deals fromBroker-k
in previous provisioning periods.

Variables:
• R: a feasible collision-free request allocation among the

brokers,i.e., R = (R1, · · · , RK), R1 ∪ · · · ∪ RK ⊆ R,
Rk1

⋂

Rk2
= ∅, {k1, k2 : k1 6= k2}, whereRk is the set

of pending requests that are allocated toBroker-k.
Outputs:
• R̂: the collision-free request allocation result from Nash

bargaining.
• Sk: the total expected profit ofBroker-k.
Objective:
The objective is to maximize the following equation.

Maximize
(R1,··· ,RK)

K
∏

k=1

(Sk −Dk),

s.t.

K
⋃

k=1

Rk ⊆ R,

Rk1

⋂

Rk2
= ∅, {k1, k2 : k1 6= k2},

(6)

whereSk is the total expected profit ofBroker-k according to
R = (R1, · · · , RK), which is calculated as

Sk =
∑

{i: SC(k,i)∈Rk}

Sk
i =

∑

{i: SC(k,i)∈Rk}

Ck
i · δki · Fk. (7)

Here,Fk denotes the reputation ofBroker-k, which reflects
the satisfaction of the DMs regarding its service prices. Note
that, since we allow the DMs to reject provisioning schemes
with unreasonably high prices, a broker might not always get
the full payment for all the requests allocated to it. Hence,
Fk is introduced here to model the profit gap. In Eq. (6),
we calculateDk based on the fact that in the non-cooperative
market, the Nash equilibrium suggests that only the lowest bid
from the brokers can be chosen [17],i.e.,

Dk =
∑

{i: Ck

i
=min(C1

i
,··· ,CK

i
)}

Ck
i · δmin, (8)

whereδmin is the minimum profit ratio that a broker can use.
The Nash bargaining in Eq. (6) is a nonlinear combinatorial

optimization problem, which is a relatively complex problem.
Since its output should be collision-free and each request
can be allocated to any of theK brokers or be blocked to

avoid the collision with other requests, the size of the overall
solution space would be(K + 1)M if there areM pending
inter-domain lightpath requests. In reality, since the multi-
domain SD-EON is a backbone network, the requests would
not come in as frequently as those in access networks [34].
Moreover, when provisioning dynamic lightpath requests, the
DMs might demand for very short setup latency [3], and thus,
the provisioning period of the brokers should be relatively
short. Even though the lightpath requests could come in more
frequently, we can always reduce the provisioning interval
to maintain the value ofM . These practical issues suggest
that it would be reasonable to assume that the number of
pending inter-domain lightpath requestsM in our problem is
a relatively small and upper-bounded number (e.g., M ≤ 20).
Therefore, when the number of brokers is also small (e.g.,
K = 2), MPE can solve the optimization in Eq. (6) by simply
enumerating all the feasible solutions, and a time-efficient
heuristic is only needed whenK is so large such that the
exhaustive search is impractical.

C. Collision-Free Request Allocation Algorithm

In this subsection, we develop a broker grouping mechanism
and propose a time-efficient algorithm (i.e., the collision-free
request allocation (CFRA) algorithm) based on it to solve the
optimization in Eq. (6) whenK > 2. CFRA leverages an
iterative approach to obtain a near-optimal request allocation
solution without resource collision. Specifically, it divides the
brokers into two-member groups to reduce the complexity to
the maximum extent, and solves the Nash bargaining for each
group according to Eq. (6). However, the grouping mechanism
cannot protect the allocation result from resource collisions,
even though the request allocation is collision-free in each two-
member group. Therefore, CFRA takes collision-avoidance
into consideration and makes sure that the allocation result is
collision-free eventually. Here, the collision-avoidance follows
the intuitive observation that in the collision graph, the nodes
with relatively high degrees should not be put intoR, as
explained in Section III-B. To achieve this, we add some
variables and modify the optimization objective as follows.

Variables:
• Hk

i : the number of selected provisioning schemes inR,
which have conflicts withSC(k, i) (i.e., SC(k, i) ∈ Rk

according toR) in the collision graph.
• W k

i : the collision-weighted profit ofSC(k, i).
• Wk: the total collision-weighted profit ofBroker-k ac-

cording toR.

Objective:

Maximize
(R1,··· ,RK)

K
∏

k=1

(Wk −Dk),

s.t.

K
⋃

k=1

Rk = R,

Rk1

⋂

Rk2
= ∅, {k1, k2 : k1 6= k2},

(9)

whereWk is the total collision-weighted profit ofBroker-k
according toR = (R1, · · · , RK).
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Definition The collision-weighted profit of provisioning
schemeSC(k, i) is calculated as

W k
i =

Sk
i

Hk
i + 1

, (10)

where Hk
i denotes the number of selected provisioning

schemes that have conflicts withSC(k, i). With W k
i , we can

get thetotal collision-weighted profit of Broker-k as

Wk =
∑

{i: SC(k,i)∈Rk}

W k
i . (11)

With Eqs. (9)-(11), we can ensure that when solving the
Nash bargaining, the provisioning schemes that have more
conflicts with others would be less likely selected by MPE.
Note that, we introduce the collision-weighted profitW k

i to
reduce the resource collision among the service provisioning
schemes. Hence, the definition can be empirical as long as it
can achieve this target and its value can be calculated time-
efficiently. We have tried a few definitions and found that the
one in Eq. (10) provides the best performance on reducing the
resource collisions, which is the reason why it is used here.

Algorithm 1 shows the detailed procedure of CFRA. It first
divides the brokers into a few two-member groups and obtains
the Nash bargaining solutions for all the groups. Then, it re-
groups the brokers and solves the Nash bargaining in each
group again, and this procedure is repeated until the output
of Eq. (9) cannot be increased anymore.Lines 1-6 get an
initial resource allocation result with the Nash bargaining
benchmark (NB-benchmark) that we developed in [21], and
the variables for collision-weighted profits are initialized. Note
that, since the brokers in each group will exchange their
requests according to the Nash bargaining in the following
steps, each broker should be assigned a set of requests initially.
This is why NB-Benchmark is leveraged here. Here, we use
σ to record the increment of Eq. (9) in each iteration, and
thus it should be initialized as an arbitrary positive number.
The while-loop that coversLines 7-16 shows how to solve the
Nash bargaining among the brokers in iterations. Specifically,
brokers are divided into two-member groups with a scheme
that is modified from the Hungarian method based algorithm
in [31]. Note that, ifK is an odd number, there would be a
group that only contains one broker whose request allocation
will not change in the upcoming iteration. After grouping the
brokers, MPE solves the Nash bargaining between the brokers
in each group exactly by checking all the feasible solutions, as
shown inLines 9-12. Then, Eq. (9) is updated inLines 13-15.

Finally, if the request allocation result̂R still induces
resource collisions,Line 19 applies the procedure inAlgorithm
2 to remove the collisions, which leverages the maximum-
weighted independent set [35] in a collision graph to guarantee
that the final request allocation is collision-free. Specifically,
we build a collision graph based on the schemes inR̂, setSk

i

(i.e., the profit thatBroker-k can obtain by provisioning request
ri with SC(k, i)) as the weight ofSC(k, i) ∈ R̂, and then get
the final allocation result by finding the independent set of
R̂ with the maximum total weight. Therefore, the allocation
result would be collision-free while ensuring that the brokers
can obtain the maximum total profit.

Algorithm 1: Collision-Free Request Allocation

input : {Sk
i }, {Dk}, R, and the collision graph.

output : R̂ = (R1, · · · , RK).

1 initialize R̂ with NB-Benchmark in [21];
2 for k = 1 to K do
3 calculate{W k

i } andWk;
4 end

5 calculatex =
K
∏

k=1

(Wk −Dk) based on̂R;

6 assign an arbitrary positive value toσ;
7 while σ > 0 do
8 divide brokers into two-member groups with a

Hungarian method based scheme [31];
9 for each broker group do

10 solve the optimization in Eq. (9) for two
brokers in the group;

11 readjust the brokers’ request allocation
according to the optimization result;

12 end
13 store allocation result in̂R and getx′ based on̂R;
14 updateHk

i , W k
i andWk for the brokers;

15 σ = x′ − x, x = x′;
16 end
17 if R̂ still induces collisions then
18 apply Algorithm 2 to remove the collisions;
19 end

Fig. 4. Example on removing resource collisions of provisioning schemes.

Fig. 4 provides an intuitive example on realizing collision
removal withAlgorithm 2. In the collision graph, the yellow
nodes with numbers represent the provisioning schemes in
R̂ and the numbers are their weights. According to the
collision relations denoted by the solid lines, we can find
two maximal independent sets, which are{SC(1, 2), SC(1, 4)}
and {SC(2, 1), SC(3, 3), SC(1, 4)}. After comparing the total
weights of these two independent sets, we can see thatSC(1, 2)
should be removed to resolve collisions and the other three
schemes can be kept in̂R, since the second independent set has
a larger total weight. Note that, finding the maximum-weighted
independent set in an arbitrary graph isNP-hard [35], and
thusAlgorithm 2 leverages the time-efficient greedy algorithm
developed in [35] to realize collision removal. InLine 1, we
build the collision graph based on the request allocation result
R̂. The while-loop that coversLines 2-5 removes one provi-
sioning scheme from̂R each time, until there is no edge in
the collision graph (i.e., the modified request allocation result
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is collision-free). Specifically, in each iteration,Lines 3-4 find
the schemeSC(k∗, i∗) that can minimize the objective function

Sk

i

Hk

i
·(Hk

i
+1)

, and remove it from̂R to resolve collisions.

Algorithm 2: Collision Removal

input : R̂ = (R1, · · · , RK) that induces resource
collisions.

output : R̂ = (R1, · · · , RK) that is collision-free.

1 build a collision graph based on̂R;
2 while edge(s) exist in collision graph do

3 [k∗, i∗] = argmin
SC(k,i)∈R̂

[

Sk

i

Hk

i
·(Hk

i
+1)

]

;

4 removeSC(k∗, i∗) from Rk∗ and delete its node
in the collision graph;

5 end

D. Complexity Analysis

As the while-loop inAlgorithm 2 will run (M − 1) times
at most, the time complexity of collision removal isO(M).
For Algorithm 1, the complexity is mainly from grouping the
brokers inLine 8. Specifically, we need to obtain the Nash
bargaining results for all the feasible two-member groups,
which has a complexity ofO(K2 · 2M ), and then, we need to
determine the optimal grouping scenario with the Hungarian
method, whose complexity isO(K4). Hence, for each iter-
ation, the time complexity of the while-loop coveringLines
7-16 in Algorithm 1 is O(K2 · 2M + K4). Note that, the
operation principle of the while-loop determines that it would
not enter endless loops and will stop before constant iterations
in the worst case. We denote the maximum iteration number
as Q and use extensive simulations to confirm that we can
set Q = 50 for all the reasonable combinations ofM and
K that concern us. Therefore, the complexity ofAlgorithm
1 is finally obtained asO(Q · (K2 · 2M + K4) + M). As
we have explained in Section IV-B,M would be a relatively
small and upper-bounded number in reality, and thus2M is
upper-bounded too. Hence, according to [36], we can claim
that Algorithm 1 is a pseudo-polynomial time algorithm.

Note that, the motivation of CFRA is that whenK is so
large such that the exhaustive search with a complexity of
O((K + 1)M ) is impractical. For instance, if we assume that
Q = 50, K = 6 andM = 10, CFRA would be much more
time-efficient than the exhaustive search since(K + 1)M ≫
Q · (K2 · 2M +K4) +M . However, this might not always be
the case. Hence, MPE should determine which algorithm to
use by checking the values ofQ, K andM . Specifically, if
it hasK = 2 or Q · (K2 · 2M +K4) +M > (K + 1)M , the
exhaustive search that solves Eq. (6) directly should be used.
Otherwise, CFRA should be incorporated.

V. PERFORMANCEEVALUATION

In this section, we perform numerical simulations to eval-
uate the performance of our proposed algorithm. Note that,
since the algorithm design that uses exhaustive search is trivial,

the simulations do not consider the cases in which MPE uses
the exhaustive search that solves Eq. (6) directly.

A. Simulation Setup

The multi-domain SD-EON uses the two-domain topology
in Fig. 2(a), and we assume that there are4 brokers in the
management plane. Each fiber link accommodates358 FS’,
each of which has a bandwidth of12.5 GHz. We assume that
O/E/O regenerators are only equipped on the border nodes
between the two domains, and each border node contains50
regenerators. With the O/E/O regenerators, each inter-domain
lightpath can change its spectrum allocation and modulation
format in between the domains to adapt to the spectrum
incontinuity and transmission reach, respectively [19]. We
normalize the unit costs of FS usage and O/E/O regenerator,
and assume that they arecS = 1 andcR = 5, respectively.

The inter-domain lightpath requests are dynamically gen-
erated according to the Poisson traffic model. Note that, the
requests arrive with an average rate of10 per provisioning
period, and their life-time follows the negative exponential
distribution with an average that increases evenly from40
to 100 to emulate different traffic loads. The source and
destination nodes are selected randomly, while the bandwidth
requirements are distributed uniformly within[25, 500] Gb/s.
For each broker, its service strategy pool contains three RSA
algorithms, i.e., the fragmentation-aware (FA) scheme [37],
the shortest-path and first-fit (SP-FF) and theK-shortest path
and load-balancing (KSP-LB) schemes [6].

Regarding the SLAs between the brokers and the DMs for
ID-VT abstraction, each DM can provide ID-VTs consisting
of VLs based on shortest-path routing (-SP) or load-balanced
routing (-LB). Moreover, we consider two types of brokers
in terms of pricing strategy, which means that the brokers
can either decide service prices by solving the optimization
in Eq. (4) with rational estimation (-E) or just determine
their profit ratio randomly (-R). Hence, in order to analyze
the impacts of the SLA and pricing strategy, we assume that
the four brokers use different combinations of them,i.e., BR-
SP-E, BR-LB-E, BR-SP-R, and BR-LB-R. To compare the
performance of brokers in a fairer way, we assume that each
DM can subscribe to any broker for inter-domain services. The
simulations consider three benchmarks, the non-cooperative
benchmark (NC-Benchmark) in [17], the Nash bargaining
benchmark (NB-Benchmark) in [21], and the Nash bargaining
leveraging coalition (NB-LC), which is realized by modifying
the algorithm for the Nash bargaining to allocate carriers in
wireless networks [31]. To ensure sufficient statistical accura-
cy, we run10 independent simulations and average the results
to get each data point.

B. Performance of Cooperative Market Algorithms

Definition The Nash bargaining solution (NBS) ratio is
defined to evaluate the performance of a request allocation
algorithm against NB-Benchmark [21], which is calculated as

NBS ratio =

K
∏

k=1

(Sk −Dk)

(S′
k −D′

k)
, (12)
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TABLE II
AVERAGE RUNNING TIME PER REQUEST AT TRAFFIC LOAD AS600 ERLANGS (MSEC)

# of Brokers (K) # of Requests (M = 10) # of Requests (M = 15) # of Requests (M = 20)
NB-Benchmark NB-LC CFRA NB-Benchmark NB-LC CFRA NB-Benchmark NB-LC CFRA

4 0.9840 1.6446 2.5332 1.0646 2.4528 3.5711 1.1007 6.7943 9.3576
6 2.0288 2.9858 4.9730 2.1188 3.3956 5.630 2.4098 4.6462 7.5803
8 3.3177 4.5730 7.8509 3.6556 5.1649 9.0382 4.4275 6.4108 11.4723
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Fig. 5. Performance comparison of algorithms for cooperative market.

TABLE I
RELATIVE GAPS ON NBS RATIOS FROM THE HEURISTIC ALGORITHMS

AND THOSE FROM AN EXACT ONE USING EXHAUSTIVE SEARCH(TRAFFIC

LOAD AS 600 ERLANGS)

Algorithm # of Requests (M )
M = 6 M = 8 M = 10

NB-Benchmark 47.19% 49.59% 54.75%
NB-LC 11.94% 15.13% 16.76%
CFRA 7.23% 8.85% 9.37%

whereSk andDk are calculated based on the output of the
algorithm, whileS′

k and D′
k are from NB-Benchmark. The

reason why we use NBS ratio in the performance evaluation
is that the objective of Nash bargaining is to maximize
K
∏

k=1

(Sk − Dk). Note that, for a fair comparison, all the

algorithms’ outputs should be collision-free.

We first compare the performance of the algorithms de-
signed for the cooperative market,i.e., CFRA, NB-Benchmark,
and NB-LC, and the NBS ratio is defined for this purpose. Fig.
5(a) shows the results on NBS ratio. Here, we modify NB-
Benchmark and NB-LC by addingAlgorithm 2 to ensure that
they output collision-free request allocation. We observethat
both CFRA and NB-LC outperform NB-Benchmark signifi-
cantly in terms of Nash bargaining performance since their
results on NBS ratio are much larger than1. Meanwhile,

the NBS ratio from CFRA is also much larger than that
from NB-LC, since the y-axis of Fig. 5(a) is in logarithmic
scale. Here, the advantage of CFRA over NB-LC can be
understood as follows. As CFRA considers resource collisions
in Nash bargaining, it can significantly reduce the number of
requests that would be blocked due to them. This increases
the brokers’ profits effectively and improve the performance
of Nash bargaining.

To further evaluate the algorithms’ performance, we also
compare the NBS ratios from them with the optimal ones that
are obtained by exhaustive searches. Specifically, we calculate
the relative gaps on the NBS ratios from the three heuristics
and those from an exact algorithm using exhaustive search.
Note that, to achieve an apple-to-apple comparison, we make
sure that the results from all the algorithms are collision-
free. Meanwhile, to guarantee that the optimal solutions from
exhaustive searches can be obtained within a reasonable time
duration, we only simulate the problems with relatively small
scales,i.e., the value ofM is chosen within{6, 8, 10},K is set
asK = 4, and the traffic load is set as600 Erlangs. The results
on the relative gap are shown in Table I. It can be seen that
NB-LC and CFRA both provide much smaller relative gaps
than NB-Benchmark. Moreover, the relative gaps from CFRA
are always less than10% and smaller than those from NB-
LC, which are consistent with the results shown in Fig. 5(a).
These results confirm that CFRA can achieve a reasonably
good approximation of the optimal solution.

Fig. 5(b) compares the results on the average payments
from the DMs for an inter-domain lightpath request. It can
be seen that when we run the cooperative market with the
three algorithms, the DMs’ payments for each request are
almost the same. This suggests that the highest NBS ratio from
CFRA is actually attributed to its best performance on request
allocation, rather than exploiting the DMs with the highest
service prices. To compare the complexity of the algorithms,
we conduct simulations with several combinations ofM and
K while fixing the traffic load as600 Erlangs. The results
are shown in Table II, which indicate that NB-Benchmark
always consumes the shortest running time. This is because
CFRA and NB-LC both use the iterative approach to solve
the Nash bargaining. Meanwhile, the running time of CFRA
is longer than that of NB-LC. This is because we introduce the
collision-weighted profits in it, which makes CFRA converge
slower than NB-LC. In general, the running time of these
algorithms increases withM andK. It is interesting to notice
that the running time of NB-LC and CFRA forK = 6 and
M = 20 is shorter than that forK = 4 andM = 20. This is
because even though a largerK leads to more feasible broker
groups, the complexity of the Nash bargaining in each group
actually decreases since it is assigned with less requests.As
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the second effect is more dominate in this particular case, the
overall running time decreases. Finally, we hope to point out
that even though the running time of CFRA is the longest, the
actual value is still relatively short (i.e., in milli-seconds), and
thus it can fit into the requirement of dynamic provisioning.

C. Cooperative Market versus Non-Cooperative Market

Then, we compare the performance of non-cooperative and
cooperative markets. For the non-cooperative market, we use
NC-Benchmark to determine the request allocation, while
the cooperative market is addressed with CFRA. Table III
summarizes the proportion of requests provisioned by each
broker in the simulations. It is interesting to notice that in
the non-cooperative market, NC-Benchmark favors BR-SP-E
too much and makes the request allocation very unbalanced.
This is because BR-SP-E calculates provisioning schemes
based on ID-VTs that consist of VLs based on shortest-path
routing, which helps reduce the resource consumption and thus
provides BR-SP-E the highest winning probability in the non-
cooperative market. However, this makes the market unfair to
the remaining brokers since the SLAs between a broker and
the DMs can affect its market share too much. The request
allocation becomes much more balanced with CFRA in the
cooperative market, which verifies that the brokers have the
incentive to cooperate with each other. Specifically, in the
cooperative market, CFRA tries to maximize the output of
Eq. (9), which can only be done when the market share is
distributed relatively evenly among the brokers.

Furthermore, Fig. 6(a) compares the results on request
blocking probability from NC-Benchmark and CFRA, which
indicates that their blocking performance is almost the same.
These results verify that cooperative games ensure the interests
of brokers without sacrificing their QoS to the DMs. Note
that, in CFRA, we make each broker provision the requests
in its market share independently, which is similar to the
scheme used in NC-Benchmark from the perspective of request
provisioning. This is the reason why CFRA cannot obtain
lower blocking probability than NC-Benchmark. However,
since the cooperation among brokers makes it possible to
realize joint optimization of request provisioning, the blocking
performance of CFRA can actually be further improved, which
will be addressed in our future work. For instance, if a broker
knows that certain requests assigned to it would be blocked,it
can trade with other brokers to exchange requests. The results
on the total profit of the brokers are shown in Fig. 6(b). As
expected, in the cooperative market, CFRA brings much more
profits to the brokers with Nash bargaining. Again, this verifies
that the brokers should cooperate with each other and have
the incentive to do so. To this end, we can conclude that
compared with the non-cooperative market, the cooperative
one brings noticeable benefits to the brokers, which makes it
a more appropriate place for serving inter-domain lightpaths
in multi-broker based multi-domain SD-EONs.

D. Brokers’ Performance in Cooperative Market

Finally, we compare the brokers’ performance in the co-
operative market with CFRA. The profit of each broker is

TABLE III
PROPORTION OFREQUESTSPROVISIONED BY BROKERS IN

NON-COOPERATIVE AND COOPERATIVEMARKETS

Algorithms
Proportion of Requests Provisioned by Brokers

BR-SP-E BR-LB-E BR-SP-R BR-LB-R

NC-Benchmark 0.5314 0.4585 0.0093 0.0008

CFRA 0.4076 0.3999 0.1054 0.0871
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Fig. 6. Performance comparison of non-cooperative and cooperative markets.

shown in Fig. 7. We observe that the brokers that determine
their service prices intelligently,i.e., BR-SP-E and BR-LB-
E, gain much more profits than those that choose random
profit ratios. Meanwhile, by using the ID-VTs that consist
of VLs based on shortest-path routing, BR-SP-E and BR-SP-
R can achieve slightly higher profits than their counterparts,
i.e., BR-LB-E and BR-LB-R, respectively. Hence, we can
conclude that BR-SP-E performs the best in terms of profit
in the cooperative market. The results also suggest that in
the cooperative market, the pricing scheme of a broker has
a much larger impact on its profit than its SLAs with the
DMs. This is because the pricing scheme of a broker can
affect its profit ratios and reputation significantly. Therefore,
it would be necessary for the brokers to adopt the rational
estimation scheme explained in Section III-B-3. Note that,in
order to verify that our proposal is scalable and can work
well with the multi-domain SD-EONs that have more than
two domains, we also divide the topology into three domains
and conduct similar simulations. With the simulations, we find
that there is no fundamental difference between the results
from two- and three-domain scenarios. Therefore, due to the
page limit, we omit those results. In [17], we have already
implemented the multi-broker based management plane and
conducted experiments to demonstrate the multi-broker based
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inter-domain service provisioning in a non-cooperative market.
The system can be leveraged to realize the cooperative market
based management plane discussed in this work, and we will
need to upgrade the software implementation of the brokers
and develop the software system for MPE. These tasks will
be addressed in the future work.
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Fig. 7. Brokers’ profits in the cooperative market.

VI. CONCLUSION

In this paper, we studied why and how the brokers should
cooperate with each other to provision inter-domain lightpaths
in multi-broker based multi-domain SD-EONs. We first formu-
lated the cooperative market in which the brokers negotiate
about their market shares through Nash bargaining, and de-
signed a mathematical model to describe the market as well as
the brokers’ behaviors in it. Then, with the model, we proposed
the CFRA algorithm that solves the Nash bargaining problem
for allocating lightpath requests among the brokers. CFRA also
addressed the resource collision during lightpath provisioning
and could achieve collision-free request allocation. Simula-
tion results confirmed the effectiveness of our proposal and
answered the questions on why and how the brokers should
cooperate with each other well.
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