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Abstract—We design and implement a novel network virtual-
ization hypervisor (NVH), which leverages source routing (SR)
and provides network programmability based on the protocol-
oblivious forwarding flow instruction set (POF-FIS), to realize
protocol-independent virtual software-defined networks (vSDNs).
The NVH, namely SR-PVX, uses a novel SR-based mechanism
to ensure that the substrate switches can process packets from
vSDNs with very small flow-table consumption. We design the
network architecture, packet format and packet processing pro-
cedure, and implement them to experimentally demonstrate that
SR-PVX can control substrate POF switches to accomplish SR-
based vSDN slicing. We also perform an experiment to show that
the POF-enabled vSDN created by SR-PVX can easily realize a
stateful firewall with its POF-FIS programmability.

Index Terms—Software-defined networking (SDN), Network
virtualization, Protocol-oblivious forwarding (POF).

I. INTRODUCTION

Nowadays, with the fast emergence of new applications,
service providers are seeking short time-to-market, elastic and
cost-effective solutions eagerly because supporting these appli-
cations with special-purpose physical network systems would
not be realistic anymore, especially for small service providers.
Hence, network virtualization has been proposed to allow
service providers to lease logically-isolated virtual networks
over a shared substrate network and to offer infrastructure
providers a powerful way to slice their networks dynamically
and adaptively [1–3]. Meanwhile, software-defined networking
(SDN) [4] is surely an emerging paradigm for making the
networks more flexible, programmable and application-aware.
Although network virtualization and SDN are orthogonal to
each other, recent studies have suggested that the symbiosis
of them would bring more advantages in network programma-
bility, adaptivity and scalability [5–7].

Therefore, how to realize virtual SDNs (vSDNs), i.e., highly
programmable SDN-enabled virtual networks, has attracted in-
tensive research interests recently. Previously, to abstract sub-
strate resources and virtualize network elements for tenants,
people have considered to slice vSDNs with OpenFlow-based
network virtualization hypervisor (NVH), e.g., OpenVirteX
[8]. Specifically, OpenVirteX allows tenants to customize the
data plane topologies of their vSDNs and helps to bridge the
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communications between the tenants’ OpenFlow controllers
and the substrate network elements (i.e., OpenFlow switches).
Even though such OpenFlow-based NVHs have been proven to
be effective, we hope to point out that the network virtualiza-
tion system’s programmability and flexibility can be further
improved if the restrictions due to the protocol-dependent
nature of OpenFlow could be removed.

As OpenFlow defines the matching fields in flow-tables
based on existing network protocols (e.g., Ethernet and IP),
an OpenFlow switch has to be aware of the protocol head-
ers to parse and match to the required fields. Hence, there
would be compatibility issues if we need to create vSDNs
to support protocols that have not been standardized in the
latest OpenFlow specifications. Although the issues can be
resolved by introducing OpenFlow extensions, it would take
some time to get the extensions standardized. Moreover, the
OpenFlow specifications are becoming more complicated due
to the extensions. For instance, the number of supported
matching fields increases from 12 to 44 from OpenFlow
v1.0 to v1.5. To this end, it is desirable that NVHs could
be protocol-independent and future-proof such that they can
program vSDNs to support new protocols seamlessly. We can
realize this by leveraging the existing efforts on protocol-
independent forwarding (PIF) [9]. More specifically, protocol-
oblivious forwarding (POF) [10, 11] and P4 [12] are the initial
practices of PIF, which allow network operators to customize
network forwarding protocols and behaviors in a much more
flexible manner than OpenFlow.

As the ternary content addressable memory (TCAM) in
SDN switches is expensive and power hungry, the flow-entries
that can be stored in an SDN switch are usually very limited,
e.g., a commercial OpenFlow switch can generally carry less
than 2000 flow-entries [13]. However, the flow-entries could
be far from enough, since a top-of-rack (ToR) switch would
need to require at least 78000 active flow rules to operate
effectively if its rule timeout value is set as 60 seconds [14].
Therefore, previous studies have tried different ways to reduce
the volume of flow-entries installed in SDN switches. Hu et al.
[15, 16] converged the flows that share the same path segment
with label-in-label encapsulation and forwarded them with a
single flow-table on each related SDN switch. On the other
hand, source routing (SR), that encodes the output port of
each switch along the path in packets, has been approved to
be an effective method to reduce the volume of installed flow-
entries [17–19]. However, all these technologies concentrate
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on reducing the flow-entries for end-to-end path setup, while
how to save flow-entries during vSDN formulation has not
been investigated yet. Note that, as vSDNs need to use iso-
lated flow-entry resources to forward the packets of different
tenants, the shortage on flow entries could become even more
significant.

In this paper, we design and implement a novel NVH that
follows the idea of PIF. Specifically, we present a source
routing based NVH, namely SR-PVX, to enable POF flow in-
struction set (POF-FIS [10]) based programmability in vSDNs.
The advantages of our SR-PVX are summarized as follows.

• Superior programmability: To the best of our knowl-
edge, SR-PVX is the first NVH that realizes the concept
of PIF by supporting POF-FIS. Therefore, the slicing
of vSDNs operates in a future-proof manner to provide
tenants more freedom on the network innovations for new
services and applications.

• Complete virtualization of address space: We design a
source routing (SR) based header encapsulation scheme
for SR-PVX to identify packets from each vSDN, while
the actual packet formats in the vSDNs are made transpar-
ent to SR-PVX. Also, we design the header encapsulation
scheme in the way that the additional overheads can be
well controlled.

• Small flow-table consumption: We propose a novel SR-
based mechanism for substrate switches to process pack-
ets from vSDNs with very small flow-table consumption.
Specifically, one packet processing pipeline that only
consists of few flow-entries can handle the packets from
all the vSDNs on any intermediate switch in a substrate
path that carries a virtual link.

• Effective substrate resource isolation: SR-PVX ab-
stracts flow-tables as a type of substrate resources for the
tenants, and make different tenants use non-overlapping
flow-table space for better isolation. Moreover, we de-
velop a POF-based meter function to isolate bandwidth
usages of the vSDNs.

The rest of this paper is organized as follows. In Section II,
we survey the related works. Section III gives a brief introduc-
tion on POF. In Section IV, we present the operation principles
of SR-PVX. Section V evaluates SR-PVX with numerical
simulations. The design, implementation, and experimental
demonstration of SR-PVX are discussed in Section VI. Finally,
Section VII summaries the paper.

II. BACKGROUND AND MOTIVATIONS

A. Virtualization of SDN

The combination of network virtualization and SDN enables
the network operator to slice a substrate network into several
logically independent vSDNs for the tenants [20], and thus
each tenant can operate a vSDN with its own protocol and
network operating system and provide services to applications
independently [21]. Therefore, new network services can be
deployed quickly and the development of novel networking
technologies can be expedited.

There are several existing solutions to realize vSDNs.
FlowVisor [22] is the first NVH for slicing OpenFlow-enabled

vSDNs. It introduces the concept of “flowspace”, which means
that each vSDN has to share the same header space with others
and overlapped header space usage has to be avoided. This,
however, limits the scalability and flexibility of vSDN slicing.
Moreover, FlowVisor does not allow vSDNs to have topologies
that are different from the substrate one. OpenVirteX (OVX)
[8] provides much more enhanced functionalities on network
virtualization, since it allows each vSDN to have a customized
topology and complete header space. Nevertheless, as the
aforementioned solutions are all based on OpenFlow, they
cannot efficiently support protocol-independent vSDN slicing.
Note that, one important feature of vSDN slicing is to support
network innovations, which apparently cannot be realized if
each vSDN can only be based on an existing protocol.

B. Source Routing in SDN

People has already verified that the volume of flow-entries
in an SDN can be reduced significantly with SR [17], and
SecondNet, which is a data-center network architecture that
uses port-switching SR to forward packets among servers, has
been proposed in [23]. Note that, SecondNet encodes the SR-
related fields into MPLS header fields, which might lead to
significant overheads. To avoid the overheads, Path Switching
[18] proposed to rewrite the source/destination MAC address
fields to encapsulate a forwarding path in the SR manner. More
recently, Jin et al. designed an SR-based data-center network
architecture named Sourcey [19], which tried to simplify
the switch operations to an extreme case that only includes
popping out an SR label and forwarding the packet out.

These existing SDN-based SR techniques usually have a
large transmission overhead. Basically, due to the limited
programmability of OpenFlow, they can only leverage the
headers of existing protocols to encode the path information,
which are not specifically designed for SR and thus might have
redundant fields. Thanks to the protocol-independent nature of
POF, we can tailor the packet header to meet the requirement
of SR exactly and improve the transmission efficiency to the
maximum extent [24].

III. OVERVIEW OF POF

As an SDN technology, POF also uses logically centralized
controllers residing in the control plane to manage the forward-
ing devices in the data plane through a south-bound protocol.
The new idea brought by POF is to abstract all the objects
to be processed in the data plane as {offset, length} tuples.
Specifically, when a POF-based forwarding device uses the
“match-and-act” principle to process packets, it uses {offset,
length} tuples as the search keys of matching fields, where
offset indicates the start bit-location of the field in a packet
and length denotes the length of the field in bits. Based on
this, POF defines a flow instruction set, i.e., POF-FIS [10], to
assist the packet processing in forwarding devices. As all the
instructions in POF-FIS locate the data in a packet with {offset,
length} tuple, they can manipulate any bits in the packet
without being affected by any protocol-dependent restrictions.
Hence, POF greatly enhances the programmability of the data
plane and can truly make SDN networks future-proof.
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Then, the detailed operating procedure of a POF-enabled
SDN network is as follows. First of all, all the used protocols
and the fields in the metadata memory should be defined in
{offset, length} tuples. Here, to assist POF switches to cache
flow information temporarily, POF suggests to implement a
metadata memory in each switch and defines several metadata-
related instructions. Secondly, to realize a packet processing
task, a flow-table that specifies one or more matching fields
in packets or the metadata memory is installed in switch(es).
Finally, flow-entries are inserted into the flow-tables, each of
which contains several {offset, length, value} tuples and a
series of instructions in POF-FIS. Here, the {offset, length,
value} tuple indicates a matching fields and its value, and the
matching field should comply with the format defined in the
corresponding flow-table.

In this work, our SR-PVX defines the SR-based header
fields in {offset, length} tuples, and utilizes several flow-tables
and the metadata memory to come up with several pipelines
for processing the packets from vSDNs.

IV. OPERATION PRINCIPLES

A. Source Routing in Substrate Network

It is known that SR encodes routing path information into
the header of each packet, i.e., encapsulating a series of output
ports in the header to represent the forwarding action on each
hop along the routing path. Then, each switch on the routing
path just needs to pop out the outmost header field and forward
the remaining part of the packet to the output port encoded
in the header field. Hence, multiple flows can share the same
flow-table in a core switch, and this helps to reduce the flow-
table consumption in SDN networks significantly [17–19].
As the TCAM in SDN switches is usually very limited, SR
can greatly improve its utilization efficiency and make SDN
networks much more scalable.

The aforementioned advantage of SR becomes even more
valuable when it comes to consider the creation and operation
of vSDNs. Basically, in addition to the bandwidth resources
on substrate links, vSDNs also consume TCAM in substrate
switches. If the NVH does not try to aggregate the flow-
tables used by vSDNs and installs one or more flow-entries
for each vSDN’s packet flow in every substrate switch that
are used to carry it (e.g., the scheme used in OpenVirteX), the
TCAM resources in the substrate network would run out easily.
Consequently, the infrastructure provider might have to face
the dilemma that no more vSDNs can be provisioned, even
though the substrate bandwidth resources are still abundant.
This actually motivates us to leverage SR to realize the virtual
link mapping in vSDN slicing.

B. Network Architecture

Fig. 1 illustrates the overall network architecture for realiz-
ing POF-enabled vSDNs with SR-PVX. SR-PVX communi-
cates with all the substrate POF switches to abstract the sub-
strate resources (i.e., bandwidth on substrate links and TCAM
on substrate switches). It also receives vSDN mapping tasks
from the network embedder, which takes the vSDN requests
from tenants and calculates the virtual network embedding
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Fig. 1. Realizing POF-enabled vSDNs with SR-PVX.

(VNE) schemes for them. When creating a vSDN according
to the mapping scheme from the network embedder, SR-PVX
instantiates virtual POF switches over designated substrate
switches and establishes virtual links (VLs) through installing
SR-based flow-entries. With SR, SR-PVX only needs to install
specific flow-entries on the substrate switches that actually
carries the virtual switches of the vSDN, while a conventional
NVH (e.g., OpenVirteX) needs to install such flow-entries
on all the substrate switches involved to carry the vSDN’s
VLs. Actually, SR-PVX pre-installs a fixed number of default
flow-entries on all the substrate switches during substrate
network initialization, which can process packets from all the
vSDNs on the substrate switches that are involved in VL
mapping but not carry virtual switches (i.e., as intermediate
substrate switches on the substrate paths to carry VLs). We will
explain the default flow-entries in Section 3.4. For instance,
in Fig. 2(a), to forward flows from host H1 to host H2
for a vSDN, the conventional NVH needs to install specific
flow-entries for the flows on every substrate switch along
the path SW1→SW2→SW3→SW4 →SW5→SW6. While our
SR-PVX only needs to install such flow-entries with a POF-
FIS programmed SR header encapsulating operation on SW1,
SW4 and SW6 for all the vSDN’s flows from H1 to H2 (as
shown in Fig. 2(b)). Finally, when the data plane is established
for the vSDN, a POF controller is instantiated for it, and at
this moment, the vSDN is created and it is then handed over
to the operator of its tenant.

C. Packet Design

For distinguishing the packets from different tenants, pre-
vious studies on NVHs tried to either leverage the existing
protocol header to encapsulate the vSDN packets or replace the
virtual addresses by physical ones. These schemes, however,
bear drawbacks such as bandwidth inefficiency or incomplete
virtualization of the address space. Fortunately, with the flex-
ibility provided by POF, we can customize the packet format
used by the network virtualization system based on SR-PVX to
achieve not only high bandwidth efficiency but also complete
virtualization of the address space.

Fig. IV-C shows the design of the packet format for network
virtualization by SR-PVX. The NV_SR_Header field is used



4

(a) Conventional NVH (b) SR-PVX

Fig. 2. Network virtualization related flow-entry installation by conventional NVH and SR-PVX.
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Fig. 3. Packet design for network virtualization by SR-PVX.

to distinguish the packets from different tenants, which locates
before the Ethernet header and includes three types of fields.
The Tenant_ID field (16 bits) stores the tenant’s globally-
unique ID, which is assigned by SR-PVX during the creation
of its vSDN. Substrate switches use this field to identify the
packets’ ownership and then process them with the flow-tables
installed for the corresponding vSDNs. The TTL field (8 bits)
indicates the number of remaining hops before the packet
reaching the next virtual switch. The Egress_Port fields (8
bits) encode the designated output ports in sequence for the
substrate switches that are used to carry a VL. Hence, each
NV_SR_Header includes multiple Egress_Port fields, when the
substrate path to carry a VL consists of more than one hops.
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Fig. 4. Flowchart for packet processing in substrate switches.

D. Packet Processing Procedure

Fig. 4 illustrates the packet processing procedure that we
designed for the substrate switches controlled by the SR-
PVX. First of all, we consider a packet that just enters the
substrate POF network from a host, the switch determines the
tenant (i.e., the vSDN) to which it belongs with the packet’s
input port, i.e., In_Port. Then, the packet is processed by the

tenant-defined flow-tables to execute the instructions defined
for an ingress virtual switch of the vSDN. Next, the switch
inserts an NV_SR_Header into the packet, which stores the
designated output ports on subsequent substrate switches along
the substrate path that carries the VL starting from the current
ingress virtual switch, and forwards the packet out to the next
hop. Inside the substrate network, when a substrate switch
receives a packet from another switch, it distinguishes the
packet’s vSDN with the Tenant_ID field in its NV_SR_Header.
Then, the switch determines whether itself is the last hop of
a VL in the vSDN by checking the value of the TTL field. If
yes, the packet is processed by the tenant-defined flow-tables
with the similar procedure as for a packet that just enters the
substrate network, i.e., a new NV_SR_Header is calculated and
used to replace the current one. Otherwise, the switch caches
the value of the outmost Egress_Port field in its metadata
memory, pops the field from NV_SR_Header, and forwards
the packet to the designated output port cached before.

To realize the packet processing procedure, we program
flow-table pipelines with POF-FIS in the substrate switches,
as explained in Fig. 5. Specifically, for each substrate switch,
the incoming packets are classified into three categories, i.e.,
packets from host, packets at an end-node of a VL, and packets
at the intermediate switch of a VL. We program a pipeline for
the packets in each category. Here, packets from all the vSDNs
share the first three flow-tables in Fig. 5 to be categorized,
while the remaining flow-tables are programmed to realize
tenant-defined operations for each vSDN.

The first flow-table in Fig. 5 is the “In_Port Match Table",
which is first checked when a packet enters a substrate
switch. Specifically, this flow-table checks the input port of
the packet to determine where it comes from. If the input port
corresponds to a host of a vSDN, the switch first uses the
Write-metadata instruction to write the vSDN’s Tenant_ID in
the metadata memory, and then lets the packet be processed by
the tenant-defined flow-table(s). Otherwise, the packet should
have an NV_SR_Header encoded on it and would be processed
by the “TTL Match Table".

The TTL Match Table decides whether the current switch
is the last hop on the substrate path for a VL by checking the
value of TTL field. If not (i.e., TTL > 0), the switch applies SR-
based forwarding as shown in the second flow-entry of the TTL
Match Table in Fig. 5. Specifically, the operation of “cache and
pop Egress_Port" in Fig. 4 is realized by leveraging the Write-
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metadata-from-packet and Delete-field instructions, while the
Output instruction sends the packet to its designated output
port whose port ID is the value of the popped Egress_Port
field (i.e., the one cached in mPort in the metadata memory).
Then, the processing is done for the packet. On the other hand,
if we have TTL = 0, the packet will be processed by the
“Tenant_ID Match Table", which matches to the Tenant_ID
field to determine the packet’s vSDN and then lets it to be
processed by the corresponding tenant-defined flow-table(s).

The Tenant_ID of a vSDN is assigned by SR-PVX but we
reserve Tenant_ID = 0xa423 for the link discovery in SR-
PVX. If Tenant_ID indicates a valid vSDN, the Tenant_ID
Match Table first applies the Meter instruction to limit the
bandwidth usage of the packet’s flow according to its service-
level agreement (SLA). Then, the switch removes the packet’s
NV_SR_Header and sends it to the corresponding tenant-
defined flow-table(s).

For each vSDN, the tenant-defined flow-tables are installed
in the virtual switches by the vSDN controller, i.e., “Tenant-
Defined Tables" in Fig. 5. When the vSDN is operational,
its controller installs flow-tables to its virtual switches, which
are translated by SR-PVX. Specifically, for every Table-Mod
message for installing a flow-table, SR-PVX maps the virtual
table ID in the message to a physical one and ensures that each
tenant-defined flow-table is used exclusively by one vSDN.
SR-PVX also replaces each of the Output instructions in the
flow-tables with the NV_SR_Header encapsulating operation,
which encodes Egress_Port fields into NV_SR_Header ac-
cording to the virtual output ports instructed by the vSDN
controller. Here, for a virtual switch in the vSDN, a virtual
output port on it corresponds to a VL, and thus with the link
mapping scheme stored in SR-PVX, the substrate path to carry
the VL can be determined for encoding the Egress_Port fields.

V. NUMERICAL EVALUATION

We use numerical simulations to verify SR-PVX’s benefit
on flow-entry saving. The substrate network uses the Internet2
NDDI topology in Fig. 7, which contains 11 nodes. In the
simulations, we change the number of virtual nodes (i.e.,
virtual SDN switches) in each vSDN and compare the total
number of flow-entries that are consumed by SR-PVX and
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Fig. 6. Simulation results on flow-entries used in the substrate network.

OVX. The VNE algorithm to slice each vSDN is modified
from the one developed in [25]. Each vSDN request reports
its virtual topology, the bandwidth requirement of each VL,
and the flow-entry demand on each virtual switch. The virtual
topology of each vSDN is generated by the GT-ITM tool [26]
with a connectivity ratio of 0.5, and the number of flow-
entry demand on each virtual switch is set randomly within
[10, 100]. In order to ensure sufficient statistical accuracy, we
average the results from 10 independent simulations to obtain
each data point.

Fig. 6 shows the simulation results. We observe that com-
pared with OVX, SR-PVX reduces the number of used flow-
entries significantly when the size of each vSDN is fixed. This
is because with SR-PVX, a vSDN only consumes flow-entries
on the substrate nodes that have its virtual switches embedded
on, while OVX needs to reserve flow-entries for each vSDN
on all the substrate nodes that carry its VLs. Moreover, the
advantage of SR-PVX becomes more significant when the size
of vSDNs increases. This is due to the fact that to satisfy the
bandwidth constraint, the VLs in a larger virtual topology are
more likely to be mapped onto relatively long substrate paths.

VI. SYSTEM IMPLEMENTATION AND EXPERIMENTAL
DEMONSTRATION

We implement SR-PVX based on OpenVirteX (OVX) [8].
Specifically, we realize the POF protocol stack in OVX to
develop the south- and north-bound interfaces. We also modify



6

the link discovery module in OVX and make it comply to the
data plane operation defined by SR-PVX, i.e., an LLDP packet
is encoded with a special NV_SR_Header using Tenant_ID
= 0xa423 and TTL = 0. Flow-table translation is an important
feature of NVH, and our SR-PVX maintains a table to map
the virtual table IDs in virtual switches to the physical ones
in substrate switches. For each vSDN, we realize its POF
controller by extending the ONOS platform [27] and the
substrate switches are our home-made ones [11] with Intel
data plane development kit (DPDK). In each substrate switch,
we isolate the flow-tables used by different tenants since their
virtual switches might use different matching fields to forward
packets. We also implement the meter function in each switch
to isolate bandwidth usages of vSDNs. Specifically, the meter
module takes the vSDNs’ bandwidth requirements as inputs
and configures the Meter instruction in the Tenant_ID Match
Table to limit their bandwidth usages.
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Fig. 7. Experimental setup.

To verify the functionality of our proposed SR-PVX, we
perform an experiment to slice a vSDN with it from a POF-
enabled substrate network and demonstrate a use case of
simple stateful firewall application on the vSDN. Fig. 7 shows
the configuration of the substrate network, which takes the 11-
node Internet2 NDDI topology. The eleven substrate switches
are our home-made POF switches, each of which is imple-
mented on a stand-alone high-performance Linux server. The
SR-PVX is also realized on a Linux server, which is directly
connected to the substrate switches. The vSDN consists of 4
virtual switches and 4 VLs, and its node and link mapping
scheme are also shown in Fig. 7.

Fig. 8 shows the message interchanging that we capture
by Wireshark on SR-PVX, for revealing the procedure of
vSDN creation. Firstly, the network embedder sends the vSDN
mapping task to SR-PVX through several HTTP packets.
Then, SR-PVX creates the vSDN accordingly and connects
each virtual switch to the POF controller realized with ONOS.
As Fig. 8 indicates, SR-PVX uses 4 different TCP ports
to connect to the POF controller, where each port is for
a virtual switch. It is known that stateful firewall helps to
realize intelligent access control by tracking the states of TCP
connections. The ability to identify the flags in a TCP header is
the basic requirement on the switch that operates as a stateful

Create Network

Create Switch

Create Port

Connect Host

Connect Link

Start Network
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Fig. 8. Messages captured for vSDN creation.

firewall. In a POF-enabled network, this can be easily realized
by letting the controller to program POF switches with POF-
FIS. Hence, in the experimental demonstration, we consider
the scenario in which the POF-enabled vSDN utilizes a stateful
firewall to limit the number of simultaneous TCP connections
from a client to a file server, for ensuring bandwidth fairness
among all the clients. As shown in Fig. 7, the controller
instructs the virtual switch that directly connects to the server
to realize the stateful firewall.
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Fig. 9. Results on downloading bandwidth.

The firewall in the switch identifies a TCP connection
based on the classic TCP “five-tuple” (i.e., source/destination
IP addresses, source/destination ports, and protocol). The
controller maintains a counter table to record the connections
from a same IP address and uses it to limit simultaneous
connections from a client. Specifically, at any time, only one
TCP connection is allowed from the client to the server. To
realize this, the virtual switch checks the TCP FIN flag in
packets and sends a PacketIn message to the controller to
indicate that an active TCP connection is terminated. Then,
the controller will allow to establish the next TCP connection
from the client. In the experiment, we use Axel [28], which
is a multi-thread tool, to download a file whose size is 40
MB from the server, and each VL in the vSDN can use 6
Mbps bandwidth at most. Fig. 9 shows the experimental results
on downloading bandwidth. Even though we configure Axel
to download the file with two simultaneous connections (i.e.,
Axel partitions the file into two parts for downloading), only
one connection is allowed at a time. We also observe that the
Meter-based bandwidth restriction has been applied correctly
to the vSDN.

We also trace a packet sent from the server and show the
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packet’s format at each type of substrate switch in Fig. 10.
The data in the rectangles is for the SR_NV_Header fields.
The Tenant_ID assigned to the vSDN is 0x0001. The packet
arrives at ingress virtual switch, where the substrate switch
at ORD (as shown in Fig. 7) determines that its next virtual
switch in the vSDN is located on the substrate switch at SEA.
Hence, the packet is encapsulated in a NV_SR_Header with
two Egress_Port fields. Here, the substrate switch at SLC is an
intermediate switch for the VL to deliver the packet, and thus it
simply forwards the packet with SR. As shown in Fig. 10, after
passing though the substrate switch at SLC, the value of TTL
field in the packet header has been decreased to 0 and there is
no Egress_Port field in its NV_SR_Header. When the packet
reaches the substrate switch at SEA, it will enter another VL
in the vSDN and hence it is processed by the tenant-defined
flow-tables and encapsulated in a new SR_NV_Header. Then,
after being forwarded by the switch at SFO, the packet arrives
at the switch at LAX, which is its last hop in the substrate
network. This switch restores the packet to a common TCP
format and forwards it to the client. Finally, we can see that
the packet is forwarded correctly according to our design.

VII. CONCLUSIONS

In this paper, we proposed SR-PVX, which is an SR-
based NVH to realize the slicing of POF-enabled vSDNs.
Specifically, we designed the network architecture, packet
format and packet processing procedure, evaluated the per-
formance with a numerical simulation and implemented them
to experimentally demonstrate that SR-PVX could control
substrate POF switches to accomplish the SR-based vSDN
slicing with proposed benefits. Moreover, we showed that the
POF-enabled vSDN created by SR-PVX could easily realize
a stateful firewall with its POF-FIS Programmability.
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