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Abstract—We investigate the problem of data-intensive vNF
service chain (vNF-SC) orchestration in inter-datacenter EONs.
After analyzing the NP-hardness of this problem, we solve it in
a sequential manner by optimizing both the request serving se-
quence and the data-intensive vNF-SC orchestration. Specifically,
we propose a request sorting algorithm and a data-intensive vNF-
SC orchestration algorithm based on dynamic programming to
minimize the service completion time. We conduct simulations to
evaluate the proposed algorithms, and simulation results verify
their effectiveness.
Index Terms—Network Function Virtualization, vNF Service

Chain, Bulk-Data Transfer, Elastic optical networks.

I. INTRODUCTION
Network function virtualization (NFV) emerges as a promis-

ing network architecture framework to facilitate the deploy-
ment of new network services [1]. Under the paradigm of NFV,
network operators can realize virtual network functions (vNFs)
on general-purpose servers to replace traditional middleboxes.
A network service corresponds to a request of vNF-SC that
demands its data traffic to be processed and forwarded by a
sequence of vNFs [2]. In inter-datacenter (inter-DC) networks,
vNFs can be pre-deployed on high-volume servers in DCs to
support vNF-SC requests. Meanwhile, elastic optical networks
(EONs) [3, 4] have been considered as a promising physical
infrastructure of next-generation inter-DC networks [5], since
they can facilitate agile bandwidth management in the optical
layer. Hence, it would be relevant to investigate how to
efficiently serve vNF-SC requests in inter-DC EONs.
The problem of vNF-SC provisioning involves both vNF-

SC embedding and steering traffic among vNFs. Basically, for
vNF-SC embedding, network operators need to find a specific
DC to instantiate each vNF required in the vNF-SC, while
for traffic steering among vNFs, network operators need to
establish lightpaths between vNFs, assign a certain amount of
bandwidth on them, and perform task scheduling in DCs to
provide satisfying vNF-SC services. With diverse requirements
on traffic steering, vNF-SC requests can be generally divided
into two types: 1) bandwidth-intensive vNF-SC requests that
demand bandwidth-guaranteed connections in between vNFs,
and 2) data-intensive vNF-SC requests each of which needs
to transfer a specific amount of data through a sequence of
vNFs before a deadline. When serving either type of vNF-
SC requests, network operators have to manage bandwidth
resources and IT resources jointly to not only satisfy the
quality-of-service (QoS) requirements of vNF-SC services but
also realize high efficiency of resource utilization.

Previously, researchers have studied the problem of or-
chestrating bandwidth-/data-intensive vNF-SCs under different
network scenarios [6–10]. However, these studies have not
yet considered EONs as the physical infrastructure, and thus
their solutions cannot be applied to the vNF-SC orchestra-
tion in inter-DC EONs. Meanwhile, the existing studies on
bandwidth-intensive vNF-SC orchestration in inter-DC EONs
[11–13] have not addressed the scheduling of data transfers
through vNF-SCs. For instance, the work in [11] formulated an
integer linear programming (ILP) model to solve the problem
of bandwidth-intensive vNF-SC orchestration exactly and also
proposed several heuristics to use bandwidth and IT resources
in a balanced manner. Zeng et al. [12, 13] studied tree-
type bandwidth-intensive vNF-SC orchestration in inter-DC
EONs, formulated a mixed integer linear programming (MILP)
model, and proposed two path-intersection-based heuristics.
However, to the best of our knowledge, the problem of data-
intensive vNF-SC orchestration in inter-DC EONs have not
been touched yet, especially when the scheduling of data
transfers has to be considered. Since data-intensive services are
surging in today’s inter-DC networks, it is not only important
but also necessary for us to investigate how to serve data-
intensive vNF-SCs effectively in inter-DC EONs.
In this work, we consider an inter-DC EON in which there

are dynamic background traffic and pre-deployed vNFs and
study how to orchestrate data-intensive vNF-SCs to minimize
their average service completion time (SCT). We first explain
the problem and analyze its complexity, and then solve it in a
sequential manner by optimizing both the serving sequence of
vNF-SCs and each vNF-SC’s provisioning scheme. Numerical
simulations are conducted to evaluate the performance of
the proposed vNF-SC orchestration algorithm, and the results
verify that the proposed algorithm can significantly reduce the
average SCT of data-intensive vNF-SC requests.
The rest of the paper is organized as follows. Section II

provides the problem description. In Section III, we propose a
request sorting algorithm and a data-intensive vNF-SC orches-
tration algorithm based on dynamic programming. Section IV
discusses the simulations for performance evaluation. Finally,
we summarize the paper in Section V.

II. PROBLEM DESCRIPTION AND ANALYSIS
We model an inter-DC EON as G(V, L), where V is the

DC set and L is the established lightpath set. The set of
vNF types that can be instantiated in the network is denoted



as T = {vNF1, vNF2, · · · , vNFN}, where N is the total
number of vNF types. Accordingly, Γ = {γ1, γ2, · · · , γN}
and Δ = {δ1, δ2, · · · , δN} are the sets of processing rate and
data change ratio1 of the vNF types, respectively. There are
certain pre-deployed vNFs on each node v ∈ V , which are
denoted as set Tv ⊆ T . Between each node pair (s, d) ∈ V 2,
there are established lightpaths denoted as set Ls,d, each of
which is carrying dynamic background traffic and thus has 2D
spectrum fragments on it [5]. Here, a 2D spectrum fragment
refers to a non-aligned and isolated unused bandwidth block
in both the time and spectrum domains. More specifically, for
the k-th lightpath in Ls,d, we denote its 2D spectrum fragment
set as Ψk

s,d = {(ts,d,ks,m , ts,d,ke,m , bws,d,k
m ) : m = 1, 2, · · · }, where

the elements in the tuple (ts,d,ks,m , ts,d,ke,m , bws,d,k
m ) are the start-

time, end-time and bandwidth, respectively, of the m-th 2D
spectrum fragment.
We model the i-th data-intensive vNF-SC request as

Ri(si, di, ζi0, SCi), where si and di are the source and des-
tination nodes, ζi0 is the initial data volume from the source
node, and SCi = {fi1, fi2, · · · , fiNi

} is the requested vNF-
SC, in which each vNF fij can only be realized with a
pre-deployed one, i.e., the DC node v that is used to carry
fij should satisfy fij ∈ Tv, and Ni is the total number of
requested vNFs. Note that, the data volume ofRi could change
after each vNF, due to the vNFs’ data change ratios. Thus, we
use {ζi0, ζi1, · · · , ζiNi

} to record the data volumes, in which
the data volume after vNF fij is ζij = ζi(j−1) · δfij .
To serve a data-intensive vNF-SC request, the network

operator needs to: 1) select a DC node v∗ij ∈ Vij
2 to carry

each vNF fij ∈ SCi, 2) select available lightpaths from
Lsi,v

∗
i1
∪ {Lv∗

ij
,v∗

i(j+1)
: j ∈ [1, (Ni − 1)]} ∪ Lv∗

iNi
,di

to
connect vNF-SC si → v∗i1(fi1) · · · v

∗
iNi

(fiNi
) → di, and

3) schedule data transfers over the vNF-SC. Note that, we
consider the service completion time (SCT) as the key metric
to evaluate the service of a data-intensive vNF-SC. Basically,
the vNF-SC’s service begins when the source node si forwards
the initial data ζi0 to the first vNF fi1, and ends when the
destination node di has received all the data ζiNi

from the
last vNF fiNi

. During this process, whenever the data ζij is
ready to be transferred between a vNF pair (s′, d′), where s′
and d′ are two adjacent nodes on the vNF-SC, a valid 2D
spectrum fragment (ts

′,d′,k∗

s,m∗ , ts
′,d′,k∗

e,m∗ , bws′,d′,k∗

m∗ ) that satisfies

ζij ≤

[
ts

′,d′,k∗

e,m∗ − ts
′,d′,k∗

s,m∗ + 1

]
· bws′,d′,k∗

m∗ , (1)

on a lightpath ls′,d′,k∗ ∈ Ls′,d′ would be used to accomplish
the data transfer. Note that, if a feasible 2D spectrum fragment
cannot be found on the established lightpaths immediately,
the data would be buffered on node s′. Hence, there could
be “data-to-be-transferred” buffering delay, besides the data
transfer latency.

1Here, the data change ratio of a vNF refers to the ratio of its output data
volume to its input data volume.
2In this paper, we use a decision variable with a star superscript to represent

its final value from problem solving.

Meanwhile, whenever a DC node v∗ij has received all the
data ζi(j−1) from the previous node, a data processing task for
vNF fij is created, and task scheduling is performed to reserve
a valid service time window (ST-Wnd) [tfij ,v

∗
ij

s∗ , t
fij ,v

∗
ij

e∗ ] on it,
which satisfies[

t
fij ,v

∗
ij

e∗ − t
fij ,v

∗
ij

s∗ + 1

]
≥

⌈
ζi(j−1)

γfij

⌉
, (2)

i.e., the duration is long enough to process the data ζi(j−1)

with a processing rate of γfij , and also does not overlap with
any other task’s ST-Wnd in the same DC3. Therefore, if the
data ζi(j−1) arrives at DC node v∗ij before its scheduled ST-
Wnd, it would be buffered before being processed by vNF
fij , i.e., there is a “data-to-be-processed” buffering delay,
besides the data-processing latency. When the data processing
has been done, the new data ζij is generated and should be
transferred to the next vNF in the built vNF-SC. In this work,
we assume that a DC node only has one active instance for
each of its pre-deployed vNFs, which can only process the data
from one task at each time slot (TS), i.e., the one processor
assumption in scheduling theory [14].4 Finally, the SCT of a
data-intensive vNF-SC is the summation of the total “data-
to-be-processed” buffering, data processing, and “data-to-be-
transferred” buffering delay in the vNFs and the total data
transfer latency on the lightpaths. In this work, we consider
a dynamic network scenario where the data-intensive vNF-
SC requests come and leave on the fly and study how to
orchestrate them effectively to minimize the average SCT.
Fig. 1 shows an example of data-intensive vNF-SC orches-

tration. There are four data-intensive vNF-SC requests. We
first build their vNF-SCs by selecting DC nodes and assigning
lightpaths, part of which is snapshot as Fig. 1(a). In the built
vNF-SCs, each arrow represents the data transfer in between
two vNFs/nodes, the notation above which is for the assigned
lightpath. The notation in the brackets beside each vNF is
the selected DC node. Fig. 1(b) shows the task scheduling
and data transfer results. For a vNF-SC, its task scheduling in
vNFs and data transfers on lightpaths should be in sequence.
For example, R1’s data transfer on L1 has to be scheduled
before its data processing in vNF1 on DC1, followed by the
data transfer on L5 and the data processing in vNF5 on DC3.
Note that, since the ST-Wnd on L5 is discontinued with that
in vNF1 on DC1, the data of R1 processed by vNF1 has to
be buffered in DC1 until the ST-Wnd on L5 begins, i.e., there
is a “data-to-be-transferred” buffering delay. After R1’s data
has been transferred on L5, a ST-Wnd of vNF5 on DC3 has
already been arranged for R4, and thus the data of R1 cannot
be processed by vNF5 immediately and has to be buffered in
DC3, i.e., there is a “data-to-be-processed” buffering delay.

3Here, we consider non-preemptive task scheduling, i.e., a task cannot be
divided into small pieces during task scheduling.
4Note that, this assumption only affects the calculation of the earliest ST-

Wnd for a task in Lines 1 and 5 of Algorithm 2, but has no influence
on the main bodies of the proposed request sorting algorithm in Section
III. A and data-intensive vNF-SC orchestration algorithm based on dynamic
programming in Section III. B.



Fig. 1. Example of data-intensive vNF-SC orchestration.

Regarding the optimization objective of minimizing the
average SCT of data-intensive vNF-SCs, we only need to min-
imize the “data-to-be-transferred” and “data-to-be-processed”
buffering delays in vNFs and the data transfer delays on
lightpaths, both of which can be affected by the vNF → DC
mapping and the 2D spectrum fragments on lightpaths. This is
because the data processing delay in vNFs is fixed in total. If
there are always enough spectrum resources on lightpaths, the
“data-to-be-transferred” buffering delay and the data transfer
delay could be ignored, making the optimization objective
become to minimize the “data-to-be-processed” buffering de-
lay in vNFs. Then, the data-intensive vNF-SC orchestration
problem becomes the well-known flexible job shop problem,
which is strong NP-hard. Hence, with/without spectrum con-
straints on lightpaths, the data-intensive vNF-SC orchestration
problem investigated in this work is strong NP-hard. With
this insight in mind, we turn to efficient heuristics directly.
Basically, there are two ways to solve the problem: one is to
orchestrate all the requested data-intensive vNF-SC together,
while the other is to do it in sequence. In this work, we focus
on the latter and try to optimize both the serving sequence of
vNF-SCs and the provisioning scheme of each vNF-SC.

III. PROPOSED SERVICE PROVISIONING SCHEME
A. Request Sequencing Optimization
As illustrated in Fig. 1(b), an earlier vNF-SC’s service can

affect that of a latter one, e.g., R1’s “data-to-be-processed”
delay in DC3 is actually caused by the data processing of
R4. Thus, a good request serving sequence is desirable to
relieve this kind of follow-up effect and eventually minimize
the average SCT of vNF-SCs. Here, we propose a scheme that
properly considers the relation between the serving sequence
and the optimization objective.
Firstly, we define the following variables:
• P : the set of pending data-intensive vNF-SC requests.

• ω: the network status before any request in P is served.
• o(P , ω): starting with status (P , ω), the smallest total
SCT of data-intensive vNF-SCs in P with the optimal
serving sequence.

• o(P , ω, i, j): starting with status (P , ω) and having re-
quests i and j served successively, the smallest total SCT
of data-intensive vNF-SCs in P/{i, j} with the optimal
serving sequence.

• g(ω, i): a function to calculate the smallest SCT of
request i given a network status ω.

• τ(ω, i): the new network status associated with the result
of function g(ω, i).

• τ(ω, i, j): the network status after serving requests i and
j successively given a network status ω.

Then, we get:

o
(
P , ω, i, j

)
= g

(
ω, i

)
+ g

(
τ (ω, i), j

)
+ o

(
P/{i, j}, τ (ω, i, j)

)
,

(3)

o
(
P , ω, j, i

)
= g

(
ω, j

)
+ g

(
τ (ω, j), i

)
+ o

(
P/{i, j}, τ (ω, j, i)

)
.

(4)

And, if we have:

o
(
P , ω, i, j

)
≤ o

(
P , ω, j, i

)
, (5)

request i should be served before request j to minimize the
total SCT. However, since there is no way to quantify the value
of o(P , ω), we design the following metrics.

e
(
ω, i

)
= g

(
ω, i

)
+

∑
r∈P/{i}

g
(
τ (ω, i), r

)
, (6)

where the second term on the right side qualifies a request’s
follow-up effect in an ideal manner. If we have e(ω, i) ≤
e(ω, j), we should serve request i before request j to minimize
the follow-up effect, and vice versa.
Then, we propose a multi-round request sorting algorithm,

as shown in Algorithm 1. Here, we store the sorted pending
requests in P∗, which is initialized as an empty set (Line 1).
In each request-sorting round, we select the request r∗ with
minimum e(ω, r∗) (Lines 3-6). Once the selected request has
been served (Line 7), we update the network status ω, the
pending request set P , and the sorted pending request set P∗

(Line 8). Then, the algorithm goes to the next round until all
the pending requests in P have been served (Lines 2-9).
Complexity Analysis: the time complexity of Algorithm 1

is O(CP (g(·)) · |P|3), where CP(g(·)) is the time complexity
of function g(·) and operation | · | returns the element number
in a set.

B. Data-Intensive vNF-SC Orchestration
For function g(ω, i), we propose a data-intensive vNF-SC

orchestration algorithm based on dynamic programming, in
which we define the following variables:

• t(si, fij , v
z
ij): the earliest TS that the data of Ri, originat-

ing from the source node si, can be completely processed
by vNF fij on the z-th DC node vzij ∈ Vij .



Algorithm 1: Multi-Round Request Sorting Algorithm
Input: P , ω, g(·), τ(·);
Output: P∗;

1 P∗ = ∅;
2 while P �= ∅ do
3 for any request r in P do
4 calculate e(ω, r) with Eq. (6);
5 end
6 select request r∗ with the minimum e(ω, r∗);
7 serve request r∗ with the scheme of g(ω, r∗);
8 ω = τ(ω, r∗), P = P/{r∗}, P∗ = P∗ ← r∗;
9 end

• t(vzij): the earliest TS that vNF fij on the z-th DC node
vzij ∈ Vij can complete the data processing of Ri.

• t(vz
′

i(j−1), v
z
ij , ζi(j−1)): the earliest TS that the data trans-

fer of Ri can be completed between vNF fi(j−1) on the
z′-th DC node vz

′

i(j−1) ∈ Vi(j−1) and vNF fij on the z-th
DC node vzij ∈ Vij . This definition is also applied to the
cases in which the source node si or the destination node
di is an end node.

• t(si, di): the minimum SCT of Ri, i.e., the value of
function g(ω, i).

Then, we write the recursive relationship as:

t
(
si, fi1, v

z
i1

)
=

[
t
(
vzi1

)∣∣∣t(si, vzi1, ζi0)
]
, (7)

t
(
si, fij , v

z
ij

)
= min

vz′

i(j−1)

{
t
(
vzij

)∣∣∣t(vz′i(j−1), v
z
ij , ζi(j−1)

)∣∣∣
t
(
si, fi(j−1), v

z′

i(j−1)

)}
, ∀j ∈ [2, mi],

(8)

t
(
si, di

)
= min

vz
imi

{
t
(
vzimi

, di, ζi(mi−1)

)∣∣∣t(si, fimi
, vzimi

)}
,

(9)
where the expression “A|B” means the value of A under the
condition B, and similarly, the expression “A|B|C” means the
value of A under the conditions B and C.
To calculate t(vz

′

i(j−1), v
z
ij , ζi(j−1))|t(si, fi(j−1), v

z′

i(j−1)),
we can always select the best 2D spectrum fragment as:
{
k∗,m∗

}
= argmin

k,m

{
t
vz′

i(j−1),v
z
ij ,k

s,m +

⎡
⎢⎢⎢

ζi(j−1)

bw
vz′

i(j−1)
,vz

ij
,k

m

⎤
⎥⎥⎥
}
. (10)

Besides Eq. (1), the select 2D spectrum fragment must satisfy

t
vz′

i(j−1),v
z
ij ,k

∗

s,m∗ ≥ t
(
si, fi(j−1), v

z′

i(j−1)

)
, (11)

to ensure sequential vNF-SC service. Then, we can get

t
(
vz

′

i(j−1), v
z
ij , ζi(j−1)

)∣∣∣t(si, fi(j−1), v
z′

i(j−1)

)

= t
vz′

i(j−1),v
z
ij ,k

∗

s,m∗ +

⎡
⎢⎢⎢

ζi(j−1)

bw
vz′

i(j−1)
,vz

ij
,k∗

m∗

⎤
⎥⎥⎥ .

(12)

For t(vzij)|t(v
z′

i(j−1) , v
z
ij , ζi(j−1))|t(si, fi(j−1), v

z′

i(j−1)), we
need to perform task scheduling in DC node vzij to find
the earliest ST-Wnd. To do so, instead of putting the data-
processing task right after the earlier tasks, e.g., in Fig. 1(b),
R1’s data-processing task in vNF5 is scheduled right after
R4’s data-processing task in vNF5 on DC3, we can try to
reschedule the earlier tasks’ ST-Wnds to squeeze an earlier ST-
Wnd for the task. This is because, for those earlier tasks that
have “data-to-be-transferred” buffering delay, their scheduled
ST-Wnds can be delayed without any adverse influences on
their SCTs. For example, in Fig. 1(b), if the data transfer of
R4 following its data processing in vNF5 on DC3 can be
delayed to provide R1’s data processing in vNF5 an earlier
ST-Wnd, we can schedule R1 before R4 as long as R4’s data
processing can still be completed before its data transfer.
However, the problem of finding the earliest ST-Wnd with

task rescheduling is also strong NP-hard [14]. Based on bi-
nary search and a well-verified minimum late task scheduling
(MLTS) algorithm in [15], we propose a task rescheduling
algorithm to search the earliest ST-Wnd for the target task.
The detailed procedure is shown in Algorithm 2. We define
the following notations:

• J : set of former tasks for rescheduling, each task Ji ∈ J
has a specific tuple (ri, pi, di), where ri is the task’s ready
time, pi is the processing time, di is the deadline.

• J† = {r†, p†, d†}: the target task, in which r† is the task’s
ready time calculated with Eq. (12), p† is the processing
time calculated as the right side of Eq. (2), and d† is the
deadline, the value of which is changed iteratively and
finally equals the end-time of the earliest ST-Wnd.

• d†,upper : the upper bound of the target task’s deadline.
• d†,lower: the lower bound of the target task’s deadline.
• C(J): the maximum task completion time using the
MLTS algorithm to schedule tasks in J .

• N(J): the number of late tasks using the MLTS algorithm
to schedule tasks in J .

Line 1 calculates C(J) using the MLTS algorithm to get the
upper bound of the target task’s deadline. Line 2 initializes the
values of d†,upper and d†,lower. Line 3 sets the target task’s
deadline as d†,upper and puts the target task into set J for task
scheduling. The while loop of Lines 4-12 first uses the MLTS
algorithm to get a valid scheduling scheme for the tasks in
J with the minimum number of late tasks, i.e., the ones that
have missed their deadlines (Line 5). If the number of late
tasks N(J) is 0, the value of d†,upper is updated as d† (Line
7). Otherwise, the value of d†,lower is updated as d† (Line 9).
Line 11 updates the value of d† with binary search to prepare
for the next round. When d†,upper = d†,lower , the while loop
stops and the value of d† becomes the end-time of the earliest
ST-Wnd. Then, we can get

t
(
vzij

)∣∣∣t(vz′i(j−1), v
z
ij , ζi(j−1)

)∣∣∣t(si, fi(j−1), v
z′

i(j−1)

)
= d†. (13)

Finally, based on the recursive relation described in Eqs.
(7)-(9), we can get the value of t(si, di), and the associated
data-intensive vNF-SC orchestration for Ri.



Complexity Analysis: the time complexity of Algorithm
2 is O(|J |2 · log(d†,upper)), where d†,upper is calculated in
Line 2. Then, the time complexity of the data-intensive vNF-
SC orchestration algorithm based on dynamic programming is
O(Ni · |V | · |J |2 · log(d†,upper)), where |J |2 · log(d†,upper) is
the average value of |J |2 · log(d†,upper). Hence, CP (g(ω, i))
equals to O(Ni · |V | · |J |2 · log(d†,upper)).

Algorithm 2: Task Rescheduling for Earliest Service Time
Window
Input: J , J† = {r†, p†, d†};
Output: d†;

1 calculate C(J) with the MLTS algorithm;
2 d†,upper = C(J) + p†, d†,lower = r† + p†;
3 d† = d†,upper , J = J ← J†;
4 while d†,upper �= d†,lower do
5 calculate N(J) with the MLTS algorithm;
6 if N(J) = 0 then
7 d†,upper = d†;
8 else
9 d†,lower = d†;
10 end
11 d† =

⌈
d†,upper+d†,lower

2

⌉
, update J† in J ;

12 end

IV. PERFORMANCE EVALUATION
We conduct simulations using Matlab R2013a to eval-

uate the proposed algorithms under both light and heavy
background traffic scenarios. In detail, we use the 14-node
NSFNET topology as an inter-DC EON, in which each node
has several bandwidth-variable optical switches (BV-OXCs)
and bandwidth-variable transponders (BV-Ts) and connects
with a local DC. We assume that 10 types of vNFs are avail-
able and each DC node has randomly deployed [2, 4] of those
vNF types. Between each DC pair, there are two established
lightpaths at most, each of which occupies 11 frequency slots
(FS’). We make the background traffic use the lightpaths’
bandwidth along the time axis and leave 12.14% and 2.67%
bandwidth on average as the 2D spectrum fragments in the
light and heavy background traffic scenarios, respectively.
Each simulation covers around 2000 TS’, in which the data-
intensive vNF-SC requests are generated with the Poisson
process and the service provision period is 40 TS’. For each
data-intensive vNF-SC, the number of requested vNFs is 5 on
average, and the initial data volume is uniformly distributed
within [2, 6] FS·TS. Regarding the vNFs’ processing rates,
we set their values in a range of [0.56, 1.12] times of the
transmission rate of an FS. And we set the data change ratios
within [0.7, 1.3].
To evaluate the performance of our proposed request sorting

and task rescheduling algorithms, we use a request sorting
algorithm that serves the requests that have less requested
vNFs and smaller data volume earlier as the benchmark, and
compare the cases with and without task rescheduling. For

the sake of distinction, we name our proposed multi-round
request sorting algorithm as the smallest follow-up effect first
(SFEF), while call the benchmark as the smallest vNF-SC
length and data volume first (SLVF). For the proposed data-
intensive vNF-SC orchestration algorithm based on dynamic
programming, we name it as “DP w/ Rescheduling” and “DP
w/o Rescheduling” for with and without task rescheduling.
Hence, by combining request sorting and data-intensive vNF-
SC orchestration, we have four different service provisioning
schemes in the simulations.
Fig. 2 shows the results in the light background traffic

scenario. Fig. 2(a) compares the results on average SCT. We
can see that the schemes with SFEF can significantly reduce
the average SCT when being compared with the schemes
with the SLVF. This observation verifies the effectiveness of
the proposed multi-round request sorting algorithm. However,
when comparing the schemes with/without task rescheduling,
we notice that the task rescheduling can only slightly reduce
the average SCT if the request sorting scheme is the same.
This is mainly because in the light background traffic scenario,
there are sufficient 2D spectrum fragments on the established
lightpaths and thus the data processed in DCs has a lot
of opportunities to be transferred immediately. Therefore,
the number of vNF-SCs that have a “data-to-be-transferred”
buffering delay (i.e., the value of |J | in Algorithm 2) is
relatively small. To prove this, we show the distributions
of the average SCT from “SFEF + DP w/ Rescheduling”
and “SLVF + DP w/o Rescheduling” in Figs. 2(b) and 2(c),
respectively. In both figures, the “data-to-be-processed” and
“data-to-be-transferred” buffering delays are much shorter than
the data processing and bulk-data transfer delays. Furthermore,
comparing Figs. 2(b) and 2(c), we find that, the “data-to-
be-processed” and “data-to-be-transferred” buffering delays in
Fig. 2(b) are shorter than those in Fig. 2(a), which verifies
the effectiveness of the proposed request sorting and task
rescheduling algorithms again.
Fig. 3 shows the results in the heavy background traffic

scenario. Fig. 3(a) compares the average SCT obtained by
the four algorithms. Again, we can clearly observe the ad-
vantage of the proposed request sorting algorithm. Moreover,
it is interesting to notice that this time, the schemes with
task rescheduling achieve much shorter average SCT than
those without task rescheduling. This observation verifies the
effectiveness of the proposed task rescheduling. The rea-
son behind this is that the number of vNF-SCs that have
a “data-to-be-transferred” buffering delay is relatively large
when the background traffic load is heavy. Basically, in the
heavy background traffic scenario, there are only a few 2D
spectrum fragments on the established lightpaths and hence
the processed data in DCs has very few opportunities to
be transferred immediately, which increases the “data-to-be-
transferred” buffering delay, as shown in Figs. 3(b) and 3(c).
Similarly, by comparing Figs. 3(b) and 3(c), we can see that
“SFEF + DP w/ Rescheduling” provides shorter “data-to-be-
processed” and “data-to-be-transferred” buffering delays than
“SLVF + DP w/o Rescheduling”.
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Fig. 2. Results in light background traffic scenario.
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Fig. 3. Results in heavy background traffic scenario.

V. SUMMARY

In this paper, we studied how to serve the data-intensive
vNF-SCs in an inter-DC EON to minimize their average SCT.
We proposed a request sorting algorithm to minimize the
follow-up effect and a data-intensive vNF-SC orchestration
algorithm based on dynamic programming. Simulation result-
s verified that the proposed request sorting algorithm can
significantly reduce the average SCT when being compared
with a benchmark that considers no follow-up effect and
indicated that task rescheduling is only helpful in the heavy
background traffic scenario in light of the much longer “data-
to-be-transferred” buffering delay caused by insufficient 2D
spectrum fragments.
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