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Abstract—This paper investigates the problem of how to
optimize the provisioning of virtual network function service
chains (VNF-SCs) in elastic optical inter-datacenter netwrks
(EO-IDCNs) under EON and DC capacity constraints. We take
advantage of the broker-based hierarchical control paradgm for
the orchestration of cross-stratum resources and proposeotreal-
ize incentive-driven VNF-SC provisioning with a noncoopeative
mixed-strategy gaming approach. The proposed gaming model
enables tenants to compete for VNF-SC provisioning serviee
due to revenue and quality-of-service incentives and thefere can
motivate more reasonable selections of provisioning schexs. We
detail the modeling of the game, discuss the existence of thiash
equilibrium states and design an auxiliary graph based heustic
algorithm for tenants to compute approximate equilibrium solu-
tions in the games. A dynamic resource pricing strategy, with
can set the prices of network resources in real time accordiyto
the actual network status, is also introduced for EO-IDCNs & a
complementary method to the game-theoretic approach. Reéis
from extensive simulations that consider both static netwck
planning and dynamic service provisioning scenarios indiate
that the proposed game-theoretic approach facilitates bdt higher
tenant and network-wide profits and improves the network
throughput as well compared with the baseline algorithms, vhile
the dynamic pricing strategy can further reduce the request
blocking probability with a factor of ~ 2.4x.

Index Terms—Virtual network function service chain (VNF-
SC), Broker-based elastic optical inter-datacenter netwdks (EO-
IDCNSs), Mixed-strategy gaming, Dynamic resource pricing.

I. INTRODUCTION

T

needs for intelligent service provisioning paradigms faei-

Kang, Rolfemietti, Alberto Castro, and S. J. B. Yoo

by replacing proprietary hardware deployments with virtua
network functions (VNFsg.g, firewalls, load balanceetc)
implemented based on generalized network and IT resources
such as bandwidth, CPU cycles and memories. As one of the
most important application scenarios of NFV, VNF service
chaining (VNF-SC) steers user traffic through service fiomct
chains formed by sequences of VNFs instantiated in DCs
to meet diverse service requirements [4]. Therefore, how
to coordinate the configurations of VNFs and service paths
to realize joint optimizations of network and IT resources
becomes the key problem of VNF-SC [5]-[8].

Meanwhile, elastic optical networking (EON) [9], [10] has
emerged as a promising technique for building DC inter-
connections, realizing elastic optical inter-DC netwo(k©-
IDCNSs) [11], [12]. The problem of optimizing VNF-SC provi-
sioning in EO-IDCNs becomes especially important due to the
unigue spectrum allocation schemes in EONs [13]. In [14] and
[15], Xia et al.for the first time studied the problem of forming
optical service function chains in wavelength-switcheticah
DC networks, and proposed a binary integer programming
model as well as an alternative heuristic algorithm to ojattm
the usages of optical-to-electrical-to-optical (O/E/@neer-
tors. The provisioning algorithms for realizing multic&dEV
trees in EO-IDCNs was investigated in [13], where the awghor
designed both mixed integer linear programming model and
heuristic algorithms to jointly optimize the placement dfiNMs
and the routing and spectrum assignment of multicast trees.

HE rapidly expanding datacenter (DC) networks anghe same authors then formulated an optimization model for
ubiquitous cloud-driven applications are driving the/NF-SC provisioning in EO-IDCNs to minimize the amount

of deployed spectrum and VNF resources for the given traffic

DC networks that can support high-capacity end-to-end sfindel [16]. More recently, Wangt al. further extended the
vices with flexible service requirements [1], [2]. Among altoncepts of service function chains and trees to consider th

the recently devised technologies, network function wairu

provisioning of VNF graphs with arbitrary topologies in riiul

ization (NFV), especially when coupled with software-dein domain EO-IDCNs [17]. Nevertheless, the aforementioned
networking (SDN), provides an unprecedented opportunity fstudies all assumed centralized network control and manage

network operators to customize their infrastructures tidgp
to the actual application profiles [3]. In particular, NFVhdan-
prove the flexibility and cost-efficiency of service prowising
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ment for EO-IDCNsj.e., optimizing the allocation of network
and IT resources jointly by assuming the global visibility
of DCs and EONSs, which violates the autonomy of each
administrative domain. Such a centralized network coranal
management architecture is unrealistic for the globalrhee
spanning many autonomous systems or domains [18]—[21].
Meanwhile, incentives from users,g, heterogeneous quality-
of-service requirements and service budgets, have not been
addressed for VNF-SC provisioning in EO-IDCNs so far.
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In this paper, we extend our work in [22] to investigate how

to realize efficient incentive-driven VNF-SC provisioniig
broker-based EO-IDCNs, where a broker plane lies on top of (Gy-..

the domain manager plane to orchestrate the configuratfons o §
network and IT resources. We model the problem as a nonco-
operative game, in which tenants compete with each other for
VNF-SC provisioning services. Specifically, we assume that
the profit of each tenant is related to the resource consompti
cost and the achieved end-to-end service latency, and peopo
a mixed-strategy game-theoretic approach for tenants tb fifig. 2. An example for incentive-driven VNF-SC provisiogim EO-IDCNSs,

approximate equilibrium solutions in the games. In order ? ;Opo'ogy and provisioning schemes and (b) spectruncatin for VNF-
motivate tenants to use network resources more reasonably

we further design a dynamic resource pricing strategy fefoss-stratum resourcieq, network and IT resources) alloca-
EO-IDCNs which can set the prices of network resources {fyns. Specifically, upon receiving tenant VNF-SC requebts
real time according to the actual network status. Extensiyggker can collect abstractions regarding network corivigct
simulations that consider both static networking planrand  anq resource utilization from domain managers and cakulat
dynamic service provisioning scenarios are performed, apghyisioning schemes accordingly. Note that, the brokey ma
simulation results verify the effectiveness of the propbseyrovide multiple provisioning schemes to each tenant while
game-theoretic approach and the dynamic pricing strategy.tenants select the most appropriate ones to use. Once the
The rest of the paper is organized as follows. Section provisioning schemes have been confirmed by tenants, the
elaborates on the operation principle of broker-based Efyoker informs related domain managers to configure the
IDCNs and formally defines the problem of incentive-driveeorresponding VNFs and elastic lightpaths.
VNF-SC provisioning. Sections Ill and IV present the de@il  Fig. 2 presents an illustrative example for the aforemen-
designs for the mixed-strategy game-theoretic approach apned VNF-SC provisioning paradigm. Here, the brokergalc
the dynamic resource pricing strategy respectively. 880  |ates two provisioning schemes labeled by the solid andethsh
shows the simulation results and Section VI summarizes thiges respectively for each request. The potential spechl
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paper. locations for paths +3—6—9 and 1»4—7—9 are depicted
e L in Fig. 2(b), with an O/E/O conversion being performed in
{ngiiﬁgignj——{R?O‘;ﬁs'j each intermediate node where VNFs are configured. We can
BrokerPlane (" Resiurce }(Cross-Siratum| see that the frequency slot (FS) and O/E/O consumptions can
r— ‘99@‘?:{':"_?_‘{‘_’:":‘ Abs"““"” vary significantly with the different placement of VNFs. Fhi
o YRR DC — > is because the placement of VNFs can divide an end-to-end
Manager Plane [ Manager ﬁom] [Manager DJ path into several lightpaths where the modulation and spect
SDNCtl. Proto. /L A assignment can be performed independently. For the sake of
e pene - &K e mw:%g_“l simplicity, we assume that the resource cost for using each
& ‘%m )EIET\I‘ﬁD ’_i provisioning scheme in this example equates to the sum of
N N /fﬁf TK;@_: the weights of all the traversed links. It is interesting ttice
i NG - - - \_errne\ g that although the provisioning schemes labeled by dashesd li
"""" offer lower cost, tenants will not unalterably select theue d
ooned( Request 1 ) to the fact that the sharing of the processing of VNFs in node
P} Request 2 [ Scheme 1 Scheme 2| [Scheme 3| 4 may introduce prolonged service latencies or even service
e ot ot y plocks.
Fig. 1. Block diagram of a broker-based EO-IDCN. B. Problem Definition
We model the EO-IDCN topology as(V, E, Vp), with V'
II. INCENTIVE-DRIVEN VNF-SC FROVISIONING and E representing the sets of links and nodes &pdoeing a
FRAMEWORK subset ofl” which contains the nodes where DCs locate. The
A. Operation Principle set of VNFs instantiated in D@ (n € Vp) is denoted a®,,.

) ) We denote a VNF-SC request &, d, b, T, T'), wheres and
Fig. 1 shows the block diagram of a broker-based EO-IDCN ,1e the source and destination nodess the bandwidth

enabling incentive-driven VNF-SC provisioning. In the Eofequirement,T is the service duration anfl conveys the

IDCN, a number of geographically distributed DCs are intefjomanded VNFs. Given the set of provisioning scheffigs

connected by the EON, each of which provides the servicgs the broker, the objective of each requesis to select a
for different types of VNFs. Above the data plane, EON ang.,emep

; ik € P; that maximizes its profit defined as,
DC managers operate their substrate networks through SDN
controllers €.g, OpenFlow controller, OpenStaakc), while UvTt = Bi — cik 0
the broker interacts with domain managers to coordinate the bk Ti +D?/’k’”

7,



TABLE |

where ; is the budget ofr; for the service,c; is the TENANT PROFITS UNDER DIFFERENT STRATEGY PROFILES
resource consumption cost, is a parameter representings

sensitivity to latency, and>?, " is the achieved end-to-end U U2)NY2 | Pos

service latency (that is, the total time it takes per bit dbda Y1 5 (80807 | (80, 140)
traverse the service chain) given the other requests'esfiex pii (140,80) | (60, 60)

=t (™ =1\ 1;). Here,) denotes the strategy profile that

contains the provisioning schemes used by all the reque%%,i h is one of the most important tools for non rativ
eg, ¥ = P if r; usesP; . Eq. 1 actually indicates ch 1s one of the mos portant 100Is Tor noncooperative

that each request will try to jointly optimize the resourc@2Mes for analyzing the tenant game. Conceptually, NE of

consumption and the achieved quality-of-serviae,(latency). a game refers to strategy profiles with which no player

We assume that; ;, is determined by the usages of FS@@), g?olé#iiﬁ??o:tsthzr?g:\;rﬁ gglgéergllit?aizg;lnpgroftgjoéni]stgem.
O/E/O t i,k dIT k), e, . e y
convertersy(:,,) an resourcesy(). i.e pure-strategy NE if and only if for any provisioning scheme

Cik = (XFQ ‘Prs JerI;o "Poro JFXI;C 'pIT) Ty 2 P’7k €y,

L o v > UY T v £k 6
wherep,.., p, ., andp,, are the unit prices per provisioning bk - i# ©)

period for FS, O/E/O and IT resource usages, respectivelgt us continue with the example in Fig. 2 and assume that
Meanwhile, to obtainD’, ", we can calculate the signalfi = B2 = 100, c11 = c2,1 = 60 (labeled by solid lines),
propagation timel; , and the processing time of VNFs onci2 = c22 = 30, ¢1(b1) = ¢2(b2) = 4, 7 + li, = 1/6 and
P;.,. While I; , can easily be derived according to the path..» = 10,Vi,k,n,m, we can calculate tenant profits under
length, we can model the processing of tenant traffic in eadiferent strategy profiles in Table | and easily verify with
VNF as an M/M/1 queue by assuming the tenant traffic as thg]. 6 that{P; 1,P22} and {P12, P21} are the two pure-
input queue and the processing core of the VNF as the singleategy NE of the game. However, these equilibrium points

server. Consequenﬂp;b; is obtained as, actually can hardly be achieved in noncooperative oparstio
' . as they are always biased to one of the tenants. Moreover, it
DY =g+ D Jik __ ,is often difficult to calculate or even prove the existence of
TS e, s — i) — >0 g.7"¢(be)”  pure-strategy NE, especially for the case when the strategy
Prgev™ (3y space is discrete as in our problem [23].

select game strategies with certain probability distidns,

provides a more practical insight for designing incentive-
_ o - () driven VNF-SC provisioning paradigms. Specifically, let
where,,, is the capacity limit of them-th VNF in DC .. ¢ [0, 1] denote the probability with which; selectsP; .,

n,m

n, g;, is a boolean parameter indicating whettigr. uses \ye can model a mixed-strategy game as,

the related VNF, and functiow;(-) maps the data rate of

r; to its requirement on VNF processing capacity. Note that, i

we introduce the capacity limit,, ,, corresponding to the ™ Ui (2) = ZMZ Uik H g i (7)
processing rate of each VNF to avoid infinite processing Pok w7 Prj€v™!

On the other hand, mixed-strategy gaming, where players
st Som =gl [ Gib) + D gl de(br) | > 0,¥n,m,

Pij €Y

time of VNFs. In case Eq. 4 is not satisfied or collisions st ka -1 ®)

of spectrum utilization occur among the tenants, we assume e N ’

that the EO-IDCN determines its provisioning strategy by

0pt|m|z|ng the network-wide revenue ga|n$, where U; (Z) is the eXpeCted prOflt of;. Slmllarly, we can

study the game by looking into the mixed-strategy Nash
U= > yi-cin () equilibrium (MSNE), which is defined as,
Pi, k€Y
wherey; indicates whether the EO-IDCN admits the service Ui(z") 2 Ui (‘T (") ) Vi i # @ ©)

of 7:. where (z*)~% = 2* \ ry. Let §; = {Pix,Vr;r >0} and

Ui (2) = Dy Uf’,; [Ip, ey xm»), the following con-
ditions for MSNE then can be deduced,

Uk (") =U;j (%), VPik, Pij €Si. (20)

[1l. MIXED-STRATEGY GAME-THEORETICAPPROACH
A. Game Modeling
The problem of incentive-driven VNF-SC provisioning es-

sentially can be modeled as a noncooperative gametenant gq. 10 actually implies that every provisioning scheme that
game, where tenants act as players and try to maximize th@ihants select with non-zero probabilities has the samfit pro
profits by selecting the most appropriate provisioning Bw® expectation. This is because if there exists any provispni
(i.e, strategies). We apply the Nash equilibrium (NE) methodcheme belonging ta; that is with a different profit ex-

ectation, then provisioning schemes with lower profitd wil
1According to the M/M/1 model, the average time a job stayhadystem P P 9 P

equates tal/ (u — ), whereyp is the processing rate of the server andgs def_inite_ly_ be assfigne_d Z€ro pr(_)b_gbilities according to Eq. 7
the arrival rate of the queue. which is in conflict with the definition of the support s&f.



Algorithm 1: Iterated Dominance Approach. Uyt (x) = Uy (%)

x5, =03
1setS =P, S =0 ¢.) ¢2) fs)
2 while & 75 S do Us 1 (x) = lg3éz(x)
3 S$=S; T =T
4 for eachr; do
5 get allyy™* with S;
6 calculatemax U; j () and min U; i, (z), VPix € Si; (b)
7 delete; ; from S; if Fig. 3. Examples for (a) AG and (b) the case when MSNE does xist. e
max Uy j (x) < minUy x (x) , IPik;
8 end Specifically, within each episodé&jne 6 first calculates the
9 end estimated profit expectation of each provisioning scheme as
Uiyk (x) = BZ — Ci’k) gn,m 7VP7,',I€7
One good property of mixed-strategy gaming is that every Tl ot nGZVD me%n snm =i (bi) =S m (@)
game with a finite number of players and strategy space is (11)
ensured to have at least one MSNE [24]. Formally, we ca¥here .
calculate these MSNE by applying the iterated dominance Gom (@)= > wey-gl" - dulbe), 12)
approach [25] irAlgorithm 1 and solving Egs. 8 and 10. Recall Pr,j€ES\S;

t_he exam_ple in Fig. 2 and the assumptioqs_made for Ta_bl_e , ¥&he expected VNF capacity usage in each DC by provision-
first obtain two support sets, each containing two provisign ing schemes fron$ \ S;. The reason why we adopt () is

schemes, as neither of the two schemes of each request ¢a .o \culating the exact values of profit expectationslires

dominant the other one. For examplg, ; (z) > Uiz (v) enumerating all possible game outcomes.(¢, see Eq. 7)
whenzy; < 0.25 and otherwisel; 1 (z) < Uz (z). Then, \ynqqe complexity will increase exponentially with the scal
by solving the equation set (B0 - 5,1 +80 - @22 = 140~ ¢ ypo problemLine 7 calculates the mean value &%, (x)
02,1160-22,2,(2) 80211480212 = 140-21,1+60-21.2, (3) o1 gach request agl;. Then, for each provisioning scheme,
w11+21,2 = 1and (4)rz1+a2,2 = 1, we compute the MSNE | 1105151 compardJ; ;. () with 4; and increase/decrease
aswi,1 = 2,1 = 0.25 anda, » = @2, = 0.75. Note that, since probabilities of all its adjacent nodes in the AGif}, (x)

each equation yielded from Eq. 10 contsilins multiple terms é} larger/smaller thand,. Here, the step sizes of aidjusting
the production of decision variablés., U [lp, ,ev—: tj»  probabilities are adapted based on the distances with the
the problem of calculating MSNE becomes intractable Wheébuilibrium point,i.e. |7; (¢) — A;| = 0,¥P, 1, andeo and

the number of requests is larger than three [26]. Therefore, ) . o
this work, we aim to design time-efficient heuristic alglonits ao are both parameterdine 19 is for normalization. Note
! that, the iterated dominance approactiigorithm 1 does not

to assist tenants in finding approximate equilibrium solusgi :
and the detail of the design will be presented in the negfcessarlly gengrateasupport set that ensures the cencerg
section. of our optimization meth_od. Tal_<e_ th_e AG in Fig. 3(b)_ as an
example, where all the six provisioning schemes are indude
o _ in S initially. However, in order to maké/, ; (z) = U, 5 ()
B. Heuristic Algorithm and Us ; (z) = Us (z), 12, has to be set a8.3 and 0.8,

We first introduce an auxiliary graph (AG) that facilitatesespectively, which is obviously contradictory. In factp n
the algorithm design. Fig. 3(a) shows an example of the AGSNE exists with such a support set. Thereforel,iime 21, if
In particular, each node in the AG represents a provisionifige algorithm cannot converge after an optimization eggsod
scheme, and two nodes are connected if the correspondivig adjustS by deleting the provisioning scheme that has the
provisioning schemes share the processing of the same VNdigjest profit difference with the best scheme of the same
in the same DCs. Note that, we do not connect two nodes thagjuest from it>. The rationale behind this operation is that
belong to the same request. Each node is assigned a weight ilyapreferentially removing provisioning schemes with lowe
is equal to the expected profit of the provisioning scheimee, profits, we can potentially generate an equilibrium sohutio
Uik (z). With the AG, the basic idea of our heuristic desigmwith higher request profit. Witi.ines 22-23, the algorithm
is to iteratively adjust the probability of each provisiogi recalculates the support set and normalizes the probebili
scheme so as to approximate the conditions for MSNE defingépare for the next optimization episode. Finally, as show
by Eq. 10.Algorithm 2 shows the detailed procedures foby Lines 8-11, the algorithm converges when the maximum
calculating approximate MSNE for the game. First oflalhes  profit difference among provisioning schemes of every retjue
1-3 are for initialization, where we calculate the suppeti$ s lower than a preset threshojgl (e.g, 0.5%). The complexity
construct an AG based on the provisioning schemes in it agglaigorithm2 is O (90 v|e |7>|3) , where® = |
set a uniform initial probability distribution. The whileop
coveringLines 4-24 corresponds to the iterative optimization 2To get the optimal support set, we need to check all the ssifes

process, consisting of multiple optimization episodes (tir- which is impractical when the scale of the problem is largeer&fore, we
loop from Line 5 to 20, wheref, is a preset parameter).focus on designing heuristic approaches in this work

neVp 6"



Algorithm 2: Procedures
MSNE.

1 calculateS with Algorithm 1;
2 construct an AG based afy;

3 setx; = 1/ |Sl| Pk €S;

of Calculating Approximate

4 while 1 do
5 foro=1: 90~do
6 calculateU; , () ,VP;, € S with Egs. 11-12;
P, T; (@)
7 calculateA; = %, i
8 calculater; = max M,Wi;
'Pi’k€$1j
9 if ni < no,vri then
10 return;
11 end
12 for eachP;;, € S do
13 if Ui,k (:IZ’) > A; then
|Ui,k($)*A1‘,|
14 setz;; = x4 + €y for each
adjacent nodéP, ; of P; ;. in the AG;
15 else ifU; () < A; then
[T, (2)—4; |
16 setz:,; = max ¢ 0, x¢,; — €0y Ai
for each adjacent nodg;,; of P; ;. in the
AG;
17 end
18 end
19 setr; p = 2%7’“#7?1,;“ €S;
P, €Sq Tt,j
20 end

_ max{U, ;s (&) VP, ;1 €St} =Ty ; (@)
2t deletepz’k =arg m?,]X { max{ﬁtyj/ (z)’th,]" ESt}

from S;

22 set’? = S, recalculateS with Algorithm 1 and update the
AG accordingly;
Ti k

23 Seta:“c = Zpt s, 707

,VPi,k cS,;

24 end

IV. DYNAMIC RESOURCEPRICING

that maximizes the network-wide profit.
max U= Z Yi * Ci ks

Pi k€Y

wherey; has the same definition with that in Eq. 5 and,

Cik = (ZpFS Z z;

(13)

+ Z Tk 'ngo + X?qlf P | T,
ecE fELF] neVp
(14)
where ze,f and m', are boolean variables indicating the
spectrum and O/E/O allocations & 1, ifitis selected byr;,
e, 2y and?, equate tol if the f-th FS on linke or an

O/E/O in noden is allocated. The resource constraints are,

S wizl <1Vee B, f €1, F], (15)
Pi k€Y
Z yi i < My, Vn € Vp, (16)
Pi, k€Y
>y gl di(bi) < s,V € Vp,m € O,,  (17)

Pi, k€Y

where M,, is the number of available O/E/O in node

Nevertheless, solving Eqgs. 13-17 requires calculatinigr
every possible pricing strategy, which makes the problem
intractable. Hence, we propose to realize dynamic pricing
with a simpleu”-percentile resource utilization based heuristic
approach in this work. In particular, leiy,.,,Vn € Vp
denote the O/E/O utilization ratio in node the EO-IDCN

setsp? _, as,
0 n 0
Popor Moro < HOEO,
Porpo = o
PYno (1+e0 (wbpo — 1oE0)™"), HopO > Nooaoé
Whel’engo is the base pricesy ando are positive parame-

ters. Note that, usually, should be set larger thanso that
Pl increases faster ag?,, goes up closer ta00%. The
situation for determining® _, Ve € E is more complicated as
we need to consider not only the FS utilization ratio but also
the sizes of available FS-blocks due to the unique spectrum
allocation mechanism in EONs,g, spectrum continuity and
contiguity constraints [27]-[29]. Instead of using _, we
make the EO-IDCN price the FS usage for each provisioning

The design of tenant game in Section Il motivates tenaréshemep; ;, separatelyi.e.,

to use VNFs with higher residual processing capacitiess(thu
lower latencies), facilitating more balanced IT resourte u
lizations across DCs. On the other hand, as the tenants havg's =
neither the knowledge about network topology and spectrum

0 ik 0
pps7 NFS <“F5'7

0 ik o % ik 0 (19)
Drs (1 + <o (uF’s - qu) ) s Mps 2 HES,

utilization nor the incentive to use network resources incaiam . . " ik
reasonable way, their decisions may lead to severer res.*sou\{y@ereEO andgy are positive parameters, anf is calculated
bottlenecking or spectrum fragmentation and thus result g 5
decreased network throughput. Therefore, in this work on P =1->" (%) )
EO-IDCNs, we propose a dynamic resource pricing strategy h
that can regulate the network resource utilization by afiec where 7, is the size of theh-th available FS-block orP;
tenants behaviors. andd, > 1 is a parameter to differentiate the weights of FS-
The dynamic pricing strategy sets the unit prices for per Hocks with different sizes. Eqg. 20 in fact takes into acdoun
and O/E/O usages per provisioning perioe.(p¢ ,Ve € E the impact of spectrum fragmentation. For instance, a servi
andp?__,¥n € Vp respectively) in real-time according topath with large number of smaII pieces of available spectra
the actual network status. Specifically, the optimal pricas is associated with a Iargﬂ (thus highp®¥) although the
be determined by solving the following optimization prable actual spectrum utilization ratlo is only moderate.

(20)



TABLE Ili

V. SIMULATION RESULTS RESULTS ON THE CONVERGENCE ONNF-SC-GaME (|R| = 100).

We evaluate the performance of the proposed game-theoretic
approaches with numerical simulations in this section and Sn,m

. . . Iterations
Table Il summarizes the simulation setup. to Converge| 2600 | 37200 | 73800 ) 94800 | 111300

2200 2000 1800 1600 1400

A. Static Network Planning due to its frequent use of long-distance and congestedcgervi
Baths. Fig. 4(d) plots the results on the maximum VNF capac-
ity utilization ratio in the EO-IDCN, which further consdhte

the analysis. It can be seen that VNF-SC-Game facilitates
the most balanced utilization of VNFs, while the maximum

We first conduct static network planning simulations t
investigate the behaviors of tenants. In the simulatiohs, t
processing capacity of each type of VNiFe( ,..,) is set as
1800 units, each tenant receivés provisioning schemes from = = '~ . )

utilization from VNF-SC-LC can reach as high 88%. This

the broker and its budget; is given based on the estimation” . -
of the resource consumption cost on the longest service pafP!ies that VNF-SC-LC may incur resource collisions among

Note that, since all the requests are known in advance dfguests (thus service blocking) when we further increase

served simultaneously in static network planning problem&€ traffic load, clearly demonstrating the disadvantage of
we do not incorporate the designed dynamic resource prici}{[]i:F'SC'LC'_Also notice that, the fixed strategy used by
F-SC-LC is actually not a stable solution in real network

strategy in the simulations and the unit prices for IT, F¥ s . : .

and O/E/O usages are set to be equalto, 7%, .0, } operations as one tenant can easily recognize this strategy
> Do ; ) . ; ) L

which are given by Table Il. The baseline algoritﬁ?ns%Erg VNI{[om its competitors and improve its profit by switching to

SC-LC and VNE-SC-Random. where each tenant selects fh&etter strategy. We also conduct simulations with differe

provisioning scheme with the least resource cost or rangondj-m S€tup, with which we can observe the similar trends as

while our proposed game-theoretic approach is denoted {4gSe discussed above.
VNFE-SC-Game. We then study the convergence of VNF-SC-Game and

Table 1l shows the numbers of iterationge(, iterations
TABLE Il that Lines 5-20 of Algorithm 2 are executed) needed for the
SIMULATION SETUP. algorithm to converge. We can see that more iterations are
required when we redugs, ,,,, which is because provisioning

\%V’ ) }f,ﬂ%‘f?,gf le Tp,E T Topology [29] schemes with higher resource consumption costs are letg lik
On {VNF-1,VNF-2,... VNF-§ to be dominated when service latencies begin to play a more
#;ﬁ]i\g",\;odel Eﬁ%ﬁg}& Poisson important role in deciding the tenant profits, resulting in a
#i (b)) = b; [25,250] Ghis larger support sef for the algorithm to optimize with. Note
T4 2 that, the performance of VNF-SC-Game is also associatéd wit
?9077707 0, a0} [{%8538:51%7%?8087 20} other parameters such &sandr,, and the selections of these

PrTvp(}stOOEo} {1,5,25} units parameters (_as depicted in Te_tble I_I) are _already the optidniz

1 o0, 00 ) (80%, 35,1} ones according to our extensive simulations.

{M%S,éo,&o,éo} {50%, 5,2, 2}

B. Dynamic Service Provisioning

Fig. 4(a) shows the results on average request profitNext, we perform dynamic service provisioning simulations
achieved by tenants, and we can see that VNF-SC-Gamleere VNF-SC requests can come and go on-the-fly. The
outperforms both VNF-SC-LC and VNF-SC-Random whil@rocessing capacities of VNFs range frosa00 to 3500
the profits from VNF-SC-Random are the lowest. Meanwhilenits, and the number of provisioning schemes each tenant
the advantage from VNF-SC-Game gets larger when theceives is still10. We compare the performance of VNF-
number of requests increases. The rationale behind thisSi§-Game with dynamic pricing (hamely, VNF-SC-Game-DP)
that the proposed game-theoretic approach assists tetwantwith those of approaches leveraging fixed pricing, VNF-
intelligently select provisioning schemes that achieveliest SC-Game-FP, VNF-SC-LC-FP and VNF-SC-Random-FP. For
balance between the resource consumption cost and seavic@pproaches with fixed pricing, the pricing rate is setas
tency, which is especially critical when the EO-IDCN becaeme.e., the unit prices for IT, FS and O/E/O usages equate to
more saturated (the service latencies become more sensibivi x {p,T,pgs,ngo}. Also, different from that in network
the changes of residual VNF processing capacities when thggnning simulations, the budget of each request is setdbase
approach0 according to Eq. 3). The above analysis can ben the pricing rate being equal 0. Fig. 5(a) shows the
verified by the results on average service latency and resouresults on request blocking probability, where we can oleser
consumption cost shown in Figs. 4(b) and 4(c), respectivethat VNF-SC-Game achieves significant lower blocking prob-
We can observe that VNF-SC-Game always achieves takility than VNF-SC-LC and VNF-SC-Random. Meanwhile,
lowest service latencies among the three algorithms ang omlith the designed dynamic pricing strate@y4x in average
slightly higher resource consumption costs than VNF-SC-L®locking reduction is further achieved by VNF-SC-Game sThi
As expected, the service latencies from VNF-SC-LC increasebecause our proposed game-theoretic approach as well as
rapidly with the number of requests. The performance of VNREhe dynamic pricing strategy make tenants use network and IT
SC-Random is much worse than those of the rest algorithmesources in a more balanced way, thus effectively relgevin
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the impacts from resource bottlenecking. We also measure 10
the profits achieved by the EO-IDCN and tenants when the
traffic load is 500 erlangs with different pricing rate setup
for fixed pricing based approaches, and Figs. 5(b) and 5(c)
show the corresponding simulation results. Firstly, weeobs
that among the approaches with fixed pricing, VNF-SC-Game
always achieves both the highest network (EO-IDCN) and

@)

._.
Ow

Blocking Probability
=
o

&

—— VNF-SC-Random-FP
—%—VNF-SC-LC-FP

N
ow

request profits. Being cqnsistent with the results_in Figy) 4( ) S UNESeGame e
the average request profit from VNF-SC-Random is the lowest. 0200 250 a0 350 400 450 500
Secondly, as expected, the network profits achieved by fixed raffe Load (erangs)

pricing based approaches go up monotonously with the gricin o)
rate while the results on request profit exhibit the opposite
trend. The network profit from VNF-SC-Game-FP is still
slightly lower than that from VNF-SC-Game-DP when the
pricing rate is2.1, while the request profit from it at this
moment has been lower than that from VNF-SC-Game-DP.
Note that, we do not evaluate the cases when the pricing

rate is higher thar2.1 as we need to ensure the resource N Sc game e
consumption cost of each request is within its budget. We %is 16 17 18 19 20 21
also perform simulations with different parameter setig, Prieng Rete ysed n Fxed Pricng
Sn,m andM,,, and the results confirm our previous conclusion 1500
that the advantage from the proposed game-theoretic agproa
gets more distinct when the resource capacity constraiets a
tighter.
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VI. CONCLUSION B /\F-SC—-Random~FP

I VNF-SC-LC-FP
In this paper, we proposed an incentive-driven VNF-SC pro- e se-cameb
visioning framework for broker-based EO-IDCNs. We mod- L T B e, 20 2
eled the problem as a noncooperative mixed-strategy game,

where tenants compete for VNE-SC provisioning service':q'g- 5. Results for dynamic service provisioning simulasip (a) request

An AG-based heuristic algorithm was developed for tenarﬁ%ﬁﬁggp%ﬁ? ability, (b) network profit from  per requestcatc) average
to efficiently compute approximate equilibrium solutions i

the games. We also designed a dynamic resource pricing
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