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1. Introduction
By setting up variable-sized super-channels with series ofspectrally continuous fine-grained frequency slots (FS’s),
elastic optical networking (EON) offers unprecedented flexibility for spectrum management in the optical layer. Rout-
ing, modulation and spectrum assignment (RMSA) is one of thefundamental mechanisms for provisioning in EONs.
A number of RMSA schemes based on either heuristic algorithmdesign [1] or theoretical analysis [2] have been de-
veloped in the past years. However, all these schemes apply fixed RMSA policies and hence are unable to adapt to the
complicated and dynamic EON conditions,e.g., time-varying demand and spectrum state.

Google recently reported a human-level control paradigm leveraging deep reinforcement learning [3]. Specifically,
they parameterized a convolution neural network (also known asQ-network) that can learn successful policies (Q-
values) from high-dimensional sensory data (i.e., images). Inspired by this work, we propose Deep-RMSA, a deep
reinforcement learning based self-learning RMSA agent, torealize autonomous and cognitive RMSA for EONs. We
structure a deepQ-network consisting of multiple convolution and fully connected layers to learn the best RMSA
policies regarding different EON states (e.g., connectivity and spectrum utilization) and lightpath requests. The training
of the Q-network takes advantage of two key ideas from [3],i.e., deployment of target action-valueQ-network and
experience replay, for avoiding the divergence of parameters. We test Deep-RMSA with a six-node EON topology and
the simulation results verify its superiority over the baseline RMSA algorithm.

2. Deep-RMSA Design
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Fig. 1. Schematic of Deep-RMSA.

Deep-RMSA successively learns the optimal RMSA policy based on its percep-
tion of network states (e.g., topology, spectrum utilization and in-service light-
paths) and the feedback from the environment (i.e., network operations) using
deep reinforcement learning. Fig. 1 illustrates the schematic of Deep-RMSA. In
particular, upon receiving a lightpath requestLR(s,d,b) (s andd are source and
destination nodes,b is the demanded data rate), the RMSA engine fetches the
current network state and calls theQ-network to compute the estimated action
value (i.e., Q) for each RMSA solution ofLR. Conceptually, action value is de-
fined as the cumulative future reward that Deep-RMSA can achieve by taking
action (RMSA solution)A at stateS, i.e.,

Q(S,LR,A,π) = rt + γrt+1+ γ2rt+2+ · · ·, (1)

wherert is the immediate reward,γ is a discount factor imposed on future rewards andπ = Φ(A|S,LR) defines
the RMSA policy that Deep-RMSA applies. Apparently, takingRMSA solutions with largerQ-values grants higher
total reward. In this work, aε-greedy policy is used, with which the RMSA engine takes solutions corresponding to
the largestQ-values with a probability 1− ε, and random provisioning strategy is adopted otherwise. Note that, the
random policy enables Deep-RMSA to explore new solutions such that it can avoid being trapped in local optima
during the learning process. After the RMSA engine performing the RMSA operation, an immediate rewardrt can be
observed. Specifically,rt = 1 if LR is successfully provisioned, andrt = 0 otherwise. Then,rt together with the target
generated by the targetQ-network (estimation of future reward) form the label that is used for training theQ-network
afterwards,i.e., Deep-RMSA adjusts the parameters of theQ-network to make its output closer to the label (more
accurate approximation of the realQ-value). Finally, the targetQ-network is periodically updated with theQ-network
to incorporate the up to date learned experience. The training of Deep-RMSA will be elaborated on in Section 2.2.
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Fig. 2. Structure of deepQ-network. Conv.: Convolution, F.C.: Fully Connected.

2.1. Q-Network

Different from traditionalQ-learning methods that keep record of each(S,A) entry and update itsQ-value using linear
approximations, we refer to [3] and parameterize an approximated action-value functionQ(S,LR,A|~ωt) using the deep
neural network shown in Fig. 1(b) (i.e., Q-network, where~ωt is its parameter set at stept). Basically, theQ-network
takess, d andb of LR and the spectrum utilization on all the fiber links as the input and outputs theQ-value of each
RMSA solution. In this work, we calculateK-shortest paths for each request, with each RMSA solution corresponding
to the use of one of theK candidate paths. Note that, impairment-aware modulation format adaption and first-fit
spectrum assignment scheme [4] are applied throughout all solutions for simplifying the model. Leth1

i, j denote the
state of thej-th FS on linki (h1

i, j equates to 1 if the FS is available and 0 otherwise). The first layer incorporatess, d

andb and performs a convolution operation (Conv. 1) to transformh1
i, j into h2

i, j , i.e.,

h2
i, j = f

(

~ω1 ·
[

h1
i, j,s,d,b

]T
+β1

)

,∀i, j, (2)

where~ω1 is the set of parameters,β1 is the imposed bias andf (·) is the activation function. Here,s andd take the
one-hot form,i.e., anl-bit binary array (l is the number of nodes in the EON) with only one bit being equalto 1. Layer
2 is a standard convolution layer (Conv. 2) employing multiple convolution kernels, which each (kerneln) calculates,

h3
n, j = f

(

~ω2,n ·~h
2
j +β2,n

)

,∀ j. (3)

Since these convolution kernels perceive the state of everyspectrum locationj across all the links, we expect each of
them to extract the state of a path segment from the EON topology. Layer 2 is followed by another one or more layers
applying Conv. 2, which further combine the features obtained in layer 2, potentially enabling the extraction of the
states of longer end-to-end paths. As the FS’s allocated on alightpath in EONs should be continuous, we next deploy
a few Conv. 3 layers to make theQ-network perceive the states of continuous FS-blocks. Specifically, each kerneln in
Conv. 3 layers merges every two adjacent nodes from the previous layerx into one node according to,

hx+1
n,i, j = f

(

~ωx+1,n ·
[

hx
i,2 j−1,h

x
i,2 j

]T
+βx+1,n

)

,∀i, j. (4)

Again, such hierarchical feature extraction mechanism potentially enables theQ-network to learn the states of variable-
sized FS-blocks on different paths. Finally, we deploy two fully connected layers to calculate theQ-values using the
features learned by convolution layers.

2.2. Training

Deep-RMSA iteratively adjusts the parameters of theQ-network to minimize the estimation error over action values.
Recall thatQ(S,LR,A|~ωt) estimates theQ-value of taking RMSA solutionA for LR at stateS. Specifically, according
to Eq. 1, we have,

Q(S,LR,A|~ωt) = r̂t + γE

[

max
A′

{

Q̂(S′,LR′,A′|~ωt
−)

}

]

, (5)

where ˆrt is the estimation of immediate reward,S′ is the evolved network state after the RMSA operation forLR,
andQ̂(S′,LR′,A′|~ωt

−) is the target action-valueQ-network specifically for estimating the future reward. Here, inspired
by [3], we deployQ̂(S′,LR′,A′|~ωt

−) which is derived fromQ(S,LR,A|~ωt) but is less frequently updated to avoid the
oscillation or divergence of the parameters during training. Since the information of future requests is unavailable,
averageQ-value incorporating all the possibilities of the upcomingrequestLR′ is used to estimate the future reward.



By replacing ˆrt with the observedrt , we apparently obtain a more accurate estimation of theQ-value. Therefore, the
training ofQ(S,LR,A|~ωt) aims to minimize the loss function defined as,

L
(

~ωt)=

(

rt + γE

[

max
A′

{

Q̂(S′,LR′,A′|~ωt
−)

}

]

−Q(S,LR,A|~ωt)

)2

. (6)

More specifically, we take advantage of the idea of experience replay from [3], store the RMSA experience
(

S,LR,A,rt + γE
[

maxA′

{

Q̂(S′,LR′,A′|~ωt
−)

}])

in the replay memory and periodically perform batch training by re-
trieving randomly batches of RMSA experience from the memory. Experience reply breaks the correlations between
samples and therefore can potentially reduce the variance of the training [3]. Meanwhile,̂Q(S′,LR′,A′|~ωt

−) is replaced
with Q(S,LR,A|~ωt) every few training steps.

3. Evaluation and Discussion
We evaluate the performance of Deep-RMSA with the six-node EON topology shown in Fig. 3(a). Each link in the
EON accommodates 64 FS’s. The deepQ-network consists of 2 Conv. 2 layers (each with 16 convolution kernels), 3
Conv. 3 layers (each with 1 convolution kernel) and 2 fully connected layers ([128,50]). We calculateK = 5 candidate
paths for eachs-d pair,i.e., the number of nodes in the output layer is 5.γ andε are set to be 0.99 and 0.1 respectively.
We generate dynamic lightpath requests according to the Poisson process, withs andd randomly selected andb evenly
distributed within[25,100] Gb/s. An episode of RMSA operation terminates when every 200requests are handled (to
avoid infinite future reward). We invoke a batch training operation when every 3 episodes elapse and the targetQ-
network is updated every 2 training operations. We use the shortest path routing and first-fit spectrum assignment
algorithm (SP-FF) as the baseline algorithm. Fig. 3(b) shows the performance evolution of Deep-RMSA for various
numbers ofLRs trained. We can observe significant reduction in request blocking probability from Deep-RMSA,
which indicates that Deep-RMSA is able to capture successful features from the EON state and learn the correct
RMSA policies. Comparison between Deep-RMSA (trained with600k LRs) and SP-FF in Fig. 3(c) demonstrates that
Deep-RMSA significantly outperforms the baseline algorithm (4.1× blocking reduction in average). Note that, when
evaluating the performance of Deep-RMSA, we rely only on thepolicies learned by the agent and setε = 0 to disable
the exploration mechanism.

We should also note that as a very preliminary work of applying deep reinforcement learning to solve networking
problems, the proposed Deep-RMSA design still confronts a number of challenges remaining to be addressed. Firstly,
the design of theQ-network and the parameters used for the training process can be refined, such that Deep-RMSA
can extract better representations of network states and converge to optimal policies quickly even for larger topologies.
Meanwhile, different from general learning tasks that can be exactly modeled as Markov decision processes, the actions
and rewards of Deep-RMSA are also determined by the receivedLRs in addition to the network states. Therefore,
prediction of futureLRs is required, and the additional complexity induced as wellas the potential oscillation of the
learned parameters need to be carefully handled.
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Fig. 3. (a) Six-node EON topology (link length in km) and (b)-(c) results on request blocking probability: (b) performance
evolution of Deep-RMSA during training and (c) comparison between Deep-RMSA (trained with 600k LRs) and SP-FF.

4. Conclusion
In this work, we demonstrated a deep reinforcement learningbased self-learning RMSA agent that can learn successful
policies from dynamic network operations and realize cognitive and autonomous RMSA in EONs.
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