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1. Introduction

Elastic optical networks (EONSs) can achieve agile spectmamagement in the optical layer to support upper-layer
applications adaptively [1,2]. The ever-growing IP seegiin the Internet make a rational combination of IP and EON
technologies an inevitable trend [3]. However, in an IPree®N, service interruptions can be caused by failures
in both the EON and IP layers. More importantly, a recentysiglon the failures in Google’s wide-area networks
suggested that failures in the IP layery(, router outages) actually happened much more frequergtytthose in the
optical layer [4]. Hence, to ensure a survivable IP-oveNs(effective cross-layer orchestration is needed tozeali
multi-layer restoration (MLR) for addressing various aé events [5, 6]. This can be achieved by leveraging soéwar
defined networking (SDN) [5]. Specifically, when a failurgopans, the centralized network control and management
(NC&M) can respond quickly and reroute the affected trafiiboth the IP and EON layers.

Previous studies on MLR in IP-over-optical networks [5, 8lially tried to reroute the affected flows based on the
current network status. This, however, might not always fiective since IP traffic is usually highly dynamic and
bursty. Therefore, even though the current network stdtows us to groom the affected flows with existing ones
and transfer them in established lightpaths, congesti@ystrappen in the future due to the sudden increase of certain
flows’ data-rates. Such a congestion can cause cascada@$di], which not only fails the MLR but also complicates
the failure handling. Hence, it would be desirable that th@ti@alized NC&M in software-defined IP-over-EONSs (SD-
IPOEONS) could be more intelligent, such that it can anabme predict the traffic fluctuation on each established
lightpath to achieve artificial intelligence (Al) assistédlR, for avoiding future congestions. Nevertheless, toliast
of our knowledge, this type of SD-IPOEON system has not baatiesd or demonstrated before.

In this work, we design and demonstrate an SD-IPOEON sydtaincan realize Al-assisted MLR by leveraging
the deep learning (DL) based on a long short-term memoryah@etwork (LSTM-NN) [7]. The control plane (CP)
of the SD-IPOEON is developed based on ONOS [8] to realizeaunsal control of both the OpenFlow switches (OF-
SWs) in the IP layer and the OpenFlow-enabled bandwidtlalvbr wavelength-selective switches (BV-WSS’) in the
EON, for cross-layer orchestration. To realize traffic gasl and prediction, we use TensorFlow to implement a DL
module in the CP. When a network failure happens, the CP aehigl-assisted MLR by letting ONOS calculate the
most effective rerouting scheme for affected flows basederiraffic prediction provided by the DL module. Then,
the MLR scheme is implemented in the data plane (DP). By sendial traffic through its DP, our experimental
demonstrations verify that the proposed system can readfexted flows timely during network failures, and our
Al-assisted MLR achieves congestion-avoidance traffisutng based on the predication from the DL module. In all,
our proposal reveals a promising use-case of knowledgeeatefietworking (KDN) [9] in optical networks.

2. Network Architecture and System Design

Fig. 1 shows the architecture of our SD-IPOEON system. Thiayer in the DP is based on OF-SWSs, which are
equipped with optical ports for 10 Gigabit Ethernet (L0Gb&h)nections. The optical ports are interconnected with
each other through the BV-WSS’ in the EON. On each OF-SWetlage several locally-attached servers, which
generate/receive dynamic IP traffic. Hence, as indicatédignl, two servers can talk with each other through either
an end-to-end lightpath that connects a pair of 10GbE portheir local OF-SWs directly or multiple lightpaths that
invoke O/E/O conversion(s) and traffic de-/re-groomingiggiimediate OF-SW(s). The actual communication scheme
is determined and implemented by the ONOS-based CP, whitsiste of an ONOS module and a DL module. The
OpenFlow controller (OF-C) in the ONOS communicates witthdibe OF-SWs and BV-WSS' to realize cross-layer
orchestration. Specifically, the OF-C can insert, updateramove flow-tables in the OF-SWs to achieve traffic de-
/re-grooming, and meanwhile, it also communicates withQpenFlow agents (OF-AGs) on the BV-WSS’ based on
the OpenFlow with optical transport protocol extensions (@ OTPE) to realize lightpath setup/removal.
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Fig. 1. Network architecture of SD-IPOEON. Fig. 2. Openatpvocedure.

To ensure network survivability, we implement a monitor (Mdn the ONOS to observe the working status of
each network element in the DP as well as collect trafficsttasi on established lightpaths periodically. If a network
failure is detected, the ONOS would use the MLR submodulatoutate the rerouting schemes for affected flows.
Note that, for Al-assisted MLR, the MLR utilizes the knowtgdon traffic prediction provided by the DL. Here,
the traffic statistics collected by the MON are forwardedhie DL consistently, where they get stored in the traffic
database (T-DB) and are used to train the traffic predictd?RD) based on an LSTM-NN. Specifically, the T-PRD
can take historical traffic statistics as input and predittrfe traffic fluctuations accurately after proper traininis
is achieved with our design of the LSTM-NN, which, as Fig. ®sh, consists of three neural network layers,
the input, hidden and output layers. The input layer takes+rl historical traffic samples, the output layer buffers
predicted traffic samples, while the hidden layer is an LS@kl that can be trained to map input to output. Moreover,
to improve the prediction accuracy, we use real-time rexirearning (RTRL) to update the LSTM-NN.

The operation procedure of our SD-IPOEON system is depictédg. 2. During network initialization, the OF-

C populates flow-tables on each network element in the DP tersare that the traffic among the servers can be
delivered smoothly. Then, the MON acquires network statosfthe OF-C periodically. For the traffic statistics on
the lightpaths, we collect the data-rate of each optical pothe OF-SWs. The MON also sends the traffic statistics
to the DL, which uses them to train the T-PRD. When a netwaitliria (e.g., an OF-SW outage) happens, the OF-C
would invoke the MLR immediately for failure recovery. TheLR, in turn, asks for the traffic prediction of related
lightpaths from the T-PRD, and then uses an MLR algorithnatoudate the rerouting schemes for the affected flows.
Here, for the MLR algorithm, we adapt the AG-NE reported ihdfAd add forecast-based congestion-avoidance in
it. Specifically, if the affected flows could be groomed witie existing ones on established lightpaths and would not
cause congestions in the future according to the trafficiptied, we would just reroute them in the IP layer. Otherwise
new lightpath(s) would be set up in the EON to provide ex@asmission capacity for the failure recovery.

3. Experiment Demonstration

We implement the proposed SD-IPOEON system in a practit¢elork testbed. The ONOS and DL modules in the CP
are realized on commodity servers, while for the DP, the W &re Pica-8 switches equipped with optical 10GbE
ports {.e., operating in the C-band), and the EON consists of four Binix9 BV-WSS'. Each BV-WSS covers the
wavelength range withif152843,156688 nm and supports a bandwidth allocation granularity 0613@Hz. Its
operation is controlled by an OF-AG, which is also impleneeinbn a commaodity server. To fully demonstrate the
effectiveness of our SD-IPOEON system, we send traffic thindhe DP and conduct Al-assisted MLR experiments
with live and dynamic traffic on. The topologies of and traiffithe IP and EON layers are shown in Fig. 4. Specifically,
we have five lightpathd.e., {LP1, ---, LP5}) to carry the five flowsi(e,, {F1, ---, F5}) in the IP layer. To emulate the
case in a real network, the traffic fluctuation on each ligthtpae set according to the traces collected by ISPs [10].
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Fig. 3. Proposed LSTM-NN. Fig. 4. Experimental Setup. Fig?®diction results. Fig. 6. Relative error of prediction.



In the experiments, we divide the traffic samples in eactetmaim two setsi.e., the training and testing sets. The
training set is purely used to train the T-PRD, while theitgsset is used in the experimental demonstration of Al-
assisted MLR. The T-PRD’s performance on traffic predicisoshown in Figs. 5 and 6. We can see that the predicted
traffic matches with the real traffic well in Fig. 5, and theatale error distribution in Fig. 6 suggests that the average
relative error is £28% and 82% of predicted results have a relative error less10%. We run iPerf on the servers to
generate dynamic traffics fdF1, - --, F5} according to the traces. Note that, we can hardly saturateapacity of
optical 10GbE ports on the OF-SWs in the experiments, beddesservers are connected with the OF-SWs through
1GbE ports and we only have a limited number of servers. Hea@nulate a real network in which congestions can
happen, we scale down the traces with a peak throughput op$ &tod also limit the capacity of each optical 10GbE
port as 1 Gbps. Then, the MON in the CP collects the averagerdés of each lightpath every 10 seconds to sample
its traffic fluctuation. During normal operation, the T-DBftaus 30 historical traffic samples for each lightpath. When
a network failure happens, the T-PRD will predict 10 futuedfic samples for each lightpath to assist the MLR.

Then, we emulate an OF-SW outage in the system by shutting @SW B manually. Note that, whe®F-SW B
is down, only the traffic that experiences de-/re-grooming avill be affected (.e., F1 andF2), while the traffic that
only uses its underlying BV-WSS will not be affectea( F3) sinceBV-WSS2 is intact. HereF2 cannot be recovered
beforeOF-SW B is fixed, because it uses a local servei@SW B as the source. Hence, the CP detects the failure
and determines th&tl needs to be rerouted. Fig. 7 shows the predicted traffic fidictus on lightpathsP3 andLP4
if we groomF1 on one of them in the MLR, which indicates that even thouB8 or LP4 has enough capacity to carry
F1 at the time of recovery, congestions will happen in the fitdiherefore, the Al-assisted MLR decides to set up a
new transparent lightpath betwe®f-SWs A andC to restore~1. This can be verified by the spectrum results in Fig.
8, which are measured at the input®f-WSS 3. We observe that before the OF-SW outage, the spectrirRdtan
be seen in Fig. 8(a), while after the outagf is gone in Fig. 8(b) and the MLR sets up a new lightpath to rerou
F1 to BV-WSS 3 directly. Fig. 9(a) shows the receiving ratiofef, which indicates that the Al-assisted MLR recovers
its traffic with 194 seconds after the OF-SW outage, and the receiving ratiddwmt decrease after the MLR. For
comparison, we disable the DL module in the CP, only use th©8Nbr the MLR, and redo the experiment. This
time, the CP decides to grooRi ontoLP3 in the MLR. The receiving ratio df1 is shown in Fig. 9(b), which shows
that future congestion doP3 will cause severe packet losseskh even though grooming it on an existing lightpath
induces much shorter traffic interruption. Specifically, measure the packet loss ratiofet for its whole lifetime
and found that the results aré@6 and 375% for with and without Al assistance, respectively. In g experimental
results verify that our proposed system can recover affidtiiers timely with congestion-avoidance rerouting.
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Fig. 7. Predicted traffic fluctuation. Fig. 8. Spectra meegdwn input oBV-WSS 3. Fig. 9. Receiving ratio oF1.

4. Summary
We designed and experimentally demonstrated an SD-IPoE®tsm, which realizes Al-assisted MLR with DL and
achieves congestion-avoidance traffic rerouting baseti®priecise traffic predication from the DL.
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