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Abstract: By using deep learning, we experimentally demonstrate AI-assisted multi-layer restora-
tion in an IP-over-EON, which recovers affected traffic timely with congestion-avoidance rerouting.
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1. Introduction
Elastic optical networks (EONs) can achieve agile spectrummanagement in the optical layer to support upper-layer
applications adaptively [1,2]. The ever-growing IP services in the Internet make a rational combination of IP and EON
technologies an inevitable trend [3]. However, in an IP-over-EON, service interruptions can be caused by failures
in both the EON and IP layers. More importantly, a recent analysis on the failures in Google’s wide-area networks
suggested that failures in the IP layer (e.g., router outages) actually happened much more frequently than those in the
optical layer [4]. Hence, to ensure a survivable IP-over-EONs, effective cross-layer orchestration is needed to realize
multi-layer restoration (MLR) for addressing various failure events [5,6]. This can be achieved by leveraging software-
defined networking (SDN) [5]. Specifically, when a failure happens, the centralized network control and management
(NC&M) can respond quickly and reroute the affected traffic in both the IP and EON layers.

Previous studies on MLR in IP-over-optical networks [5, 6] usually tried to reroute the affected flows based on the
current network status. This, however, might not always be effective since IP traffic is usually highly dynamic and
bursty. Therefore, even though the current network status allows us to groom the affected flows with existing ones
and transfer them in established lightpaths, congestions may happen in the future due to the sudden increase of certain
flows’ data-rates. Such a congestion can cause cascaded failures [4], which not only fails the MLR but also complicates
the failure handling. Hence, it would be desirable that the centralized NC&M in software-defined IP-over-EONs (SD-
IPoEONs) could be more intelligent, such that it can analyzeand predict the traffic fluctuation on each established
lightpath to achieve artificial intelligence (AI) assistedMLR, for avoiding future congestions. Nevertheless, to thebest
of our knowledge, this type of SD-IPoEON system has not been studied or demonstrated before.

In this work, we design and demonstrate an SD-IPoEON system that can realize AI-assisted MLR by leveraging
the deep learning (DL) based on a long short-term memory neural network (LSTM-NN) [7]. The control plane (CP)
of the SD-IPoEON is developed based on ONOS [8] to realize universal control of both the OpenFlow switches (OF-
SWs) in the IP layer and the OpenFlow-enabled bandwidth-variable wavelength-selective switches (BV-WSS’) in the
EON, for cross-layer orchestration. To realize traffic analysis and prediction, we use TensorFlow to implement a DL
module in the CP. When a network failure happens, the CP achieves AI-assisted MLR by letting ONOS calculate the
most effective rerouting scheme for affected flows based on the traffic prediction provided by the DL module. Then,
the MLR scheme is implemented in the data plane (DP). By sending real traffic through its DP, our experimental
demonstrations verify that the proposed system can recoveraffected flows timely during network failures, and our
AI-assisted MLR achieves congestion-avoidance traffic rerouting based on the predication from the DL module. In all,
our proposal reveals a promising use-case of knowledge-defined networking (KDN) [9] in optical networks.

2. Network Architecture and System Design
Fig. 1 shows the architecture of our SD-IPoEON system. The IPlayer in the DP is based on OF-SWs, which are
equipped with optical ports for 10 Gigabit Ethernet (10GbE)connections. The optical ports are interconnected with
each other through the BV-WSS’ in the EON. On each OF-SW, there are several locally-attached servers, which
generate/receive dynamic IP traffic. Hence, as indicated inFig. 1, two servers can talk with each other through either
an end-to-end lightpath that connects a pair of 10GbE ports on their local OF-SWs directly or multiple lightpaths that
invoke O/E/O conversion(s) and traffic de-/re-grooming at intermediate OF-SW(s). The actual communication scheme
is determined and implemented by the ONOS-based CP, which consists of an ONOS module and a DL module. The
OpenFlow controller (OF-C) in the ONOS communicates with both the OF-SWs and BV-WSS’ to realize cross-layer
orchestration. Specifically, the OF-C can insert, update and remove flow-tables in the OF-SWs to achieve traffic de-
/re-grooming, and meanwhile, it also communicates with theOpenFlow agents (OF-AGs) on the BV-WSS’ based on
the OpenFlow with optical transport protocol extensions (OF w/ OTPE) to realize lightpath setup/removal.
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Fig. 1. Network architecture of SD-IPoEON. Fig. 2. Operation procedure.

To ensure network survivability, we implement a monitor (MON) in the ONOS to observe the working status of
each network element in the DP as well as collect traffic statistics on established lightpaths periodically. If a network
failure is detected, the ONOS would use the MLR submodule to calculate the rerouting schemes for affected flows.
Note that, for AI-assisted MLR, the MLR utilizes the knowledge on traffic prediction provided by the DL. Here,
the traffic statistics collected by the MON are forwarded to the DL consistently, where they get stored in the traffic
database (T-DB) and are used to train the traffic predictor (T-PRD) based on an LSTM-NN. Specifically, the T-PRD
can take historical traffic statistics as input and predict future traffic fluctuations accurately after proper training. This
is achieved with our design of the LSTM-NN, which, as Fig. 3 shows, consists of three neural network layers,i.e.,
the input, hidden and output layers. The input layer takes inn+1 historical traffic samples, the output layer buffersm
predicted traffic samples, while the hidden layer is an LSTM layer that can be trained to map input to output. Moreover,
to improve the prediction accuracy, we use real-time recurrent learning (RTRL) to update the LSTM-NN.

The operation procedure of our SD-IPoEON system is depictedin Fig. 2. During network initialization, the OF-
C populates flow-tables on each network element in the DP to make sure that the traffic among the servers can be
delivered smoothly. Then, the MON acquires network status from the OF-C periodically. For the traffic statistics on
the lightpaths, we collect the data-rate of each optical port on the OF-SWs. The MON also sends the traffic statistics
to the DL, which uses them to train the T-PRD. When a network failure (e.g., an OF-SW outage) happens, the OF-C
would invoke the MLR immediately for failure recovery. The MLR, in turn, asks for the traffic prediction of related
lightpaths from the T-PRD, and then uses an MLR algorithm to calculate the rerouting schemes for the affected flows.
Here, for the MLR algorithm, we adapt the AG-NE reported in [6] and add forecast-based congestion-avoidance in
it. Specifically, if the affected flows could be groomed with the existing ones on established lightpaths and would not
cause congestions in the future according to the traffic prediction, we would just reroute them in the IP layer. Otherwise,
new lightpath(s) would be set up in the EON to provide extra transmission capacity for the failure recovery.

3. Experiment Demonstration
We implement the proposed SD-IPoEON system in a practical network testbed. The ONOS and DL modules in the CP
are realized on commodity servers, while for the DP, the OF-SWs are Pica-8 switches equipped with optical 10GbE
ports (i.e., operating in the C-band), and the EON consists of four Finisar 1×9 BV-WSS’. Each BV-WSS covers the
wavelength range within[1528.43,1566.88] nm and supports a bandwidth allocation granularity of 12.5 GHz. Its
operation is controlled by an OF-AG, which is also implemented on a commodity server. To fully demonstrate the
effectiveness of our SD-IPoEON system, we send traffic through the DP and conduct AI-assisted MLR experiments
with live and dynamic traffic on. The topologies of and trafficin the IP and EON layers are shown in Fig. 4. Specifically,
we have five lightpaths (i.e., {LP1, · · · , LP5}) to carry the five flows (i.e., {F1, · · · , F5}) in the IP layer. To emulate the
case in a real network, the traffic fluctuation on each lightpath are set according to the traces collected by ISPs [10].
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Fig. 3. Proposed LSTM-NN. Fig. 4. Experimental Setup. Fig. 5. Prediction results. Fig. 6. Relative error of prediction.



In the experiments, we divide the traffic samples in each trace into two sets,i.e., the training and testing sets. The
training set is purely used to train the T-PRD, while the testing set is used in the experimental demonstration of AI-
assisted MLR. The T-PRD’s performance on traffic predictionis shown in Figs. 5 and 6. We can see that the predicted
traffic matches with the real traffic well in Fig. 5, and the relative error distribution in Fig. 6 suggests that the average
relative error is 4.28% and 82% of predicted results have a relative error less than 10%. We run iPerf on the servers to
generate dynamic traffics for{F1, · · · , F5} according to the traces. Note that, we can hardly saturate the capacity of
optical 10GbE ports on the OF-SWs in the experiments, because the servers are connected with the OF-SWs through
1GbE ports and we only have a limited number of servers. Hence, to emulate a real network in which congestions can
happen, we scale down the traces with a peak throughput of 1 Gbps and also limit the capacity of each optical 10GbE
port as 1 Gbps. Then, the MON in the CP collects the average data-rate of each lightpath every 10 seconds to sample
its traffic fluctuation. During normal operation, the T-DB buffers 30 historical traffic samples for each lightpath. When
a network failure happens, the T-PRD will predict 10 future traffic samples for each lightpath to assist the MLR.

Then, we emulate an OF-SW outage in the system by shutting down OF-SW B manually. Note that, whenOF-SW B
is down, only the traffic that experiences de-/re-grooming on it will be affected (i.e., F1 andF2), while the traffic that
only uses its underlying BV-WSS will not be affected (i.e., F3) sinceBV-WSS 2 is intact. Here,F2 cannot be recovered
beforeOF-SW B is fixed, because it uses a local server onOF-SW B as the source. Hence, the CP detects the failure
and determines thatF1 needs to be rerouted. Fig. 7 shows the predicted traffic fluctuations on lightpathsLP3 andLP4
if we groomF1 on one of them in the MLR, which indicates that even thoughLP3 or LP4 has enough capacity to carry
F1 at the time of recovery, congestions will happen in the future. Therefore, the AI-assisted MLR decides to set up a
new transparent lightpath betweenOF-SWs A andC to restoreF1. This can be verified by the spectrum results in Fig.
8, which are measured at the input ofBV-WSS 3. We observe that before the OF-SW outage, the spectrum ofLP2 can
be seen in Fig. 8(a), while after the outage,LP2 is gone in Fig. 8(b) and the MLR sets up a new lightpath to reroute
F1 to BV-WSS 3 directly. Fig. 9(a) shows the receiving ratio ofF1, which indicates that the AI-assisted MLR recovers
its traffic with 1.94 seconds after the OF-SW outage, and the receiving ratio would not decrease after the MLR. For
comparison, we disable the DL module in the CP, only use the ONOS for the MLR, and redo the experiment. This
time, the CP decides to groomF1 ontoLP3 in the MLR. The receiving ratio ofF1 is shown in Fig. 9(b), which shows
that future congestion onLP3 will cause severe packet losses onF1, even though grooming it on an existing lightpath
induces much shorter traffic interruption. Specifically, wemeasure the packet loss ratio ofF1 for its whole lifetime
and found that the results are 0.5% and 37.5% for with and without AI assistance, respectively. In all,the experimental
results verify that our proposed system can recover affected flows timely with congestion-avoidance rerouting.
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Fig. 7. Predicted traffic fluctuation. Fig. 8. Spectra measured on input ofBV-WSS 3. Fig. 9. Receiving ratio ofF1.

4. Summary
We designed and experimentally demonstrated an SD-IPoEON system, which realizes AI-assisted MLR with DL and
achieves congestion-avoidance traffic rerouting based on the precise traffic predication from the DL.
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