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Abstract—Inter-datacenter (inter-DC) networks are essential for large enterprises to deliver high-quality services to end-users. Since
DCs are vulnerable to natural disasters, an inter-DC network operator needs an effective emergency backup plan to evacuate the
endangered data out in case of a progressive disaster whose status can be predicted by an early warning system. In this paper, we try
to solve the problem of emergency backup in inter-DC networks with progressive disasters. We first utilize the time-expanded network
(TEN) approach to model the time-variant inter-DC network during a progressive disaster as a variant TEN (VTEN) and convert the
dynamic flow scheduling for emergency backup to a static one. Then, with the VTEN, we formulate an optimization model to maximize
the profit from the emergency backup in consideration of data values and resource costs. Although this large-scale optimization can
be solved in a distributed way by leveraging the alternation direction method of multipliers (ADMM), we find that one of its subproblems
is nontrivial in the distributed setting. We propose a novel inexact ADMM approach to resolve the issue induced by the subproblem,
and prove that the proposed algorithm can converge to the optimal solution. The results from extensive simulations confirm that our
algorithm is robust and time-efficient, and outperforms several benchmarks in terms of backup profit and running time.

Index Terms—Inter-DC networks, Emergency backup, Progressive disasters, Alternating direction method of multipliers (ADMM),
Time-expanded network (TEN).

✦

1 INTRODUCTION

NOWADAYS, datacenters (DCs) have become the key IT
infrastructure to support cloud computing, Big Data

analytics and other data-intensive emerging applications
[1]. In order to provide low-latency, high-quality and non-
disruptive services to end-users, large enterprises such as
Google, Facebook and Amazon have placed their DCs in
a geographically distributed manner and built inter-DC
networks to interconnect them. As a DC carries enormous
amounts of data and runs virtual machines (VMs) to de-
liver services to thousands or even millions of end-users, a
breakdown on it would cause unimaginable losses. Recent
statistics indicated that a DC operator could lose over $9000
per minute because of unexpected DC outages [2].

However, DCs are vulnerable to natural disasters such
as flood, earthquake, hurricane and tsunami, which can
easily wipe them out [3]. Therefore, it is essential to have an
effective data evacuation plan that can back up as much data
from the endangered DCs as possible before an upcoming
disaster destroys them. Note that, certain disasters, e.g.,
hurricane and tsunami, are progressive and thus usually
predictable. For instance, it took Hurricane Sandy several
days since its formation to move ashore on the east coast
of the United States [4]. Hence, an early warning system
can provide useful information regarding such a disaster
(i.e., the time and corresponding impact range) to an inter-
DC network operator and let it evacuate important data out
before too late. Specifically, the inter-DC network operator
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needs to figure out an effective emergency backup plan,
i.e., how to back up endangered data under a rigid time
constraint over a time-variant network topology [5], [6].

Note that, there are generally two types of backups
in inter-DC networks, i.e., regular backup and emergency
backup. Regular backup runs periodically when the net-
work is in its working state to move data around among
geographically distributed DCs, for obtaining sufficient data
redundancy [7]. Therefore, previous studies have treated
regular backup as a problem of bulk-data transfer [8]–[10],
and considered how to schedule data transfers and optimize
resource allocation for minimizing bandwidth cost [11] or
how to achieve coordinated data transfers to minimize the
backup duration [7]. However, both the backup scheme and
network model of regular backup are fundamentally differ-
ent from those of emergency backup, which is triggered in
response to a predictable and progressive disaster [5].

Previously, we have studied emergency backup in [5].
Specifically, we defined a utility function to quantify data
value, leveraged the time-expanded network (TEN) ap-
proach [8] for data transfer scheduling, and designed a
distributed algorithm based on dual decomposition to max-
imize the data owners’ utility. However, the work in [5] still
bears three drawbacks. Firstly, the proposed algorithm only
considers the revenue gain from successful data backups but
ignores the costs of the network resources (i.e., bandwidth
on links and storage in DCs) used in the backup process,
which makes the revenue model less practical. Secondly, the
dual decomposition suffers from slow convergence speed
and/or oscillation around the optimal solution. Last and
most importantly, the algorithm also calculates the backup
scheme with a fixed topology but does not consider the
topology change during a progressive disaster. To address
these issues, we investigated the emergency backup in an
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Fig. 1. Example on an inter-DC network with a progressive disaster.

inter-DC network whose topology is time-variant in [12] and
used the alternating direction method of multipliers (AD-
MM) [13] to design a distributed algorithm. Nevertheless,
the study in [12] is still preliminary, since it did not fully
optimize the distributed algorithm’s performance and the
algorithm’s convergence was not verified theoretically.

In this paper, we extend our work in [12] to solve the
problem of emergency backup in inter-DC networks with
progressive disasters. First of all, to reduce the complexity
of dynamic flow scheduling, we utilize the TEN approach to
model the time-variant inter-DC network with a progressive
disaster as a variant TEN (VTEN) and convert the dynamic
flow scheduling problem to a static one. With the VTEN, we
formulate an optimization problem to maximize the profit
from the emergency backup in consideration of data values
and resource costs. We then apply ADMM to solve this
large-scale optimization problem in a distributed manner.
As one subproblem in ADMM is subject to network con-
straints and nontrivial in the distributed setting, we solve
it approximately with a single primal-dual gradient step
and also improve the time efficiency, which results in a
novel inexact ADMM approach. We theoretically prove that
the inexact ADMM based algorithm can converge to the
optimal solution, and evaluate it with extensive simulations.
Simulation results demonstrate that our proposal is robust
and time-efficient, and outperforms several benchmarks in
terms of backup profit and running time. In summary, the
major contributions of this work are as follows.

• Model. We address the emergency backup in an inter-
DC network with a progressive disaster, which is chal-
lenging since it needs to accomplish dynamic flow
scheduling in a time-variant network. We adopt the
VTEN technique to reformulate it to a tractable profit
optimization problem over a static network.

• Algorithm. We propose an inexact ADMM-based algo-
rithm to solve this problem in a distributed manner.
Different from the conventional ADMM that exactly
solves involved subproblems, we solve the subproblem
with network constraints approximately, and thus sig-
nificantly reduce the time complexity.

• Theory. We prove that the proposed inexact ADMM-
based distributed algorithm converges to the optimal
solution. This theoretical guarantee is corroborated by
extensive numerical experiments.

The rest of this paper is organized as follows. Section 2
provides a brief survey on the related work. In Section 3, we
formulate the optimization problem to address the emer-

gency backup in an inter-DC network with a progressive
disaster. The inexact ADMM-based distributed algorithm is
proposed in Section 4, and Section 5 theoretically proves
that it can converge to the optimal solution. In Section
6, we present the performance evaluation with numerical
simulations. Finally, Section 7 summarizes the paper.

2 RELATED WORK

In an inter-DC network, data backup is the most frequently
used technique to maintain the survivability and integrity
of data. Previous studies have addressed both regular back-
up and emergency backup scenarios. For regular backup
[7], people usually treated it as transferring normal bulk-
data in an inter-DC network [14]. In [1], [3], [7], we have
considered the regular data backup schemes in inter-DC
optical networks, and tried to minimize the DC backup
window (i.e., the overall duration of bulk-data transfers) to
avoid the prolonged negative impacts on normal DC op-
eration. Meanwhile, without particularly aiming at solving
the regular backup problem, the studies in [15], [16] have
also addressed how to schedule bulk-data transfers in an
inter-DC network with dynamic traffic. However, compared
with the emergency backup considered in this work, regu-
lar backup has two fundamental differences, i.e., the data
transfers do not have a rigid deadline and the inter-DC
network’s topology is usually not time-variant. Therefore,
the algorithms proposed for regular backup can hardly be
leveraged to design emergency backup schemes.

Emergency backup is triggered in response to a pre-
dictable and progressive disaster [5]. Since emergency back-
up has to evacuate as much endangered data out as pos-
sible under a rigid time constraint over a time-variant net-
work topology, it involves more sophisticated data transfer
scheduling. Ma et al. [6] proposed several algorithms to back
up endangered data within a pre-determined warning time
and minimized the backup costs. Nevertheless, they did not
consider a progressive disaster that would generate a time-
variant network topology, and treated all the endangered
data equally in the backup without service differentiation.
Hence, the algorithms would not give priority to the critical
data when not all the data can be evacuated. The study in
[17] differentiated data based on its importance and tried to
back up critical data first within the warning time. However,
the backup scheme was developed over a fixed topology,
which did not reflect the case in progressive disasters. The
authors of [18] investigated the data evacuation strategy for
a wireless sensor network (WSN) that just experienced a dis-
aster. Since the strategy was designed for the post-disaster
scenario in WSNs, the network model is fundamentally
different from ours. Moreover, the work in [18] only consid-
ered a fixed topology when designing the data evacuation
strategy. We have also studied emergency backup in inter-
DC networks in [5], [12]; but as explained in the previous
section, our previous studies still bear certain drawbacks.

The problem of emergency backup in inter-DC networks
can essentially be viewed as scheduling and routing of
multi-source multi-destination flows over time. However,
it is known that this type of dynamic flow scheduling prob-
lems are generally very complicated [19]. Specifically, the
common problems of fraction multi-commodity flows over time
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and minimum-cost flow over time are both NP-hard [19]. To
assist the problem solving of dynamic flow scheduling, Ford
et al. [20] proposed the TEN method, which adopts a discrete
time model to expand the network by replicating its topolo-
gy for each time interval and converts the dynamic network
to a static one. Hence, TEN helps to simplify dynamic flow
scheduling at the cost of increased network size. This has
motivated several researches on how to reduce the network
size obtained by TEN [15], [21]. However, their proposals
usually involve relatively complicated procedure and thus
cannot address the complexity issue of TEN effectively.

On the other hand, a large-scale optimization problem
can also be solved time-efficiently with a distributed algo-
rithm. For example, ADMM [13] has been considered as a
powerful tool for this purpose since it has a naturally paral-
lel implementation. Note that, in the standard approach of
ADMM, variables are divided into sub-blocks, each of which
corresponds to a subproblem that is solved exactly in an
iteration. The convergence of standard ADMM has already
been theoretically verified in [22]. Nevertheless, in many
practical cases, solving the subproblems in ADMM exactly
is costly, which promotes the studies on inexact ADMM.

It is known that an inexact ADMM adopts inexact
subproblem solutions whose inaccuracy can be maintained
within a given tolerance in each iteration [23]. Previously,
researchers have designed a few inexact ADMM schemes
that try to solve subproblems inexactly with various ap-
proximation methods [24]–[27]. However, these studies only
addressed the subproblems that have no or very simple con-
straints (i.e., the trivial ones). As we will explain in Section
4.3, we encounter a subproblem with network constraints,
which is nontrivial in a distributed setting. To address this
issue, we introduce an inexact primal-dual gradient step
to find an approximate solution to the subproblem. This
actually leads to a new type of inexact ADMM, which, to
the best of our knowledge, has not been explored before.

3 PROBLEM FORMULATION

3.1 Network Model

Fig. 1 illustrates an inter-DC network that is being impacted
by a progressive disaster. In the network, the DCs are inter-
connected by high-capacity links, and the disaster can bring
down both the DCs and links in a time-variant manner. The
disaster starts to land on DC 1 at t = 2, and as time goes on,
DCs 2 and 3 will be destroyed at t = 3 and T , respectively.
After t = T , the disaster’s impact range stops to increase
and thus the remaining DCs stay unaffected. Apparently, the
DCs in the inter-DC network can be classified into two cat-
egories, i.e., damaged DCs and safe ones. When the disaster
progresses, the network operator should try to evacuate the
endangered data to safe DCs according to its importance at
each time interval, before it will be wiped out by the disaster.
Note that, with the development of the disaster, certain safe
DCs can become damaged ones and hence they should be
only used to buffer the endangered data for the time being.
Hence, for each damaged DC, there is an emergency backup
window, which refers to the duration from when an early
warning is received to when it is impacted by the disaster.
Note that, we only consider the predictable disasters whose
ranges and timing can be forecasted precisely [28], [29], and
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Fig. 2. Examples on building VTENs.

the unpredictable disasters discussed in [28] are out of scope
of this work. When the range and timing of a disaster cannot
be predicted, it can be modeled with a probabilistic model
[28], [30], which will be considered in our future work.

We denote the original topology of the inter-DC network
as a directed graph G0(V0, E0), where V0 and E0 are the
sets of DC nodes and links before a disaster happens,
respectively. When the disaster stops (i.e., t > T ), a group of
DCs are damaged and the rest are safe. We denote the subset
of damaged DCs as V d and the rest as V s = {i : i ∈ V0\V d}.
Similar to previous studies in [31]–[34], we assume that the
inter-DC network operates at discrete times t = 1, 2, · · · .
During the progressive disaster, each damaged DC i ∈ V d

has an emergency backup window Ti [29], within which it
should evacuate as much endangered data in it as possible
to the safe DCs. Hence, the overall backup window of the
network will be T = max

i∈V d

(Ti). We assume that all the

emergency backup windows are known through scientific
forecast [29] before the backups are triggered.

As shown in Fig. 1, the inter-DC network is time-variant
due to the progressive disaster. Therefore, we leverage
the TEN approach [20] to characterize its operation over
time as a variant TEN (VTEN) G(V , E). Here, the VTEN
is a topology with T layers, each of which is denoted as
Gθ(Vθ, Eθ), θ ∈ {1, · · · , T } and corresponds to the inter-DC
network’s topology at time t = θ. The first layer G1(V1, E1)
simply copies the original topology. With particular note,
in V1 we also denote the subset of DCs that shall be
damaged at the end of the disaster as V d and the rest as
V s, as we have done for V0. In each layer of the VTEN,
the bandwidth of a link eθ ∈ Eθ is represented as Beθ ,
which is the available bandwidth on link e ∈ E0 at time
t = θ. Meanwhile, in between two adjacent layers Gθ and
Gθ+1, we insert a directed link eθi from each DC i ∈ Vθ

to its replica i ∈ Vθ+1 to represent the available storage
on the DC at time t = θ. Note that, to maximize the total
throughput of the emergency backup, we allow the DCs to
use the store-and-forward scheme together with direct data
transfer. Specifically, an intermediate DC along the backup
path can buffer the incoming data for future transmission
opportunities, if its outbound bandwidth is not enough for
the time being. Hence, the bandwidth of eθi (i.e., Beθi

) is set
as the available storage on DC i ∈ V0 at time t = θ.

Now, the VTEN G(V , E) is constructed, and since the
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progressive disaster can wipe DCs out and convert certain
safe DCs to damaged ones over time, the topology of each
layer can be different. This is the reason why it is referred
to as VTEN. We can verify that any dynamic data transfer
in the inter-DC network over time can be represented by a
unique static flow in the VTEN G, no matter whether store-
and-forward is used or not [15], [20], [21]. Finally, to further
simplify the flow routing of the emergency backup, we add
a virtual super DC v̂ in G, which terminates a directed
virtual link from each safe DC in the last layer GT , whose
bandwidth is set as the available storage on its source DC.

Fig. 2(a) shows an example on how to build the VTEN
based on the status of the inter-DC network illustrated in
Fig. 1. At t = 1, all the DCs are intact and thus the first
layer of the VTEN is V1 = V0 and E1 = E0. Then, DC 1 is
wiped out by the disaster at t = 2. Hence, from the second
layer V2, we remove DC 1 and all the links that connect to
it. The directed links to represent the available storage on
the DCs at t = 1 are also added in between V1 and V2.
The subsequent layers can be built in the same way. Finally,
after t = T , the disaster’s impact range stops to increase.
V d denotes the set of DCs that eventually will be damaged
by the disaster (i.e., DCs 1-3 in Fig. 1), while V s denotes the
set of safe ones that will survive the disaster (i.e., DCs 4-6 in
Fig. 1). Each node in V s originates a directed virtual link to
the super DC v̂ in the last layer GT .

3.2 Optimization Model

As the emergency backup is time-constrained, we have to
consider the situation in which not all the endangered data
can be backed up successfully. Hence, we have to differ-
entiate the endangered data according to its importance in
the emergency backup. The data’s importance usually can
be understood as its value. Thus for each DC i ∈ V d, we
define a concave utility function fi(si) to quantify the value
of the data in it, where si represents the data volume. If
the data gets backed up successfully, the network operator
gains the revenue determined by the utility function. In the
meantime, the cost to the operator is due to the resource
utilization by the emergency backup. Note that, the usages
of both link bandwidth and DC storage can be modeled as
link bandwidth usages in the VTEN G. Therefore, we define
a unit bandwidth cost ce for each link e ∈ E , and specifically,
the bandwidth costs of the virtual links that connect to v̂
are all 0. For simplicity, we define bi,e as the bandwidth
allocated on a link e ∈ E for transferring the data from DC
i ∈ V d. Then, the profit from the emergency backup is the
total utility minus total cost, which should be maximized to
achieve a cost-effective backup.
Objective:

Maximize
∑

i∈V d

fi(si)−
∑

e∈E

∑

i∈V d

ce · bi,e. (1)

Constraints:
1) Data volume constraint:

0 ≤ si ≤ Ci, ∀i ∈ V
d
, (2)

where si is the volume of the data that has been successfully
backed up for DC i ∈ V d and Ci is the total volume of
data in DC i. Eq. (2) ensures that the evacuated data cannot
exceed the total data in each damaged DC.

2) Link capacity constraint:
∑

i∈V d

bi,e ≤ Be, ∀e ∈ E ,

bi,e ≥ 0, ∀i ∈ V
d
, e ∈ E ,

(3)

where Be is the available bandwidth on link e ∈ E . Eq. (3)
ensures that the total bandwidth usage on each link for the
emergency backup cannot exceed its capacity.

3) Flow conservation constraint:

∑

e∈V+

bi,e−
∑

e∈V−

bi,e =





si, v = i,

− si, v = v̂,

0, Otherwise,

∀i ∈ V
d
, v ∈ V. (4)

where V+ and V− represent the set of directed links that
are from and to node v, respectively. Eq. (4) is the flow
conservation constraint to ensure that all the data evacuated
from DC i reaches the virtual super DC v̂ (i.e., the safe DCs).

By solving the aforementioned optimization problem,
which is essentially to find a profit-maximized multi-
commodity flow in the VTEN G(V , E) [12], we can obtain
an optimal solution of the emergency backup. However,
the issue with this approach is the additional complexity
due to the increased network size. The time complexity to
solve the optimization problem can increase exponentially
with the numbers of variables and constraints in it, which
are |V d| · (1 + |E|) and |V d| · (1 + |V| + |E|), respectively.
Meanwhile, since the VTEN has T layers as shown in Fig.
2(a), the numbers of nodes and links in it, i.e., |V| and |E|,
respectively, would in general increase with T sub-linearly.
This is because the numbers of nodes and links in the inter-
DC network would decrease with time due to the progres-
sive disaster. In all, we can see that the time complexity to
solve the optimization problem increases sharply with the
overall backup window T [20]. To address this issue, we will
design an ADMM-based algorithm to solve this large-scale
optimization in a distributed manner in the next section.

4 ALGORITHM DEVELOPMENT

In this section, we proposed an inexact ADMM based dis-
tributed algorithm to solve the optimization and design
several benchmarks based on some existing methods. The
following list defines the notations used in our algorithm.

• G0 = (V0, E0): the original topology of the inter-DC
network.

• G = (V , E): the topology of VTEN.
• G′ = (V ′, E ′): the topology of modified VTEN.
• V d: the set of damaged DCs in the disaster.
• V s: the set of safe DCs in the disaster.
• T : backup window, namely, the early warning time of

a disaster.
• v̂: the virtual super DC in the VTEN.
• fi(si): the utility function of damaged DC i.
• si: the volume of the data that has been successfully

backed up for damaged DC i.
• bi,e: the bandwidth allocated on a link e ∈ E for

transferring the data from DC i ∈ V d.
• ce: the bandwidth cost for link e ∈ E .
• Ci: the total volume of data in DC i.
• Be: the bandwidth of link e ∈ E .
• av,e: the parameter that indicates the relation between

a node v ∈ V ′ and a link e ∈ E ′.
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4.1 Overview of ADMM

It is known that ADMM is suitable for distributed con-
vex optimizations, especially for large-scale ones, because
it combines the decomposability of dual ascent and the
superior convergence properties of the method of multi-
pliers [13]. More specifically, ADMM can solve a separable
optimization problem in the following form

min
x∈Sx,z∈Sz

f(x) + g(z),

s.t. A · x+B · z = c,
(5)

where x ∈ Rm and z ∈ Rn are optimization variables,
A ∈ Rp×m, B ∈ Rp×n, and c ∈ Rp are given, f(·) and g(·)
are (convex) functions, while Sx and Sz are (convex) sets. In
order to solve Eq. (5), ADMM searches for the saddle point
of the following augmented Lagrangian function

Lρ(x, z, ϕ) =f(x) + g(z) + ϕ
T · [A · x+B · z − c]

+
ρ

2
· ‖A · x+B · z − c‖22,

(6)

where ϕ ∈ Rp is the Lagrange multiplier, ρ > 0 is the
penalty parameter, and ρ

2 · |A · x+B · z − c‖22 is the penalty
term. Given the augmented Lagrangian function in Eq. (6),
ADMM runs the following steps at every iteration k.

x
k+1 := argmin

x∈Sx

[
Lρ(x, z

k
, ϕ

k)
]
,

z
k+1 := argmin

z∈Sz

[
Lρ(x

k+1
, z, ϕ

k)
]
,

ϕ
k+1 := ϕ

k + ρ · (A · xk+1 +B · zk+1 − c).

(7)

For convenience, below we call the steps in Eq. (7) as
x-optimization, z-optimization, and dual variable update,
respectively. As the variables x and z are updated indepen-
dently in each iteration, the term alternating direction is used.

4.2 Adaption of ADMM Form

Unfortunately, the optimization problem in Section 3.2 can-
not be directly solved by ADMM in a distributed manner,
since the constraint Eq. (4) couples the variables {si} and
{bi,e} and has to be dualized in ADMM. It inevitably brings
cross-terms in the form of bi,e · bi,e′ to the augmented
Lagrangian function, where e and e′ are two edges (cf.
Eq. (6)). The existence of these cross-terms requires joint
optimization involving multiple edges, and thus prohibits
distributed computation. To address this issue, we adopt
the following techniques to reformulate the optimization
problem to a tractable one.

1) Modification of VTEN: Note that, for the flow conser-
vation constraints in Eq. (4), variables {si} and {bi,e}
are coupled only when DC v is the source (i.e., DC i) or
the destination (i.e., the virtual super DC v̂). Hence, we
first add |V d| virtual nodes in the VTEN, each of which
is ṽi, i ∈ V d and connects to a damaged DC i in the first
layer of the VTEN with a virtual directed link ẽi. Then,
we insert another virtual super DC v̂′ to connect to v̂ in
the last layer of the VTEN. Finally, the VTEN is mod-
ified as G′(V ′, E ′), where all the nodes in the original
VTEN G become intermediate nodes. Fig. 2(b) shows
the VTEN for ADMM, which is modified from the one
in Fig. 2(a). For convenience, we introduce the adja-
cent matrix A , [a11, · · ·a1|E′|; · · · , aV′1, · · ·aV′|E′|] ∈

R|V′|×|E′| of the VTEN, whose (v, e)-th entry av,e in-
dicates the relation between a node v ∈ V ′ and a link
e ∈ E ′ and is set as

av,e =





1, e ∈ V+
,

− 1, e ∈ V−
,

0, Otherwise,

v ∈ V, e ∈ E ,

and av,e = 0 for v ∈ V ′ \V , e ∈ E ′ \E . Then the original
constraint in Eq. (4) is transformed into

∑

e∈E′

av,e · bi,e = 0, ∀i ∈ V
d
, v ∈ V ′

. (8)

Note that although these virtual nodes become new
source and destination nodes, their existence does not
affect the variables for the original nodes and edges.
Next, we merge variables {si} into variables {bi,e}. We
set the available bandwidth of a newly-added virtual
link ẽi, i ∈ V d as the total data volume on DC i (i.e.,
Bẽi = Ci). Then, Eqs. (2) and (3) can be unified as

∑

i∈V d

bi,e ≤ Be, ∀e ∈ E ′
,

bi,e ≥ 0, ∀i ∈ V
d
, ∀e ∈ E ′

.

(9)

We should emphasize that Eq. (9) is different from Eq.
(3) in the sense that it holds for all e ∈ E ′, but not just
for those e ∈ E . We then introduce a parameter he to
indicate whether a link is newly-added or not, i.e., if e
is a newly-added link, we have he = 1, and he = 0
otherwise. The objective in Eq. (1) can be rewritten as

Minimize
∑

i∈V d

∑

e∈E′

[ce · bi,e − he · fi(bi,e)] . (10)

2) Introduction of auxiliary variables: Now the optimiza-
tion problem in Eqs. (8)-(10) only has one set of vari-
ables {bi,e}. To divide and conquer the summands in
the objective function as well as the two constraints, we
introduce auxiliary variables {zi,e} to duplicate {bi,e}:

zi,e = bi,e, ∀i ∈ V
d
, e ∈ E ′

. (11)

Finally, the optimization problem is reformulated as

Minimize
∑

i∈V d

∑

e∈E′

[ce · zi,e − he · fi(bi,e)],

s.t.
∑

i∈V d

zi,e ≤ Be, ∀e ∈ E ′
,

∑

e∈E′

av,e · bi,e = 0, ∀i ∈ V
d
, v ∈ V ′

,

zi,e ≥ 0, bi,e ≥ 0, ∀i ∈ V
d
,∀e ∈ E ′

zi,e = bi,e, ∀i ∈ V
d
, e ∈ E ′

,

(12)

which takes the standard form of ADMM in Eq. (5) and can
be solved in a distributed manner as shown next.

4.3 Inexact ADMM-based Distributed Algorithm

Below we leverage the ADMM approach described in Sec-
tion 4.1 and develop a distributed algorithm to solve Eq.
(12). We first write the augmented Lagrangian function as

L =
∑

i∈V d

∑

e∈E′

ce · zi,e − he · fi(bi,e) + 〈µi,e, zi,e − bi,e〉

+
ρ

2
· ‖zi,e − bi,e‖

2
2,

(13)
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where {µi,e ∈ R} are the dual variables and ρ > 0 is the
penalty parameter. Note that, the first three constraints in
Eq. (12) remain inexplicit. To make the formulation of Eq.
(13) more compact, we use the vector expression and define
the partial augmented Lagrangian function of each link e as

Le(ze, be, µe) = c
′
e ·ze+fe(be)+〈µe, ze−be〉+

ρ

2
‖ze−be‖

2
2, (14)

where ze ,
[
z1,e; · · · ; z|V d|,e

]
∈ R|V d|, be ,[

b1,e; · · · ; b|V d|,e

]
∈ R|V d|, c′e , [ce; · · · ; ce]T ∈ R|V d|,

fe(be) = − ∑
i∈V d

he · fi(bi,e), and µe ,
[
µ1,e; · · · ;µ|V d|,e

]
∈

R|V d| are the dual variables. Then, the augmented La-
grangian function in Eq. (13) can be rewritten as

L(z, b, µ) =
∑

e∈E′

Le = c ·z+f(b)+ 〈µ, z− b〉+
ρ

2
· ‖z− b‖22, (15)

where z ,
[
z1; · · · ; z|E′|

]
∈ R(|V d|·|E′|), b ,

[
b1; · · · ; b|E′|

]
∈

R(|V d|·|E′|), c ,

[
c′1; · · · ; c′|E′|

]T
∈ R(|V d|·|E′|), f(b) =

∑
e∈E′

fe(be), and µ ,
[
µ1; · · · ;µ|E′|

]
∈ R(|V d|·|E′|). With

Eq. (15), we solve the subproblems of z-optimization, b-
optimization and dual variable update in iterations, as de-
scribed in Section 4.1.

4.3.1 z-optimization
We remove the terms that are irrelevant to z from the
augmented Lagrangian function in Eq. (15), and obtain

z
k+1 = argmin

z≥0,z∈Z

(
L(z, bk, µk)

)

= argmin
z≥0,z∈Z

(
c · z + 〈µk

, z − b
k〉+

ρ

2
· ‖z − b

k‖2
)
,

(16)

where z ∈ Z means that for every e ∈ E ′, ze ∈ Ze ,

{ze,
∑

i∈V d

zi,e ≤ Be}. With Eq. (16), we get the update rule

of each ze separately as

z
k+1
e = argmin

ze≥0,ze∈Ze

(
c
′
e · ze + 〈µk

e , ze − b
k
e〉+

ρ

2
· ‖ze − b

k
e‖

2
)
.

(17)

Hence, z-optimization can be solved by tackling the inde-
pendent optimization in Eq. (17) for each link in E ′, which
is referred to as a per-link subproblem. Since Eq. (17) is just
a simple quadratic problem, its solution can be obtained
analytically with the help of Karush-Kuhn-Tucker (KKT)
conditions [35], as explained in Appendix A.

4.3.2 b-optimization
After obtaining the optimal solution of zk+1, we proceed to
solve the subproblem of b and get

b
k+1 = argmin

b≥0

(
L(zk+1

, b, µ
k)
)

= argmin
b≥0

(
f(b) + 〈µk

, z
k+1 − b〉+

ρ

2
· ‖zk+1 − b‖2

)

s.t.
∑

e∈E′

av,e · be = 0, ∀v ∈ V ′
.

(18)

Note that, b-optimization here can not be decomposed based
on the links, since the flow conservation constraints (i.e.,∑
e∈E′

av,e · be = 0, ∀v ∈ V ′) couple the variables across the

links. Hence, solving this problem exactly, which is subject

to the network constraints, would require global coordi-
nation over the network. Instead of pursuing its optimal
solution, we adopt an approximate solution, which can be
obtained in a distributed manner. Specifically, we apply
dual decomposition to Eq. (18), but only run it for a single
iteration. We write the Lagrangian function of Eq. (18) as

L(b, ν) =
∑

e∈E′

[
fe(be) + 〈µk

e , z
k+1
e − be〉+

ρ

2
· ‖zk+1

e − be‖
2]

+
∑

v∈V′

〈νv,
∑

e∈E′

av,e · be〉,

where νv ,
[
ν1,v; · · · ; ν|V d|,v

]
∈ R|V d|, ∀v ∈ V ′ are the

Lagrangian multipliers. The iteration updates b and ν as

b
k+1 = argmin

b≥0

(
L
(
b, ν

k
))

, (19)

ν
k+1 = ν

k + λ · ∇νk

(
L
(
b
k+1

, ν
k
))

, (20)

where ν ,
[
ν1; · · · ; ν|V′|

]
∈ R(|V d|·|V′|), λ is the dual

decomposition step size, and ∇(·) is the gradient of the
Lagrangian function. Note that, Eqs. (19) and (20) only run
for one iteration to approximate the optimal solution of Eq.
(18). Then, b-optimization can be decomposed based on the
links in E ′, and be is updated as

b
k+1
e = argmin

be≥0

(
fe(be) + 〈µk

e , z
k+1
e − be〉

+
ρ

2
· ‖zk+1

e − be‖
2 + 〈νk

e− − ν
k
e+ , be〉

)
,

(21)

where (e−, e+) is the end-node pair of the directed link

e, νe− ,
[
ν1,e− ; · · · ; ν|V d|,e−

]
∈ R|V d|, and νe+ ,[

ν1,e+ ; · · · ; ν|V d|,e+
]
∈ R|V d|. Due to the separable structure

of L(b, ν) with respect to the nodes in V ′, we can update νv
in Eq. (20) for each node v as

ν
k+1
v = ν

k
v + λ ·

∑

e∈E′

av,e · b
k+1
e . (22)

The optimization in Eq. (21) is relatively easy to solve, if
fe(be) is either linear or quadratic. For other forms of fe(be),
a link e needs to leverage a local iterative algorithm to find
its solution. Eq. (22) only involves arithmetic operations.

4.3.3 Dual Variable Update

With the solutions of zk+1 and bk+1, we update the dual
variables as

µ
k+1 = µ

k + ρ · (zk+1 − b
k+1). (23)

4.3.4 Distributed Implementation

The overall procedure of the inexact ADMM-based dis-
tributed algorithm is shown in Algorithm 1, which allows
for parallel implementation in an inter-DC network. Specif-
ically, Step 1 initializes the parameter sets b0i,e and µ0

i,e

on each link and ν0i,v on each DC. In the meantime, the
utility functions of all the damaged DCs are broadcasted
to the entire network. In each iteration, each link solves
the per-link subproblem of ze in Step 2. This can be easily
implemented in parallel, since it only uses local variables
bke , µk

e and ce to update variable zk+1
e . Similarly, in Step 3,

each link solves the per-link subproblem of be. To obtain
the values of bk+1

e , a link communicates with its end-nodes
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to get the stored variables νe− , νe+ , and uses them together
with the local variables zk+1

e and µk+1
e . In Step 4, each DC

updates νv based on the values of bk+1
e , which can be get by

asking its adjacent links. Besides, each link updates the dual
variable µe in Step 5. Note that, the per-link subproblems in
Steps 2 and 3 are small-scale and convex, whose complexity
would be low, while the variable updates in Steps 4 and 5
only involve arithmetic operations.

As each flow in VTEN corresponds to a data transfer
scheme in the inter-DC network over time, our algorithm
solves the emergency backup problem in a distributed man-
ner. Specifically, each DC stores and updates the variables
zk+1
e , bk+1

e and µk+1
e for each of its adjacent links by solving

the per-link subproblems, which can be realized in parallel.
Meanwhile, each DC also stores and updates νv.

4.4 Benchmarks

Meanwhile, in order to solve the problem of emergency
backup, we also leverage the existing approaches to design
several benchmarks as follows, which will be used in the
performance evaluations in Section 6.

• Highest utility data first (HUDF): This algorithm first
prioritizes the damaged DCs based on their data util-
ities, and then uses maximum flows in the inter-DC
network to evacuate data on the DCs out in sequence
and repeat the procedure in each time interval.

• VTEN based HUDF (VTEN-HUDF): The algorithm
first constructs a VTEN with the procedure described
in Section 3.1 and then applies HUDF in the VTEN.

• Dual: It is the standard dual decomposition method,
which solves the original optimization problem in Sec-
tion 3.2 using the dual gradient-ascent method [35].

• Optimal: It solves the original optimization in Section
3.2 directly with the optimization toolkit CVX.

Algorithm 1: Inexact ADMM-based Distributed Algo-
rithm

1 Each link e initializes b0i,e = 0 and µ0
i,e = 0; Each DC

initializes ν0
i,v = 0 and notifies its adjacent links about the

results; fi(·) is broadcasted to all the links;
2 Given bke = [bk1,e, b

k
2,e, · · · ] and µk

e = [µk
1,e, µ

k
2,e, · · · ] , each

link e ∈ E ′ solves per-link subproblem in Eq. (17) and
gets the values of zk+1

e ;
3 Given zk+1

e = [zk+1
1,e , zk+1

2,e , · · · ], µk
e = [µk

1,e, µ
k
2,e, · · · ], ν

k
e−

and νk
e+ , each link e ∈ E ′ solves per-link subproblem in

Eq. (21) and gets the values of bk+1
e ;

4 Each DC v ∈ V ′ collects the variables of its adjacent links,
i.e., bk+1 = [bk+1

1 , bk+1
2 , · · · ], updates dual variables

νk+1
v = [νk+1

1,v , νk+1
1,v , · · · ] with Eq. (22), and sends the

results to its adjacent links ;
5 Each link e ∈ E ′ updates dual variables
µk+1
e = [µk+1

1,e , µk+1
2,e , · · · ] with Eq. (23);

6 Return to Step 2 until convergence;

5 CONVERGENCE ANALYSIS AND IMPROVEMENT

In this section, we first prove the convergence of the pro-
posed inexact ADMM, which includes three steps. Then we
make improvement to make the algorithm perform better.

Note that, our inexact ADMM is different from the
existing ones due to the inexact primal-dual steps with
Eqs. (19) and (20), which makes the convergence analysis
challenging. The proof uses the following two assumptions.

Assumption 1. There exists a Slater point (b̄, z̄) of the origi-
nal problem in Eq. (12), i.e., z̄ > 0, b̄ > 0, and z̄ = b̄, sub-
ject to

∑
i∈V d

zi,e < Be, ∀e ∈ E ′,
∑
e
av,e · b̄e = 0, ∀ v ∈ V ′.

Assumption 2. The function f(b) ,
∑
e
fe(be) is strongly

convex with constant Mf , i.e., for any two arbitrary

points b and b̃ in the domain of f(b), we have

f(b) ≥ f(b̃) + 〈∇(f(b̃)), b− b̃〉+
Mf

2
· ‖b − b̃‖2. (24)

Assumptions 1 and 2 are commonly used in convex op-
timization and can usually be satisfied in practice. Roughly
speaking, Assumption 1 means that the inequality constraints
in Eq. (12) are not tight. To satisfy Assumption 2, we only
need to design a strongly convex cost function f(b).

Theorem 1. Under Assumptions 1 and 2, and given that the
positive parameters ρ and λ satisfy

Mf − λ · δ ≥ 0, Mf +
ρ

2
−

λ · δ

2
≥ 0,

Mf + ρ− λ · δ − 2 · λ2 · δ ≥ 0,
(25)

where δ is |V d| times the maximum singular value
of A (the adjacent matrix of VTEN), the sequence
(zk, bk, µk, νk) that is generated iteratively by Algorithm
1 with Eqs. (17) and (21)-(23) converges to the optimal
solution of Eq. (12), i.e., (z∗, b∗, µ∗, ν∗).

Theorem 1 tells how to choose the parameters for our
algorithm. The penalty coefficient ρ should be sufficiently
large, while the step size λ of dual decomposition in the
subproblem of b should be small enough. Their tradeoff is
determined by Mf , which characterizes the property of the
objective function, and δ, which characterizes the VTEN’s
connectivity. Our proof of Theorem 1 includes three steps.
Firstly, we prove that any optimal primal-dual solution
of the optimization is bounded. Then, we verify that the
ADMM iterations converge to a stationary point. Finally, we
leverage the KKT condition to finish the proof by showing
that the stationary point is just the optimal solution.

5.1 Boundness of Optimal Solution

Lemma 1. Under Assumptions 1 and 2, any optimal primal-
dual solution (z∗, b∗, µ∗, ν∗) of Eq. (12) is bounded.

Proof: First of all, the constraints z ∈ Z , z = b,
z ≥ 0, and b ≥ 0 confine z and b to a bounded area. Thus,
the optimal primal solution (z∗, b∗) is bounded. Then, we
consider a Lagrangian function of Eq. (12) that dualizes the
constraints z− b = 0 and

∑
e
av,e · be = 0 with dual variables

µ ∈ R(|V d|·|E′|) and ν ∈ R(|V d|·|V′)|, respectively, as

L̃(z, b, µ,ν) =
∑

e

fe(be) + c · z + 〈µ, z − b〉

+
∑

v

〈νv,
∑

e

av,e · be〉, z ∈ Z, z ≥ 0, b ≥ 0.
(26)
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For any dual variables µ̄ ∈ R(|V d|·|E′|) and ν̄ ∈
R(|V d|·|V′|), we define q(µ̄, ν̄) = min

z≥0,b≥0

[
L̃(z, b, µ̄, ν̄)

]
.

Then, for any optimal primal-dual solution (z∗, b∗, µ∗, ν∗),
we have

q(µ̄, ν̄) ≤ L̃(z∗, b∗, µ̄, ν̄) ≤ L̃(z∗, b∗, µ∗
, ν

∗)

≤ L̃(z̄, b̄, µ∗
, ν

∗),
(27)

where (z̄, b̄) is any Slater point of Eq. (12). In Eq. (27),
the first inequality comes from the definition q(µ̄, ν̄) =

min
z≥0,b≥0

(
L̃(z, b, µ̄, ν̄)

)
, the second inequality is because

(µ∗, ν∗) maximizes L̃(z, b, µ, ν) when z = z∗ and b = b∗,
and the last inequality is due to that (z∗, b∗) minimizes
L̃(z, b, µ, ν) when µ = µ∗ and ν = ν∗.

To bound ν∗, we define a vector sν∗ ,

[
sν∗

1
; · · · ; sν∗

|E′|

]
∈

R(|V d|·|E′|), where sν∗
e

, av,e · ν∗v ∈ R|V d|. According to
Assumption 1, we know that the Slater point (b̄, z̄) satisfies
z̄ ∈ Z , b̄ > 0, z̄ > 0, z̄ = b̄ and

∑
e
av,e · b̄e = 0. There exists a

sufficiently small positive constant κ such that z̄−κ·sv∗ ∈ Z ,
z̄ − κ · sv∗ > 0 and b̄− κ · sν∗ > 0. Therefore, with Eq. (27),
we have

q(µ̄, ν̄) ≤L̃(z̄ − κ · sv∗ , b̄− κ · sv∗ , µ
∗
, ν

∗)

=
∑

e

fe(b̄e − κ · sv∗
e
) + c · (z̄ − κ · sv∗)

− κ ·
∑

v

〈ν∗
v ,
∑

e

av,e · sv∗
e
〉.

(28)

Substituting sv∗
e
= av,e · ν∗v into Eq. (28), we have

κ ·
∑

v

‖ν∗
v‖

2 ·
∑

e

‖av,e‖
2 ≤

∑

e

fe(b̄e − κ · sv∗
e
)

+ c · (z̄ − κ · sv∗)− q(µ̄, ν̄),

(29)

and then get

∑

v

‖ν∗
v‖

2 ≤

∑
e

fe(b̄e − κ · sv∗
e
) + c · (z̄ − κ · sv∗)− q(µ̄, ν̄)

κ ·min
v

(∑
e

‖av,e‖2
) .

(30)

In Eq. (30), if we let µ̄ = 0 and ν̄ = 0 , the following equation
holds

q(µ̄, ν̄) = min
z≥0,b≥0

[
∑

e

fe(be) + c · z

]
, (31)

which is bounded. Therefore, the right hand side of Eq. (30)
is bounded, namely, ν∗v is bounded and so as ν∗.

Next, we define a sign vector sµ∗ ∈ R(|V d|·|E′|) whose
element is 1 if the corresponding element of µ∗ is positive,
−1 if the corresponding element of µ∗ is negative, and 0
otherwise. Apparently, we have 〈µ∗, sµ∗〉 = ‖µ∗‖1. Given a
Slater point (z̄, b̄) of Eq. (12), there exists a sufficiently small
positive constant κ such that z̄ − κ · sµ∗ > 0, z̄− κ · sµ∗ ∈ Z
z̄ = b̄, and

∑
e
av,e · b̄e = 0, and hence from Eq. (27), we have

q(µ̄, ν̄) ≤ L̃(z̄ − κ · sµ∗ , b̄, µ
∗
, ν

∗). (32)

By expanding the right side of Eq. (32) and substituting the
equations

∑
e
av,e · b̄e = 0 and z̄ = b̄ into it, we have

q(µ̄, ν̄) ≤
∑

e

fe(b̄e) + c · (z̄ − κ · sµ∗)− κ · 〈µ∗
, sµ∗〉

=
∑

e

f(b̄e) + c · (z̄ − κ · sµ∗)− κ · ‖µ∗‖1.
(33)

In Eq. (33), if we let µ̄ = 0 and ν̄ = 0, the following
inequality holds

‖µ∗‖1 ≤
1

κ
·

{
∑

e

f(b̄e) + c · (z̄ − κ · sµ∗)

− min
b≥0,z≥0

[
∑

e

fe(be) + c · z

]}
.

(34)

Finally, we complete the proof.

5.2 Convergence to Stationary Point

Next, we show an inequality that is critical to the conver-
gence analysis.

Lemma 2. Under Assumptions 1 and 2, given that the param-
eter λ satisfies Mf−λδ ≥ 0, the sequence (xk, yk, µk, νk)
satisfies

1

2ρ
·‖(µk+1 − µ

k)‖2 + (Mf +
ρ

2
−

λ · δ

2
)‖bk+1 − b

k‖2

≤
1

2λ
·
(
‖νk − ν

∗‖2 − ‖νk+1 − ν
∗‖2
)

+
1

2λ
·
(
‖νk − ν

k−1‖2 − ‖νk+1 − ν
k‖2
)

+
1

2
·
(
Mf + ρ− λ · δ

)
·
(
‖b∗ − b

k‖2 − ‖b∗ − b
k+1‖2

)

+
1

2ρ
·
(
‖µ∗ − µ

k‖2 − ‖µ∗ − µ
k+1‖2

)
,

(35)

Proof: The proof is given in Appendix B.

Lemma 3. Under Assumptions 1 and 2, the iterations in
Algorithm 1 converge to a stationary point, given that
the parameters ρ and λ are set to satisfy Mf − λδ ≥
0,Mf + ρ

2 − λ·δ
2 ≥ 0 and Mf + ρ− λ · δ − 2 · λ2 · δ ≥ 0.

Proof: By summing up Eq. (35) for k ∈ [1, 2, · · · ,K −
1] and using telescopic cancelation, we get

1

2ρ
·

K−1∑

k=1

[
‖(µk+1 − µ

k)‖2 + (Mf +
ρ

2
−

λ · δ

2
) · ‖bk+1 − b

k‖2
]

≤
1

2λ
·
(
‖ν1 − ν

∗‖2 − ‖νK − ν
∗‖2
)

+
1

2λ
·
(
‖ν0 − ν

1‖2 − ‖νK−1 − ν
K‖2

)

+
1

2
(Mf + ρ− λ · δ)

(
‖b1 − b

∗‖2 − ‖bK − b
∗‖2
)

+
1

2ρ
·
(
‖µ1 − µ

∗‖2 − ‖µK − µ
∗‖2
)

≤
1

2λ
· ‖ν1 − ν

∗‖2 +
1

2λ
· ‖ν0 − ν

1‖2

+
1

2
(Mf + ρ− λ · δ) ‖b1 − b

∗‖2 +
1

2ρ
· ‖µ1 − µ

∗‖2.

(36)

The second inequality holds because λ > 0, ρ > 0, and
Mf + ρ− λ · δ ≥ 0 by hypothesis.

Note that, it is easy to ensure that (z1, b1, µ1, ν1) is
bounded with the proper initialization of (z0, b0, µ0, ν0). In
the meanwhile, we have already proved in Section 5.1 that
(z∗, b∗, µ∗, ν∗) is bounded. Hence, the right hand side of Eq.
(36) can be replaced by a constant. According to [27], for
k → ∞, the following equalities must hold, i.e.,

µ
k+1 = µ

k and b
k+1 = b

k
, if k → ∞. (37)
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By combining the update rules in Eqs. (16) and (37), we get

z
k+1 = z

k
, if k → ∞. (38)

Then, we show that νk also converges to a stationary
point such that

ν
k+1 = ν

k
, if k → ∞. (39)

Since we have

‖νk+1
v − νkv ‖2 = λ2 · ‖

∑

e

av,e · bk+1
e ‖2 and

∑

e

av,e · b∗e = 0,

which lead to

‖νk+1
v − ν

k
v ‖

2 = λ
2 · ‖

∑

e

av,e · (b
k+1
e − b

∗
e)‖

2

≤ λ
2 · δ · ‖bk+1 − b

∗‖2,

(40)

where the inequality can be satisfied as ‖∑
e
av,e · (bk+1

e −
b∗e)‖2 ≤ ∑

e
(av,e)

2 ·∑
e
‖bk+1

e − b∗e‖2 ≤ δ · ‖bk+1− b∗‖2, where

δ is |V d| times the largest singular value of A.
By combining Eqs. (35) and (40), we have

1

2ρ
·‖(µk+1 − µ

k)‖2 + ‖νk+1
v − ν

k
v ‖

2

+ (Mf +
ρ

2
−

λ · δ

2
)‖bk+1 − b

k‖2

≤
1

2λ
·
(
‖νk − ν

∗‖2 − ‖νk+1 − ν
∗‖2
)

+
1

2λ
·
(
‖νk − ν

k−1‖2 − ‖νk+1 − ν
k‖2
)

+
1

2

(
Mf + ρ− λ · δ − 2λ2 · δ

) (
‖b∗ − b

k‖2 − ‖b∗ − b
k+1‖2

)

+
1

2ρ
·
(
‖µ∗ − µ

k‖2 − ‖µ∗ − µ
k+1‖2

)

−
1

2
(Mf + ρ− λ · δ − 2λ2 · δ) · ‖b∗ − b

k‖2.

(41)

Then, we choose the positive parameters ρ and λ such that

Mf +
ρ

2
− λ · δ

2
≥ 0, and Mf + ρ− λ · δ − 2λ2 · δ ≥ 0.

Using the same method of deriving Eq. (37) from Eq. (35),
we can verify Eq. (39). Finally, Eqs. (37)-(39) prove that the
iterations in Algorithm 1 converge to a stationary point

lim
k→∞

(zk, bk, µk, νk) = (z∞, b∞, µ∞, ν∞).

5.3 Convergence to Optimal Solution

Now, we are ready to prove Theorem 1.
Proof: In order to prove Theorem 1, by Lemma 3, we

need to verify that the stationary point (z∞, b∞, µ∞, ν∞)
satisfies the KKT conditions of Eq. (12), which means that
we need to check its primal feasibility, dual feasibility,
complementarity slackness and stationarity.

• Primal feasibility: The update rules of z and b in Eqs.
(16) and (19), respectively, guarantee that z∞ ≥ 0, z∞ ∈
Z and b∞ ≥ 0. Since the update rule of µ in Eq. (23)
satisfies µ∞ = µ∞ + ρ · (z∞ − b∞) for z∞ = b∞, the
update rule of νv in Eq. (22) satisfies ν∞v = ν∞v +

∑
e
av,e ·

b∞ such that
∑
e
av,e · b∞ = 0. Therefore, z∞ and b∞

satisfy the constraints in Eq. (12).

Algorithm 2: Improved Inexact ADMM-based Dis-
tributed Algorithm

1 k = 0, b(0) = 0, µ(0) = 0, ν(0) = 0, n = 0;
2 while the solution has not converged do
3 solve Eq. (17) for each link e ∈ E ′ and get values of

z(k+1) ;

4 b(k+1)(0) = b(k), ν(k+1)(0) = ν(k);
5 while n ≤ N do
6 solve Eq. (46) for each link e ∈ E ′ and get values

of b(k+1)(n+ 1);
7 update dual variables of ν(k+1)(n+ 1) with Eq.

(47);
8 n = n+ 1;
9 end

10 b(k+1) = b(k+1)(n), ν(k+1) = ν(k+1)(n);
11 update dual variables µ(k+1) with Eq. (23);
12 k = k + 1;
13 end

• Dual feasibility: As Lagrangian multipliers µ and ν are
introduced for equality constraints, they are feasible.

• Complementarity slackness: The complementarity s-
lackness condition is void because only the equality
constraints in Eq. (12) are dualized.

• Stationarity: Basically, we need to show

z
∞ = argmin

z∈Z

[
L̃(z, b∞, µ

∞
, ν

∞)
]
, (42)

b
∞ = argmin

b≥0

[
L̃(z∞, b, µ

∞
, ν

∞)
]
. (43)

Then, for z, Eq. (42) is equivalent to

z
∞ = argmin

z∈Z

[c · z + 〈µ∞
, z − b

∞〉] ,

⇔ z
∞ = argmin

z∈Z

(
c · z + 〈µ∞

, z − b
∞〉+

ρ

2
· ‖z − z

∞‖2
)
,

⇔ z
∞ = argmin

z∈Z

(
c · z + 〈µ∞

, z − b
∞〉+

ρ

2
· ‖z − b

∞‖2
)
,

(44)

where the second line is because ‖z − z∞‖2 would
be 0 when z = z∞, and the last line is obtained by
leveraging the primal feasibility z∞ = b∞. Hence, it is
obvious that Eq. (44) matches with the update rule of z
in Eq. (16). Similarly, Eq. (43) is equivalent to

b
∞ = argmin

b≥0

[
∑

e

fe(be) + 〈µ∞
, z

∞ − b〉

+
∑

v

ν
∞
v ·

∑

e

av,e · be

]
,

⇔ b
∞ = argmin

b≥0

[
∑

e

fe(be) + 〈µ∞
, z

∞ − b〉

+
ρ

2
‖b∞ − b‖2 +

∑

v

ν
∞
v ·

∑

e

av,e · be

]
,

⇔ b
∞ = argmin

b≥0

[
∑

e

fe(be) + 〈µ∞
, z

∞ − b〉

+
ρ

2
‖z∞ − b‖2 +

∑

v

ν
∞
v ·

∑

e

av,e · be

]
.

(45)

Eq. (45) matches with the update rule of b in Eq. (19).
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Therefore, we verify that the stationary point
(z∞, b∞, µ∞, ν∞) of Algorithm 1 satisfies the KKT
conditions in Eq. (12), and thus prove Theorem 1.

5.4 Algorithm Improvement

Since our ADMM-based algorithm uses the inexact ap-
proach that introduces Lagrangian multipliers in the sub-
problem of b-optimization and solves Eq. (18) inexactly with
Eqs. (19) and (20), its convergence speed is affected by the
accuracy of the inexact solution. This, however, restricts
the algorithm’s convergence speed, even though we have
verified the convergence of Algorithm 1 theoretically before.
Observe that if we run the primal-dual updates in Eqs. (19)
and (20) for multiple times, we can obtain more accurate
solutions to Eq. (18), which would improve the convergence
speed of the proposed algorithm. This actually motivates us
to replace the updates in Eqs. (21) and (22) to

b
k+1
e (n+ 1) = argmin

be≥0

[
fe(be) + 〈µk

e , z
k+1
e − be〉

+
ρ

2
· ‖zk+1

e − be‖
2 + 〈νk

e−(n)− ν
k
e+(n), be〉

]
,

(46)

ν
(k+1)
v (n+ 1) = ν

(k+1)
v (n) + λ ·

∑

e∈E′

av,e · b
(k+1)
e (n+ 1), (47)

where n is the iteration number for the inner loop to solve
the subproblem of b-optimization. The improved algorithm
is shown in Algorithm 2, in which Lines 5-9 is the inner loop
for solving the subproblem of b-optimization iteratively and
N is the preset iteration number for the inner loop.

6 PERFORMANCE EVALUATION

6.1 Simulation Setup

We evaluate the performance of our proposed algorithm
with the NSFNET and US-Backbone topologies shown in
Fig. 3. Each node in the topologies is a DC node, which
can be impacted by a progressive disaster. Our simulations
consider different disaster scenarios, in which the number
of damaged DCs |V d| is selected within [2, 4] and [2, 6]
for NSFNET and US-Backbone, respectively. For example,
three disaster scenarios are considered in NSFNET with
V d as {14,13}, {14,13,12} and {14,13,12,11}, respectively.
The emergency backup window of each damaged DC can
change in different simulations. Moreover, in US-Backbone,
we consider two types of progressive disasters, i.e., the one
that spreads from the edge of the network (Disaster Type
1) and the one that spreads from the center of the network
(Disaster Type 2), as shown in Fig. 3(b).

We assume that in each emergency backup, the damaged
DCs need to evacuate a total amount of 400 TBytes data
and the total available storage space on the safe DCs is 500
TBytes, while the actual amount of data to be backed up on
each damaged DC and the available storage space on each
safe DC are random. The simulations use concave utility
functions that satisfy the law of diminishing marginal return
[12]. Specifically, the utility function can take the form of a
logarithmic function

fi(si) = αi · log(1 + si), (48)

where si is the amount of data that has been successfully
backed up for DC i, and αi is a constant coefficient. We

Disaster Type 1

(a) NSFNET

Disaster Type 2
Disaster Type 1

(b) US-Backbone

Fig. 3. Inter-DC network topologies used in simulations.

set αi ∈ {100, 120, 150, 200} for DCs 11-14 in NSFNET
and αi ∈ {100, 120, 150, 200, 160, 180} for DCs 19-24 or
{6,9,11,12,15,16} in US-Backbone. At the beginning of each
disaster, the available bandwidth on each link is randomly
chosen within [30, 80] Gbps, and the corresponding unit
bandwidth cost (i.e., ce) ranges within [0.001, 0.0015] unit
per TByte. The simulations run in MATLAB on a computer
with 3.1 GHz Intel Core i3-2100 CPU and 8 GB RAM.

6.2 Evaluation of Convergence Performance

We first evaluate the convergence performance of our pro-
posed algorithm. We use the relative error as the perfor-
mance metric, which represents the difference between the
algorithm’s outcome and the optimal solution. Specifically,
it is defined as (S∗ − S)/S∗, where S is the backup profit
obtained by our ADMM-based algorithm and S∗ is the
optimal profit that is obtained by directly solving the orig-
inal optimization problem in Section 3.2. The simulations
consider the disaster scenarios in Fig. 3 and use different
combinations of |V d| and T . Without loss of generality,
we select the most complicated backup cases and change
backup window T . Specifically, the simulations use |V d| = 4
and change T within {6, 9, 12, 15} in NSFNET, while they
have |V d| = 6 and select T from {4, 6, 8, 9} and {3, 6, 9, 12}
for Types 1 and 2 disasters in US-Backbone, respectively1.

Fig. 4 plots the results on the number of iterations that
Algorithm 1 uses to reach certain relative error requirements
in different disaster scenarios. The results indicate that to
address the most complicated backup case in NSFNET (i.e.,
|V d| = 4 and T = 15), the algorithm achieves a relative
error less than 10−4 within 3500 iterations. Meanwhile, for
the most complicated Type 1 (i.e., |V d| = 6 and T = 9) and
Type 2 (i.e., |V d| = 6 and T = 12) disasters in US-Backbone,

1. We select the largest value of T for each disaster scenario such
that by directly solving the original optimization in Section 3.2, we can
obtain the optimal profit within reasonably long time (e.g., 2 hours).
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Fig. 4. Number of iterations for Algorithm 1 to meet certain relative error
requirements in different disaster scenarios.

the algorithm achieves the same relative error within 6000
and 8000 iterations, respectively.

We then run simulations to investigate the performance
of Algorithm 2 and the influence of N on its convergence
speed. To show the influence intuitively, we plot the results
on the absolute error (i.e., defined as S∗−S) versus the algo-
rithm’s running time for different N in Fig. 5. The results in
Fig. 5 are obtained when we consider the most complicated
backup case in response to Type 1 disasters in US-Backbone
(i.e., |V d| = 6 and T = 9)2. It can be seen that by increasing
N from 1 (i.e., when Algorithm 2 becomes Algorithm 1) to
5, the convergence speed gets improved obviously. Hence,
the running time required to ensure relative error < 10−4

gets reduced significantly, i.e., from 86.86 seconds to 34.77
seconds. However, if we keep increasing N to 10, there is

2. Note that, for the evaluations in Sections 6.2 and 6.3, we also
simulate the most complicated backup cases in NSFNET and for Type
2 disasters in US-Backbone, and confirm that the results follow the
similar trends. However, due to the page limit, we omit those results.
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Fig. 5. Convergence speed of Algorithm 2 (Type 1 disaster in US-
Backbone with T = 9 and |V d| = 6).

no noticeable decrease on the running time. This is because
with N = 5, Algorithm 2 can already get a reasonably accu-
rate solution to the subproblem of b-optimization. Therefore,
if we keep increasing N , the reduction on the running time
will be offset by the increase of the time spent on the inner
loop for the b-optimization, which increases with N . To this
end, we can see that N = 5 is a reasonably good setting for
Algorithm 2. In the subsequent simulations, we set N = 5.

6.3 Analysis of Generality and Robustness

To verify that Algorithm 2 can handle different practical
situations, we analyze its generality and robustness. Firstly,
we change the expression of the utility function. Instead of
using the logarithmic utility function in Eq. (48), we test the
quadratic function in Eq. (49), and a mixture of Eqs. (48) and
(49) (i.e., the utility functions on certain DCs take the form
of Eq. (48) while others use Eq. (49)) too.

fi(si) = −
αi

2Ci

· s2i + αi · si, (49)

where Ci is the total amount of data to be backed up in
a damaged DC i. Here, we still consider the most com-
plicated backup case for Type 1 disasters in US-Backbone
(i.e., |V d| = 6 and T = 9). In Fig. 6(a), we observe that
when only the quadratic utility function is used, the relative
error results decrease quickly and become smaller than 10−4

after 1157 iterations, which confirms the convergence per-
formance of Algorithm 2 in this scenario. In Fig. 6(b), when
the DCs use the two utility functions mixedly (i.e., DCs 19-21
use the logarithmic function in Eq. (48) and DCs 22-24 take
the quadratic function in Eq. (49)), the algorithm converges
slower and uses 4323 iterations to achieve a relative error
< 10−4. These results verify that our proposed algorithm
can handle different utility functions well.

Then, we investigate the robustness of Algorithm 2 (AD-
MM) by comparing it with a standard dual decomposition
method (Dual), which is a classical distributed method to
solve large-scale optimization problems [35]. Specifically,
the dual decomposition method solves the original prob-
lem Eq. (12) in Section 3.2 using the dual gradient-ascent
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Fig. 6. Convergence performance of Algorithm 2 with different utility
functions (Type 1 disaster in US-Backbone with T = 9 and |V d| = 6).

method, where the subproblems for variables {si} and
{bi,e} are solved iteratively to converge to the optimal solu-
tion [5]. The robustness of the algorithms can be evaluated
by changing the value of the dual decomposition step size.
Specifically, in ADMM, we choose the step size λ as a
fixed value, while in Dual, we use the diminishing step
size λk = β/

√
k, where k is the iteration number and β

is an adjustable coefficient [5]. We still use US-Backbone
with T = 9 and |V d| = 6, and check the results of
iteration number and running time used to reach certain
relative error requirements. Specifically we set the relative
error requirement for ADMM and Dual as 10−4 and 10−2,
respectively. Then, we change the values of λ and β and
evaluate the two algorithms.

In the simulations, we set the maximum iteration num-
bers of ADMM and Dual as 6000 and 40000, respectively.
As shown in Table 1, we observe that for λ ∈ [0.008, 0.1],
ADMM can always converge to meet its relative error re-
quirement, and to achieve this, it takes fewer iterations and
less running time than Dual, even though its relative error
requirement is tighter. On the other hand, Dual can only
meet its relative error requirement when β ∈ [0.003, 0.006],
which suggests that it is very sensitive to the step size.
When β is too small, it will take very long running time
to converge, while if β is a litter bit larger, its results tend to
oscillate. Fig. 7 shows such a comparison of ADMM and Du-
al, when we choose β = 0.003 and 0.0055. With β = 0.003,
Dual takes 38864 iterations to meet the relative error re-
quirement, while with β = 0.0055, the results from Dual
oscillate a lot. On the contrary, ADMM takes 3078 and 1656
iterations to meet the relative error requirement of 10−4 with
λ = 0.008 and 0.1, respectively, and the relative error of
ADMM always stays at a stable value after it has converged.

TABLE 1
Comparisons on Convergence Performance of ADMM and Dual (Type

1 Disaster in US-Backbone with T = 9 and |V d| = 6)

λ (ADMM) 0.008 0.01 0.02 0.05 0.1

Iteration number 3078 2763 2278 1683 1656
Time (seconds) 64.47 57.68 49.77 37.59 35.05

β (Dual) 0.003 0.004 0.005 0.0055 0.006

Iteration number 38864 26647 19825 19075 22708
Time (seconds) 170.6 112.0 82.30 78.94 98.89

Here we would like to point out that the proposed algorithm
performs better with quadratic and mixed functions (cf.
Fig. 6), which have better strong convexity properties. This
observation corroborates the theoretical analysis. Finally, we
can conclude that ADMM has reasonably robust and its
performance would not be affected by λ significantly.

6.4 Comparison with Benchmarks

Finally, we compare our proposed algorithms with the
benchmarks discussed in Section 4.4. The results of simula-
tions using NSFNET and US-Backbone are shown in Tables
2 and 3, respectively. The results in Table 2 indicate that
ADMM can obtain the profits that are the closest to those
from Optimal, and it is followed by Dual. In NSFNET, the
profits from VTEN-HUDF are 4.2% higher than HUDF on
average, since building the VTEN helps to improve the
utilization of DC storage space3. On average, the running
time of ADMM is only 21.9% and 37.9% of that of Dual
and Optimal, respectively, which indicates that ADMM is
much more time-efficient. HUDF takes the shortest running
time, and it is followed by VTEN-HUDF. In US-Backbone,
we consider the two types of disasters in Fig. 3(b) and get the
results in Table 3 (i.e., Type 1 disasters with T = {6, 9, 12}
and Type 2 disasters with T = {15, 20}). The results show
the similar trends as those obtained in NSFNET.

Therefore, we can conclude that among the algorithms,
ADMM achieves the best tradeoff between backup profit
and running time for all the simulated disaster scenarios.
Meanwhile, we hope to point out that the running time of
ADMM can still be reduced in two aspects. Firstly, instead
of using MATLAB, we can implement ADMM in C/C++
platforms, which are known to be much more time-efficient.
Secondly, the distributed ADMM algorithm is now imple-
mented in a serial manner, but since it can solve the per-link
subproblems in parallel, the running time would be reduced
significantly with a distributed implementation.

7 CONCLUSION

In this paper, we addressed the emergency backup in inter-
DC networks with progressive disasters. We first utilized the
TEN approach to model the time-variant inter-DC network
with a progressive disaster as a VTEN and converted the
dynamic flow scheduling in the network to a static one.

3. Note that, since we define the optimization objective of emergency
backup as maximizing the total profit (i.e., in Eq. (1)), a higher profit
suggests a better emergency backup scheme, which means that more
critical data is evacuated with fewer network resources. Also, when we
set |V d| = 4 and T = 30 in NSFNET or T > 9 in US-Backbone, Optimal
cannot get a solution within reasonably long time (e.g., 2 hours).
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Fig. 7. Convergence speeds of ADMM and Dual with different λ and β
(Type 1 disaster in US-Backbone with T = 9 and |V d| = 6).

TABLE 2
Performance Comparisons using NSFNET

Type 1 Disasters
|V d| 2 3 4
T 6 9 15 20 30

Backup Profit (units)
Optimal 303.47 539.66 641.96 912.66 −
HUDF 292.97 529.71 593.73 855.67 1186.8

VTEN-HUDF 302.31 535.79 639.11 908.01 1222.3
Dual 303.13 538.52 640.96 902.87 1224.6

ADMM 303.17 539.12 641.32 911.76 1228.5

Running Time (seconds)
Optimal 6.069 28.976 58.825 29.057 −
HUDF 0.008 0.016 0.126 0.063 0.076

VTEN-HUDF 0.07 0.206 1.667 1.691 5.446
Dual 8.475 30.571 64.502 74.01 762.2

ADMM 3.145 9.126 14.42 12.3 25.463

Then, with the VTEN, we formulated an optimization to
maximize the profit from the emergency backup, and de-
signed an ADMM-based distributed algorithm to solve it
time-efficiently. The convergence of the proposed algorithm
was also verified theoretically. Finally, we conducted ex-
tensive simulations to demonstrate that our proposed algo-
rithm is robust and time-efficient, and outperforms several
benchmarks in terms of backup profit and running time.

TABLE 3
Performance Comparisons using US-Backbone

Type 1 Disasters Type 2 Disasters
|V d| 2 3 4 5 6
T 6 9 12 15 20

Backup Profit (units)
Optimal 267.01 572.14 − − −
HUDF 238.76 563.77 869.95 1039.3 1382.3

VTEN-HUDF 263.18 571.74 895.21 1046.2 1399.4
Dual 266.82 571.80 896.33 1071.6 1406.3

ADMM 267.01 572.13 897.06 1073.4 1408.9

Running Time (seconds)
Optimal 12.232 84.498 − − −
HUDF 0.058 0.068 0.126 0.185 0.123

VTEN-HUDF 0.202 1.055 4.705 4.94 12.15
Dual 19.171 28.364 143.33 109.66 450.87

ADMM 5.7 18.278 26.289 29.76 64.44

APPENDIX A
SOLUTION OF EQUATION (17)

With KKT conditions, we can obtain the solution of Eq.(17)
[36]. Specifically, For each link e ∈ E ′, we consider all flows
from damaged DCs i ∈ V d. For DC i that satisfies ρ · bki,e −
µk
i,e − ce ≤ 0, we have zk+1

i,e = 0. Then, we denote the set of

remaining DCs, i.e., {i : i ∈ V d, ρ · b(k)i,e − µk
i,e − ce > 0}, as

Ψk+1
e , and obtain

z
(k+1)
i,e =































b
(k)
i,e −

µ
(k)
i,e + ce

ρ
,
∑

i∈Ψk+1
e



b
(k)
i,e −

µ
(k)
i,e + ce

ρ



 ≤ Be,

max



b
(k)
i,e −

µ
(k)
i,e + γ

(k+1)
e + ce

ρ
, 0



 , Otherwise,

(50)

where the parameter γk+1
e ≥ 0 is determined by∑

i∈V d

zk+1
i,e = Be.

APPENDIX B
PROOF OF LEMMA 2

For z, according to its update rule in Eq. (16), we can obtain

zk+1 = argmin
z∈Z

(

c · z +
ρ

2
· ‖z − bk +

µk

ρ
‖2
)

= argmin
z∈Z

(

c · z + 〈µk , z〉+ ρ

2
· ‖z − zk‖2 + ρ · 〈z, zk − bk〉

)

.

(51)

Then, we define an auxiliary function as

φ(z) = c · z + 〈µk, z〉+ ρ

2
· ‖z − zk‖2 + ρ · 〈z, zk − bk〉.

Since zk+1 = argmin
z∈Z

φ(z), where φ(z) is strongly convex

with constant ρ, we have 〈∇zk+1

[
φ(zk+1)

]
, z − zk+1〉 ≥

0, ∀z ∈ Z . Then, we can get

φ(z∗) ≥ φ(zk+1) + 〈∇
[
φ(zk+1)

]
, z

∗ − z
k+1〉+

ρ

2
· ‖z∗ − z

k+1‖2

≥ φ(zk+1) +
ρ

2
· ‖z∗ − z

k+1‖2,
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which comes from the strong convexity of φ(z). By expand-
ing φ(z∗) and φ(zk+1), we can obtain

c · z∗ + 〈µk
, z

∗〉+
ρ

2
· ‖z∗ − z

k‖2 + ρ · 〈z∗, zk − b
k〉

≥c · zk+1 + 〈µk
, z

k+1〉+
ρ

2
· ‖zk+1 − z

k‖2

+ ρ · 〈zk+1
, z

k − b
k〉+

ρ

2
· ‖z∗ − z

k+1‖2.

(52)

which can be reorganized as

c·(zk+1 − z
∗) +

ρ

2
· ‖zk+1 − z

k‖2

≤
ρ

2
· ‖z∗ − z

k‖2 −
ρ

2
· ‖z∗ − z

k+1‖2 + 〈µk
, z

∗ − z
k+1〉

+ ρ · 〈z∗ − z
k+1

, z
k − b

k〉.

(53)

Next, we consider b and get the following equation
according to its update rule in Eq. (19).

b
k+1 = argmin

b≥0

(
∑

e

fe(be) + 〈µk
, z

k+1 − b〉+
ρ

2
· ‖zk+1 − b‖2

+
∑

v

〈νk
v ,
∑

e

av,e · be〉

)

= argmin
b≥0

(
∑

e

fe(be)− 〈µk
, b〉+

ρ

2
· ‖b − b

k‖2

− ρ · 〈b, zk+1 − b
k〉+

∑

v

〈νk
v ,
∑

e

av,e · be〉

)
.

(54)

We then define an auxiliary function as

θk+1(b) =
∑

e

fe(be) + 〈µk
, z

k+1 − b〉+
ρ

2
· ‖zk+1 − b‖2

+
∑

v

〈νk
v ,
∑

e

av,e · be〉.
(55)

bk+1 = argmin
b≥0

(θk+1(b)) determines that we have

〈∇bk+1

[
θk+1(b

k+1)
]
, b − bk+1〉 ≥ 0, ∀b ≥ 0. Then, since

θ(b) is strongly convex with constant ρ+Mf , we have

θk+1(b
∗) ≥ θk+1(b

k+1) +
ρ+Mf

2
· ‖b∗ − b

k+1‖2

+ 〈∇bk+1

[
θk+1(b

k+1)
]
, b

∗ − b
k+1〉

≥ θk+1(b
k+1) +

ρ+Mf

2
· ‖b∗ − b

k+1‖2,

which can be expanded as
∑

e

[

fe(b
k+1
e )− f(b∗e)

]

+
ρ

2
· ‖zk+1 − bk + bk − bk+1‖2

≤ ρ

2
· ‖zk+1 − bk + bk − b∗‖2 + 〈µk , bk+1 − b∗〉

+
∑

v

〈

νkv ,
∑

e

av,e · (b∗e − bk+1
e )

〉

− ρ+Mf

2
· ‖b∗ − bk+1‖2.

And, we further have
∑

e

[

fe(b
k+1
e )− f(b∗e)

]

+
ρ

2
· ‖bk+1 − bk‖2

≤ ρ

2
· ‖b∗ − bk‖2 + 〈µk , bk+1 − b∗〉 − ρ+Mf

2
· ‖b∗ − bk+1‖2

+
∑

v

〈

νkv ,
∑

e

av,e · (b∗e − bk+1
e )

〉

+ ρ · 〈bk+1 − b∗, zk+1 − bk〉.

(56)

Similarly, we also have

θk+1(b
k+1) ≤ θk+1(b

k)−
ρ+Mf

2
· ‖bk+1 − b

k‖2, (57)

θk(b
k) ≤ θk(b

k+1)−
ρ+Mf

2
· ‖bk+1 − b

k‖2. (58)

Eqs. (57) and (58) can be expanded as

∑

e

[

fe(b
k+1
e )− f(bke )

]

+
∑

v

〈

νkv ,
∑

e

av,e · (bk+1
e − bke )

〉

≤ 〈µk , bk+1 − bk〉 + ρ

2
· ‖zk+1 − bk‖2

− ρ

2
· ‖zk+1 − bk+1‖2 − ρ+Mf

2
· ‖bk+1 − bk‖2,

(59)

∑

e

[

fe(b
k
e )− f(bk+1

e )
]

+
∑

v

〈

νk−1
v ,

∑

e

av,e · (bke − bk+1
e )

〉

≤ 〈µk−1, bk − bk+1〉+ ρ

2
· ‖zk − bk+1‖2

− ρ

2
· ‖zk − bk‖2 − ρ+Mf

2
· ‖bk+1 − bk‖2.

(60)

By summing up Eqs. (59) and (60), we can obtain

∑

v

〈
ν
k
v − ν

k−1
v ,

∑

e

av,e · (b
k+1
e − b

k
e)

〉

≤ 〈µk+1 − µ
k
, b

k+1 − b
k〉 −Mf · ‖bk+1 − b

k‖2.

(61)

Thirdly, we consider the Lagrangian function in Eq. (26).
Since zk+1 stays in Z and bk+1 ≥ 0, it is obvious that

L̃(z∗, b∗, µ∗
, ν

∗) ≤ L̃(zk+1
, b

k+1
, µ

∗
, ν

∗), (62)

which indicates that

c · (z∗ − zk+1) +
∑

e

[

fe(b
∗
e)− fe(b

k+1
e )

]

≤ 〈µ∗, zk+1 − bk+1〉+
∑

v

〈

ν∗v ,
∑

e

av,e · (bk+1
e − b∗e)

〉

.

(63)

Fourthly, the update rule of νk+1
v is νk+1

v = νkv + λ ·∑
e
av,e · bk+1

e in Eq. (22), which can be combined with ν∗v =

ν∗v + λ ·∑
e
av,e · b∗e to get

(

1
T · νk+1

v − 1
T · ν∗v

)2

=

[

1
T · νkv − 1

T · ν∗v + 1
T · λ ·

∑

e

av,e · (bk+1
e − b∗e)

]2

,
(64)

where 1
T ∈ R|V d| is a unit row matrix. Thereafter,

∑

v

(

1
T · νk+1

v − 1
T · ν∗v

)2
=
∑

v

[

1
T · νkv − 1

T · ν∗v

+1
T · λ ·

∑

e

av,e · (bk+1
e − b∗e)

]2

.

(65)

Eq. (65) can be expanded to get

∑

v

〈

νkv − ν∗v ,
∑

e

av,e ·
(

b∗e − bk+1
e

)

〉

=
1

2λ
·
(

‖νk − ν∗‖2 − ‖νk+1 − ν∗‖2
)

+
λ

2
·
∑

v

(

∑

e

av,e · 1T · bk+1
e −

∑

e

av,e · 1T · b∗e

)2

≤ 1

2λ
·
(

‖νk − ν∗‖2 − ‖νk+1 − ν∗‖2
)

+
λ · δ
2

· ‖bk+1 − b∗‖2,

(66)

where the last inequality is because δ is |V d| times the
largest singular value of the adjacent matrix A.
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Similarly, we have
∑

v

(

1
T · νk+1

v − 1
T · νkv

)2
=
∑

v

[

1
T · νkv − 1

T · νk−1
v

+λ · 1T ·
∑

e

av,e · (bk+1
e − bke )

]2

.

(67)

Eq. (67) can be expanded to get

∑

v

〈

νkv − νk−1
v ,

∑

e

av,e ·
(

bke − bk+1
e

)

〉

=
1

2λ
·
(

‖νk − νk−1‖2 − ‖νk+1 − νk‖2
)

+
λ

2
·
∑

v

(

∑

e

av,e · 1T · bk+1
e −

∑

e

av,e · 1T · bke

)2

≤ 1

2λ
·
(

‖νk − νk−1‖2 − ‖νk+1 − νk‖2
)

+
λ · δ
2

· ‖bk+1 − bk‖2.
(68)

Finally, by summing up Eqs. (53), (56), (61), (63), (66) and
(68), we can get

ρ

2
·‖zk+1 − zk‖2 +

ρ

2
· ‖bk+1 − bk‖2 − 〈µk+1 − µk , bk+1 − bk〉

≤ρ

2
·
(

‖z∗ − zk‖2 − ‖z∗ − zk+1‖2
)

+
1

2λ
·
(

‖νk − ν∗‖2 − ‖νk+1 − ν∗‖2
)

+
1

2λ
·
(

‖νk − νk−1‖2 − ‖νk+1 − νk‖2
)

+
1

2
·
(

Mf + ρ− λ · δ
)

(

‖b∗ − bk‖2 − ‖b∗ − bk+1‖2
)

− 1

2
· (Mf − λ · δ) · ‖b∗ − bk‖2 −

(

Mf − λ · δ
2

)

‖bk+1 − bk‖2

+ 〈µ∗ − µk, zk+1 − bk+1〉+ ρ · 〈bk+1 − b∗, zk+1 − bk〉
+ ρ · 〈z∗ − zk+1, zk − bk〉.

(69)

Then, we proceed to handle the following terms in Eq. (69):

〈µ∗ − µ
k
, z

k+1 − b
k+1〉+ ρ · 〈bk+1 − b

∗
, z

k+1 − b
k〉

+ ρ · 〈z∗ − z
k+1

, z
k − b

k〉.
(70)

Since the update rule of µ is µk+1 = µk + ρ · (zk+1 − bk+1)
in Eq. (23), the first term in Eq. (70) is equivalent to

〈µ∗ − µ
k
, z

k+1 − b
k+1〉 =

1

ρ
· 〈µ∗ − µ

k
, µ

k+1 − µ
k〉

= −
1

2ρ
·
(
‖µ∗ − µ

k+1‖2 − ‖µk − µ
∗‖2
)
+

1

2ρ
· ‖µk+1 − µ

k‖2.

(71)

The second term in Eq. (70) is

ρ · 〈bk+1 − b
∗
, z

k+1 − b
k〉 = ρ · 〈bk+1 − b

∗
, z

k+1 − b
k+1〉

+ ρ · 〈bk+1 − b
∗
, b

k+1 − b
k〉.

(72)

Similarly, the last term in Eq. (70) can be transformed into

ρ · 〈z∗ − z
k+1

, z
k − b

k〉 = ρ · 〈z∗ − z
k+1

, z
k − z

k+1〉

+ 〈z∗ − z
k+1

, µ
k+1 − µ

k〉+ ρ · 〈z∗ − z
k+1

, b
k+1 − b

k〉.
(73)

As z∗ = b∗, we consider the equations’ right hand sides,
add the first term in Eq. (72) to the second one in Eq. (73) as

ρ · 〈bk+1 − b
∗
, z

k+1 − b
k+1〉+ 〈z∗ − z

k+1
, µ

k+1 − µ
k〉

= −
1

ρ
· ‖µk+1 − µ

k‖2,
(74)

and sum up the second term in Eq. (72) with the third term
in Eq. (73) as

ρ · 〈bk+1 − b
∗
, b

k+1 − b
k〉+ ρ · 〈z∗ − z

k+1
, b

k+1 − b
k〉

= −〈µk+1 − µ
k
, b

k+1 − b
k〉.

(75)

Hence, by summing up Eqs. (71)-(73) and substituting the
corresponding terms with Eqs. (74) and (75), we have

〈µ∗ − µk, zk+1 − bk+1〉+ ρ · 〈bk+1 − b∗, zk+1 − bk〉
+ ρ · 〈z∗ − zk+1, zk − bk〉

=
ρ

2
·
(

‖z∗ − zk+1‖2 − ‖z∗ − zk‖2
)

+
ρ

2
· ‖zk − zk+1‖2

+
ρ

2
· ‖bk+1 − bk‖2 +

1

2ρ
·
(

‖µ∗ − µk‖2 − ‖µ∗ − µk+1‖2
)

− 1

2
· ‖ 1

√
ρ
· (µk+1 − µk) +

√
ρ · (bk+1 − bk)‖2.

(76)

By substituting Eq. (76) into Eq. (69), we obtain

1

2ρ
· ‖(µk+1 − µk)‖2 + (Mf +

ρ

2
− λ · δ

2
) · ‖bk+1 − bk‖2

≤ 1

2λ
·
(

‖νk − ν∗‖2 − ‖νk+1 − ν∗‖2
)

− 1

2
(Mf − λ · δ) · ‖b∗ − bk‖2

+
1

2λ
·
(

‖νk − νk−1‖2 − ‖νk+1 − νk‖2
)

+
1

2

(

Mf + ρ− λ · δ
)

(

‖b∗ − bk‖2 − ‖b∗ − bk+1‖2
)

+
1

2ρ
·
(

‖µ∗ − µk‖2 − ‖µ∗ − µk+1‖2
)

.

(77)

If we choose the positive parameters ρ and λ such that

Mf − λ · δ ≥ 0, (78)

the terms − 1
2 (Mf − λ · δ) · ‖b∗ − bk‖2 ≤ 0 in the right hand

side of Eq. (77) can be removed to get

1

2ρ
·‖(µk+1 − µk)‖2 + (Mf +

ρ

2
− λ · δ

2
) · ‖bk+1 − bk‖2

≤ 1

2λ
·
(

‖νk − ν∗‖2 − ‖νk+1 − ν∗‖2
)

+
1

2λ
·
(

‖νk − νk−1‖2 − ‖νk+1 − νk‖2
)

+
1

2

(

Mf + ρ− λ · δ
)

(

‖b∗ − bk‖2 − ‖b∗ − bk+1‖2
)

+
1

2ρ
·
(

‖µ∗ − µk‖2 − ‖µ∗ − µk+1‖2
)

,

(79)

which completes the proof of Lemma 2.
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