
Embedding Virtual Software-Defined Networks over
Distributed Hypervisors for vDC Formulation

Huibai Huang, Shengru Li, Kai Han, Quanying Sun, Daoyun Hu, Zuqing Zhu†
School of Information Science and Technology, University of Science and Technology of China, Hefei, China

†Email: {zqzhu}@ieee.org

Abstract—We study how to embed virtual software-defined
networks (vSDNs) cost-effectively over a substrate network with
distributed network virtualization hypervisors (NVHs) for virtual
datacenter (vDC) formulation to support Big Data applications.
Specifically, we try to jointly optimize the embedding schemes of
the control and data planes of each vSDN, i.e., to minimize the
data plane’s resource consumption and limit the number of NVHs
used in the control plane simultaneously. We first formulate an
integer linear programming (ILP) model to solve the problem
exactly, and then design a heuristic to reduce the time complexity.
Simulation results suggest that our proposed algorithms can
embed vSDNs cost-effectively and significantly outperform the
existing scheme based on global resource capacity (GRC).
Index Terms—Virtual Network Embedding (VNE), Distributed

Hypervisors, Virtual Software-Defined Networks (vSDNs).

I. INTRODUCTION
It is known that Big Data not only means tremendous vol-

umes of data, but also implies the huge capacity for capturing,
storing and analyzing data, which can hardly be provided by
conventional data systems [1]. Hence, large enterprises such
as Google and Amazon have built geographically-distributed
datacenter (DC) systems to run their Big Data applications and
provide low-latency, high-quality and non-disruptive services
to end users. However, the cost of building and operating
physical DC systems would be prohibitively high for small
service providers. Moreover, due to the dynamics of Big Data
applications, a short time-to-market, elastic and cost-effective
solution is desirable. Fortunately, network virtualization al-
lows multiple logically-isolated virtual networks to coexist
on shared substrate infrastructure and provides infrastructure
providers a powerful way to lease network resources dy-
namically to service providers (i.e., infrastructure-as-a-service
(IaaS)) for Big Data applications [2–4].
With network virtualization, the infrastructure provider can

slice a geographically-distributed DC system into multiple vir-
tual DC (vDC) systems dynamically according to the service
providers’ requirements and lease them on demand [5]. Note
that, there are normally two types of resource virtualization
in vDC formulation, i.e., the IT resource virtualization in
the DCs to create vDCs and the virtual network embedding
(VNE) in the substrate inter-DC network to interconnect
vDCs. Meanwhile, to enable effective network orchestration
in each vDC system, one might expect the virtual network
that interconnects its vDCs to be a software-defined network
(SDN) [6]. It is known that SDNs leverage the centralized
control plane (CP) to enhance network programmability [7].

Hence, in the vDC system, the CP of the virtual SDN (vSDN)
can collaborate with the vDC controllers to make effective
network orchestration possible for the vDC operator. This is
especially important when the vDC operator needs to run
Big Data applications that would result in highly-dynamic
bandwidth utilization and bursty IT resource consumption.
Hence, it would be not only interesting but also necessary to

study how to embed vSDNs cost-effectively for vDC formula-
tion. Note that, although the problem of embedding common
virtual networks into a substrate network, i.e., the well-known
VNE problem, has already been investigated intensively in
literature [8–10], these studies only considered how to embed
the data planes (DPs) of virtual networks. While to provision
a vSDN, we have to embed its CP as well [11]. Moreover,
in practical cases, we might need to consider the quality-of-
service (QoS) related to control latency [12], and thus more
than one virtual controllers (vCs) would be instantiated for the
vSDN. Hence, to embed a vSDN, we need to address the VNE
of its DP and CP in a correlated manner, which is apparently
more sophisticated than the traditional VNE studied in [8–10].

Fig. 1. Architecture of distributed NVH system for vSDNs.

Fig. 1 shows the network system that we consider in
this work to address the embedding of vSDNs for vDC
formulation. Basically, the VNE of the DP of a vSDN still
consists of node mapping and link mapping. However, the
resource considered in the node mapping will be the ternary

content-addressable memory (TCAM) space for storing flow
rules. This is because TCAM is usually expensive and limited
hardware resource in substrate SDN switches, while the DP of
the vSDN needs to consume certain amount of TCAM on the
substrate switches along the paths that carry its virtual links
[13]. The VNE of the CP of a vSDN will be performed based
on the locations of network virtualization hypervisors (NVHs)
in the substrate network. Note that, NVHs slice the flow rule
space of each substrate switch into logic space regions, and
bridge the control communications between substrate switches
and vCs of the vSDNs with control message translation [14].
Hence, it would be reasonable to assume that each vC of
a vSDN is connected to an NVH locally. Meanwhile, since
the QoS related to control latency is important for SDN
operations [15], we should consider distributed NVHs in the
substrate network. Note that, some of the latest SDN plat-
forms, e.g., Open Network Operating System (ONOS) [15],
have already supported “physically-distributed-but-logically-
centralized” CP architecture. Although distributed NVHs can
bring advantages in terms of availability and scalability, using
many NVHs in the CP of a vSDN can cause unnecessary east-
/west-bound communication overheads.
In this paper, we study the embedding of vSDNs over a

substrate network with distributed NVHs. Specifically, we try
to jointly optimize the VNE schemes of the CP and DP of
each vSDN, i.e., to minimize the DP’s resource consumption
and limit the number of NVHs used in the CP simultaneously.
We first formulate an integer linear programming (ILP) model
to solve the problem exactly. Then, a heuristic algorithm is
designed for reducing the time complexity. Simulation results
show that our proposed algorithms can embed vSDNs cost-
effectively and significantly outperforms the existing scheme
based on global resource capacity (GRC).
The rest paper is organized as follows. Section II provides

a brief survey on the related work. We describe the network
model and formulate the ILP model in Section III. The
heuristic algorithm is designed in Section IV and Section V
discusses the simulations for performance evaluation. Finally,
Section VI summarizes this paper.

II. RELATED WORK

Although it is known that SDN and network virtualiza-
tion are independent of each other, recent research has sug-
gested that the symbiosis of them would be beneficial in
terms of network programmability, scalability and adaptivity
[14]. Therefore, the system implementations of several latest
platforms, such as Nicira’s Network Virtualization Platform
[16] and OpenVirteX [17], have already moved towards this
direction. Note that, the embedding of vSDNs is intrinsically
different from the traditional VNE problems studied in [8,
9, 18], since to embed a vSDN, we need to address the
VNE of its DP and CP in a correlated manner. In [13],
Demirci et al. investigated the embedding of vSDNs under the
assumption that only one centralized NVH would be used in
the substrate network and thus each vSDN only uses a single
vC. Nevertheless, this assumption becomes impractical when

the substrate network covers a relatively large geographical
area (e.g., a geographically-distributed DC system). To the best
of our knowledge, the embedding of vSDNs over a substrate
network with distributed NVHs has not been studied yet.

III. PROBLEM DESCRIPTION
A. Network Model
The architecture of the network system for vSDN embed-

ding is shown in Fig. 1. Here, we model the substrate network
as an undirected graph, denoted as Gs(Vs, Es), where Vs and
Es are the sets of substrate nodes (SNs) and links (SLs),
respectively. The TCAM capacity of each SN vs ∈ Vs is
Tvs and the bandwidth capacity of each SL is B(us,vs) where
(us, vs) ∈ Es. There is a set of V h

s distributed NVHs in the
substrate network, where each vs ∈ V h

s represents the physical
location of an NVH (i.e., V h

s ⊂ Vs). We also assume that for
each NVH on vs ∈ V h

s , it can control a set of SNs, denoted as
Φvs . Fig. 2(a) shows the example of a substrate network that
includes two NVHs located on Nodes 2 and 7, respectively,
and we assume Φ2 = {1, 2, 3, 4} and Φ7 = {5, 6, 7, 8}.
For each vSDN that needs to be embedded in the network

system, it is also modeled as an undirected graph Gr(Vr , Er).
Similarly, each virtual link (VL) (ur, vr) ∈ Er of the vSDN
has a bandwidth demand of b(ur,vr). The TCAM requirement
of a virtual node (VN) vr ∈ Vr is tvr . Note that, the vSDN
consumes TCAM not only on the SNs that its VNs are
embedded on, but also on the SNs that are the intermediate
nodes on the substrate paths to carry its VLs. Hence, for the
intermediate SNs involved in the link mapping of VL (ur, vr),
we assume that they consume a TCAM capacity of t̃(ur ,vr),
which can be approximated as

t̃(ur ,vr) = (tur
+ tvr) · θ, (1)

where θ depends on the NVH implementation, and normally,
we have θ ∈ (0, 0.5]. Fig. 2(b) illustrates two vSDNs and for
simplicity, we omit the bandwidth and TCAM requirements.

Fig. 2. Example on embedding vSDNs over a substrate network with
distributed NVHs.

Fig. 2(c) shows the results for embedding the vSDNs in Fig.
2(b) onto the substrate network in Fig. 2(a). It can be seen that
vSDN 1 is embedded on the SNs that can be controlled by the
NVH on Node 2, while the SNs used to embed vSDN 2 have
to be controlled by two NVHs. Hence, to operate vSDN 2, the
two NVHs need to collaborate with each other, which would
cause additional east-/west-bound communication overheads.
Consequently, we should limit the number of NVHs used in
the CP of each vSDN to avoid unnecessary overheads.

B. Problem Formulation in ILP
Notations:
• Gs(Vs, Es): topology of the substrate network.
• V h

s : set of NVH locations in the substrate network.
• Nvs : set of SNs that are adjacent to vs ∈ Vs.
• Φvs : set of SNs that can be controlled by an NVH on vs.
• Tvs : TCAM capacity of SN vs ∈ Vs.
• B(us,vs): bandwidth capacity of SL (us, vs) ∈ Es.
• Gr(Vr , Er): topology of the DP of a vSDN request.
• b(ur,vr): bandwidth demand of VL (ur, vr) ∈ Er.
• tvr : TCAM demand of VN vr ∈ Vr .
• t̃(ur ,vr): TCAM demand of the intermediate SNs on the
substrate path carrying VL (ur, vr).

• Ĥ : maximum number of NVHs used for embedding the
CP of a vSDN request.

Variables:
• δvrvs : boolean variable that equals 1 if VN vr is embedded
on SN vs, and 0 otherwise.

• ρ
(ur ,vr)
(us,vs)

: boolean variable that equals to 1 if the embed-
ding of VL (ur, vr) uses SL (us, vs), and 0 otherwise.

• ω
(ur,vr)
vs : boolean variable that equals 1 if SN vs is an
intermediate node of the substrate path that VL (ur, vr)
is mapped onto, and 0 otherwise.

• πvs : boolean variable that equals 1 if the NVH on vs ∈
V h
s is used by the vSDN, and 0 otherwise.

Objective:
Note that, the vSDN Gr(Vr , Er) consumes two types of

resources in the substrate network, i.e., the TCAM on SNs
and the bandwidth on SLs. The normalized TCAM utilization
can be obtained as

μt =

∑
vs∈Vs

∑
(ur,vr)∈Er

ω
(ur ,vr)
vs · t̃(ur ,vr)

∑
vs∈Vs

Tvs

. (2)

Here, we ignore the TCAM usages on the SNs that have VNs
embedded on, because their summation is a constant value as
long as all the VNs have been successfully embedded. While
the normalized bandwidth utilization is

μb =

∑
(us,vs)∈Es

∑
(ur ,vr)∈Er

ρ
(ur,vr)
(us,vs)

· b(ur,vr)

∑
(us,vs)∈Es

B(us,vs)
. (3)

Hence, the optimization objective is to minimize total resource
cost, which is

Minimize μ = α1 · μt + β1 · μb, (4)

where α1 and β1 are the unit price of TCAM and bandwidth
resources, respectively.
Constraints:
1) Node Mapping Constraints:

∑
vs∈Vs

δvrvs = 1, ∀vr ∈ Vr. (5)

Eq. (5) ensures each VN in the DP of the vSDN is mapped
onto an SN.

∑
vr∈Vr

δvrvs ≤ 1, ∀vs ∈ Vs. (6)

Eq. (6) ensures different VNs in the DP of the vSDN is
mapped onto different SNs in the substrate network.
2) Resource Constraints:

∑
(ur,vr)∈Er

ω
(ur,vr)
vs · t̃(ur,vr)+

∑
vr∈Vr

δ
vr
vs ·tvr ≤ Tvs , ∀vs ∈ Vs. (7)

Eq. (7) ensures that the TCAM usage on each SN for the
vSDN would not exceed its TCAM capacity.

∑
(ur,vr)∈Er

ρ
(ur,vr)
(us,vs)

· b(ur,vr) ≤ B(us,vs), ∀(us, vs) ∈ Es. (8)

Eq. (8) ensures that the bandwidth usage on each SL for the
vSDN would not exceed its bandwidth capacity.
3) Flow Conservation Constraints:

∑
vs∈Nus

ρ
(ur,vr)
(us,vs)

−
∑

vs∈Nus

ρ
(ur,vr)
(vs,us)

= δur

us
− δvrus

,

∀us ∈ Vs, ∀(ur, vr) ∈ Er.

(9)

Eq. (9) ensures that one VL is mapped onto one and only one
substrate path, i.e., we only consider single-path mapping.

ρ
(ur ,vr)
(us,vs)

= ρ
(ur ,vr)
(vs,us)

, ∀(us, vs) ∈ Es, ∀(ur, vr) ∈ Er. (10)

Eq. (10) ensures that the in- and out-flows of an SN for
carrying the same VL traverse only one substrate path.
4) Intermediate Node Constraints:

∑
vs∈Nus

ρ
(ur,vr)

(us,vs)
−ω

(ur,vr)
us

= δ
ur

us
, ∀us ∈ Vs,∀(ur, vr) ∈ Er. (11)

Eq. (11) ensures that the intermediate nodes of the substrate
path that carries VL (ur, vr) is marked correctly.
5) NVH-related Constraints:

∑
vs∈Φus

∑
ur∈Vr

δur

vs
≤ πus

· |Φus
|, ∀us ∈ V h

s . (12)

∑
vs∈Φus

∑
(ur,vr)∈Er

ω
(ur,vr)
vs ≤ πus

· |Φus
| · |Er|, ∀us ∈ V

h
s . (13)

∑
vs∈Φus

∑
ur∈Vr

δ
ur

vs +
∑

vs∈Φus

∑
(ur,vr)∈Er

ω
(ur,vr)
vs ≥ πus

,

∀us ∈ V
h
s .

(14)

Eqs. (12)-(14) ensure that the NVH on SN us would be
selected for the CP of the vSDN, if any of the VNs in Vr

has been mapped onto any SN in set Φus
or any of the VLs

in Er has been mapped onto the substrate path that includes
the SNs in set Φus

as intermediate nodes.

∑
vs∈V h

s

πvs ≤ Ĥ. (15)

Eq. (15) enures that the number of NVHs used for embedding
the CP of the vSDN would not exceed the preset upper-limit
to restrict the east-/west-bound communication overheads.

IV. HEURISTIC ALGORITHM
A. Algorithm Design
Although the ILP model above can solve the problem

of vSDN embedding exactly, its time complexity increases
exponentially with the problem scale. Hence, in this section,
we design a time-efficient heuristic algorithm. For each vSDN,
as we need to address the VNE of its DP and CP in a correlated
manner, we should first carefully consider the locations of
distributed NVHs to embed the CP and then embed the
DP within the subnet that can be controlled by the selected
NVH(s) to utilize substrate resources efficiently. Therefore,
we propose a topology abstraction scheme to preprocess
the substrate network for vSDN embedding. Specifically, the
topology abstraction aggregates the subnet that can be con-
trolled by an NVH into a super node and then restructures
the substrate topology accordingly. Fig. 3 shows an example
of the topology abstraction. There are three distributed NVHs
in the substrate network and their control regions are marked
with different colors. The topology abstraction aggregates the
subnets defined by the control regions into three super nodes,
as illustrated in Fig. 3(b). Note that, we use an aggregated
link to replace all the SLs that are between two subnets in the
original substrate topology.

Fig. 3. Example on topology abstraction for preprocessing.

Then, with the abstracted topology G′

s, we embed the CP
of the vSDN based on the following metrics. For a subnet
defined by Φvs , vs ∈ V h

s , the ratio of the TCAM capacity in
the subnet to the total TCAM capacity is

γvs =

∑
us∈Φvs

Tus

∑
us∈Vs

Tus

, (16)

Similarly, the bandwidth capacity ratio is

ηvs =

∑
(us,u′

s
)∈E(Φvs

)

B(us,u′

s
)

∑
(us,u′

s
)∈Es

B(us,u′

s
)

, (17)

where E(Φvs) denotes the set of SLs that are within the
subnet defined by Φvs . Note that, the embedding of the CP is
essentially to find proper subnet(s) in Gs for the vSDN. Hence,

with the consideration of the subsequent DP embedding, we
should try to choose the subnet(s) that have relatively large
TCAM and bandwidth capacities. For this purpose, we take
the geometric average of γvs and ηvs as the virtual capacity of
the super node for Φvs in G′

s, which can be used to quantify
the super node’s embedding potential.

Tvs =
√
γΦ · ηΦ. (18)

For two adjacent super nodes in G′

s, the aggregated link
between them carries the bandwidth capacity of all the SLs
between the two corresponding subnets in Gs. Therefore, with
a similar approach as that is illustrated in Eq. (17), we can
calculate the bandwidth capacity ratio of the aggregated link
and denote it as B(vs,us), where vs, us ∈ V h

s represents the
locations of the NVHs in two adjacent subnets.
According to [9], an SN with larger global resource capacity

(GRC) has a higher embedding potential for a VN and its
adjacent SLs also have higher embedding potentials for the
VLs that are adjacent to the VN. Hence, if we treat Tvs and
B(vs,us) as the node and link capacities in G′

s, respectively, we
can calculate the GRC of each super node in G′

s. Algorithm
1 shows the overall procedures of the proposed heuristic
algorithm. Line 1 is the initialization to obtain the abstracted
topologyG′

s. Then, the for-loop that covers Lines 2-28 embeds
the pending vSDN requests one by one. In each iteration, Lines
3-5 are for the initialization to get the GRC of each super node
inG′

s based on the current network status and to set three super
node sets, i.e., V̂1, V̂2 and V̂3, for subsequent processing. Next,
the while-loop covering Lines 6-27 tries to embed the vSDN
based on the three super node sets. Specifically, we try to
embed the DP of the vSDN with the subnet(s) in Gs, which
include the SNs and SLs that are covered by the super nodes
in V̂2 and the super node with the largest GRC in V̂3, as shown
in Lines 8-17. Note that, the actual embedding scheme for the
DP of the vSDN is in Algorithm 2. If this cannot be done,
Lines 21-22 would expand V̂2 by adding the super node in V̂3

with the largest GRC to V̂2. Then, we update V̂3 by adding
the super nodes that are in V̂1 and adjacent to any nodes in
V̂2 to V̂3 (i.e., in Lines 24-26).
In Algorithm 2, we first embed the VN that has the largest

GRC and then map the adjacent VNs in sequence to “grow”
the DP of the vSDN out. Note that, we should not use the
GRC-VNE algorithm in [9] here, because it might result in
mapping VLs to substrate paths that are unnecessarily long.
Since the vSDN consumes TCAM not only on the SNs that
its VNs are embedded on but also on the SNs that are the
intermediate nodes on the substrate paths to carry its VLs,
mapping a VL to a long substrate path would waste TCAM
resources. Hence, in Line 8 in Algorithm 2, we map vr onto
a feasible SN in V ′′

s with the largest metric calculated as

ξ = α2 · GRC+ β2 ·min(hop-count), (19)

where α2 and β2 are the weights, “GRC” denotes the GRC
of the SN, and “hop-count” represents the hop-count of the
shortest substrate path between the SN and an SN that has
already been used to carry a VN in Gr(Vr, Er). Since the

complexity of calculating GRC is proven to be O(|V |2 · log 1
σ
)

[9], where σ � 1 is the preset accuracy threshold, the time
complexity of Algorithm 1 to embed a vSDN can be obtained
as O((|Vs|+ |Vr |)2 · log 1

σ
+ |Vs|3 · |Vr |+ |Es| · |Er | · log(|Vs|)).

Algorithm 1: Heuristic for Embedding vSDNs

1 apply topology abstraction on Gs to get G′

s(V
′

s , E
′

s);
2 for each pending vSDN request Gr(Vr , Er) do
3 calculate the capacities of each super node and

link in G′

s to get {Tvs} and {B(vs,us)};
4 calculate the GRC of each super node v′s ∈ V ′

s ;
5 V̂1 = V ′

s , V̂2 = ∅, V̂3 = V ′

s ;
6 while |V̂2| < Ĥ do
7 sort nodes in V̂3 in descending order of GRC;
8 for each super node v̂s ∈ V̂3 do
9 restore the subnet(s) in Gs with the SNs

and SLs that are covered by the super
nodes in V̂2 and v̂s;

10 represent the topology of the restored
subnets as G′′

s (V
′′

s , E′′

s);
11 try to embed the DP of vSDN Gr in G′′

s

with Algorithm 2;
12 if the DP of vSDN Gr(Vr , Er) can be

embedded successfully then
13 update the TCAM and bandwidth

capacities in Gs;
14 V̂1 = ∅;
15 break;
16 end
17 end
18 if V̂1 = ∅ then
19 break;
20 else
21 add the top-ranked super node in V̂3 in V̂2;
22 V̂3 = ∅;
23 end
24 for each super node v̂s ∈ V̂2 do
25 add the super nodes in V̂1 that are

adjacent to v̂s but not in V̂2 in V̂3;
26 end
27 end
28 end

V. PERFORMANCE EVALUATION
We perform numerical simulations to evaluate the algo-

rithms’s performance. Considering its time complexity, we
first evaluate the performance of the ILP with a small-scale
substrate network. The substrate network consists of 3 NVHs,
each of which controls a subnet that includes 8 SNs in a
topology that is randomly generated by the GT-ITM tool [19],
with an SN connectivity ratio of 0.35. Every two subnets are
connected with 5 random SLs. The TCAM capacity of each
SN and the bandwidth capacity of each SL are randomly set

Algorithm 2: Procedure for Embedding DP of a vSDN

1 V̂r,1 = Vr, V̂r,2 = ∅, f = 1;
2 get GRC value of each SN in G′′

s with the TCAM
and bandwidth capacities of the SNs and SLs in G′′

s ;
3 sort SNs in V ′′

s in descending order of their GRCs;
4 get GRC value of each VN in Gr with the TCAM
and bandwidth demands of the VNs and VLs in Gr;

5 select the VN in Vr with largest GRC;
6 move the selected VN vr from V̂r,1 to V̂r,2;
7 while V̂r,1 	= ∅ AND f = 1 do
8 try to map the VN vr that is newly added in V̂r,2

onto a feasible SN in V ′′

s with the largest metric
calculated by Eq. (19);

9 try to embed the VL(s) ending at vr with the
shortest substrate path(s);

10 if node and link mappings related to vr are
successful then

11 select the VN in Vr that is adjacent to a VN
in V̂r,2 and has the largest GRC;

12 move the selected VN vr from V̂r,1 to V̂r,2;
13 else
14 f = 0;
15 end
16 end

within [100, 150] units and [80, 100] units, respectively. The
DP of vSDN requests are also created by the GT-ITM tool,
with a VN connectivity ratio of 0.5. We generate several sets
of vSDN requests, and in each set, there are 5 requests whose
numbers of VNs are the same. Both the TCAM demand of
each VN and the bandwidth demand of each VL are randomly
set within [10, 15] units. We set θ = 0.5 in Eq. (1), and test
Ĥ ∈ {1, 2, 3} in the simulations. Fig. 4 shows the ILP’s results
on average resource cost per vSDN. It is interesting to notice
that for a larger Ĥ , the cost result from the ILP can be smaller,
especially for vSDNs with relatively large topologies. This is
because for a larger Ĥ , the solution space becomes larger and
since the ILP can solve the vSDN embedding problem exactly,
it might find a better solution.

Number of VNs per vSDN
4 5 6 7 8

R
es

ou
rc

e
C

os
t p

er
 v

SD
N

100

200

300

400

500

600

700
Ĥ = 1

Ĥ = 2

Ĥ = 3

Fig. 4. Results from ILP with the small substrate network.

Then, we compare the performance of the proposed heuristic

TABLE I
COMPARISON OF AVERAGE RESOURCE COST PER VSDN

Ĥ = 1 Ĥ = 2 Ĥ = 3

of VNs 2 3 4 5 6 5 6 7 8 9 8 9 10 11 12
ILP 36.2 64.0 108.8 162.4 334.6 155.2 195.4 225.4 248.8 335.6 214.6 298.2 302.4 353.2 378.2
Ours 36.2 64.0 115.0 186.6 362.2 173.4 228.8 286.2 369.4 421.4 318.8 379.0 356.2 444.2 454.8

Benchmark 36.2 64.0 121.0 205.0 402.4 174.0 246.8 319.0 409.6 545.4 338.2 472.8 512.0 644.8 693.2

and ILP. Also, to further verify the effectiveness of our
proposed algorithms, a benchmark algorithm that uses the
GRC-VNE in [9] to replace Algorithm 2 in Algorithm 1 is
introduced. We name the benchmark algorithm as Benchmark
and our proposed one in Algorithm 1 as Ours. Table I illustrates
the average resource cost per vSDN from the algorithms for
Ĥ ∈ {1, 2, 3}. It can be seen that the ILP always provides
the smallest resource cost, which is followed by Ours, and
Benchmark always performs the worst. These results verify
our analysis that since a vSDN consumes TCAM not only on
the SNs that its VNs are embedded on but also on the SNs that
are the intermediate nodes on the substrate paths to carry its
VLs, we should try to map a VL to a relatively short substrate
path to save TCAM resources.
Next, we evaluate the algorithms in a much larger substrate

network. Due to the complexity of the ILP, we only compare
Ours and Benchmark in this scenario. The substrate topology
including 9 subnets, each of which includes 12 SNs with
an SN connectivity ratio of 0.45. In each set, there are 10
requests whose numbers of VNs are the same, and all the
other parameters are similar as before. We set Ĥ = 4 and plot
the results on average resource cost per vSDN in Fig. 5. It
can be seen that Ours still outperforms Benchmark in terms of
resource cost, and the performance gap between them becomes
more significant when for larger vSDNs topologies.

Number of VNs per vSDN
8 10 12 14 16 18 20 22 24

R
es

ou
rc

e
C

os
t p

er
 v

SD
N

0

500

1000

1500

2000

2500

3000

3500
Benchmark
Ours

Fig. 5. Results from simulations with the large substrate network.

VI. CONCLUSION
We studied how to embed vSDNs cost-effectively over a

substrate network with distributed NVHs for vDC formulation.
Specifically, we designed an ILP model and a heuristic to
jointly optimize the embedding schemes of the CP and DP of
each vSDN, i.e., to minimize the DP’s resource consumption
and limit the number of NVHs used in the CP simultaneously.
Simulation results suggested that our proposed algorithms
could embed vSDNs cost-effectively and significantly outper-
form the existing scheme based on GRC.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC Project

61371117, Natural Science Research Project for Universities
in Anhui (KJ2014ZD38), and the Strategic Priority Research
Program of the CAS (XDA06011202).

REFERENCES
[1] P. Lu et al., “Highly-efficient data migration and backup for big data

applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” IEEE Comput., vol. 38, pp. 34–
41, Apr. 2005.

[3] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, pp. 450–460, Feb.
2014.

[4] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding (LC-VNE) algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol. 24, pp. 3648–
3661, Dec. 2016.

[5] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,”
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[6] J. Yin et al., “On-demand and reliable vSD-EON provisioning with
correlated data and control plane embedding,” in Proc. of GLOBECOM
2016, pp. 1–6, Dec. 2016.

[7] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[8] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Com-
mun. Surveys Tuts., vol. 15, pp. 1888–1906, Fourth Quarter 2013.

[9] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
INFOCOM 2014, pp. 1–9, Apr. 2014.

[10] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,” J. Lightw. Technol., vol. 34,
pp. 3330–3341, Jul. 2016.

[11] B. Zhao, X. Chen, J. Zhu, and Z. Zhu, “Survivable control plane
establishment with live control service backup and migration in SD-
EONs,” J. Opt. Commun. Netw., vol. 8, pp. 371–381, Jun. 2016.

[12] X. Chen et al., “Leveraging master-slave openflow controller arrange-
ment to improve control plane resiliency in SD-EONs,” Opt. Express,
vol. 23, pp. 7550–7558, Mar. 2015.

[13] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Comput.
Commun., vol. 45, pp. 1–10, Mar. 2014.

[14] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for software defined networking,” IEEE Com-
mun. Surveys Tuts., vol. 18, pp. 655–685, First Quarter 2016.

[15] P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in Proc.
of ACM HotSDN 2014, pp. 1–6, Aug. 2014.

[16] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. of OSDI 2014, pp. 203–216, Apr. 2014.

[17] A. Al-Shabibi et al., “OpenVirteX: Make your virtual SDNs pro-
grammable,” in Proc. of ACM HotSDN 2014, pp. 25–30, Aug. 2014.

[18] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embed-
ding with coordinated node and link mapping,” in Proc. of INFOCOM
2009, pp. 783–791, Apr. 2009.

[19] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an inter-
network,” in Proc. of INFOCOM 1996, pp. 594–602, May 1996.

