
1

Design and Demonstration of High-Throughput
Protocol Oblivious Packet Forwarding to Support

Software-Defined Vehicular Networks
Quanying Sun, Yuhan Xue, Shengru Li, Zuqing Zhu,Senior Member, IEEE

Abstract—Software-defined networking (SDN) is a promising
technology that can resolve the challenges faced by vehicular
networks. However, the OpenFlow-based SDN implementations
can only provide a protocol-dependent data plane. This can
restrict the effectiveness of software-defined vehicular networks,
since special-purpose protocols that have not been standardized
in OpenFlow specifications are used frequently in vehicular
networks. To address this issue, this work studies how to realize
a protocol-independent data plane by leveraging the protocol
oblivious forwarding (POF). Specifically, we present the design
of a software-based POF switch (PVS) that supports runtime
protocol customization in principle. We implement PVS in a
switch box, and propose a flow table management scheme to
ensure high-throughput packet forwarding. The experimental
results verify that PVS can achieve line-rate packet forwarding
at 10 Gbps when the packets’ size is512 bytes, and the proposed
flow table management scheme is effective.

Index Terms—Protocol oblivious forwarding (POF), Flow table
management, Software-based SDN switch.

I. I NTRODUCTION

RECENTLY, the advantages of software-defined network-
ing (SDN), which separates the control and data planes

of a network and incorporates centralized network control and
management (NC&M) for enhanced network programmabil-
ity, have been verified extensively in various networks [1–
12]. Moreover, the studies in [13] suggested that with the
centralized NC&M, SDN could be a promising solution to the
challenges faced by vehicular networks [13–17],e.g., low data
forwarding efficiency, unbalanced link utilization, frequen-
t security breaches, and insufficient protocol compatibility.
Fig. 1 shows the architecture of a software-defined vehicular
network. The centralized SDN controller is in charge of the
flow setup and packet forwarding in the data plane, which
is built with SDN switches to interconnect the access points
(APs). Hence, the packets from the vehicles can be forwarded
correctly to realize vehicle-to-vehicle communications.

Note that, most of the existing SDN implementations are
based on OpenFlow, which uses a protocol-dependent data
plane with only limited programmability. Specifically, Open-
Flow defines match fields based on existing network protocols
(e.g., IP), and thus an OpenFlow switch has to know the
protocol to parse and match to the fields in a packet header.

Q. Sun, Y. Xue, S. Li and Z. Zhu are with the School of Information
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, P. R. China (email: zqzhu@ieee.org).

Manuscript received on September 30, 2017.

Therefore, when it comes to supporting new protocols, Open-
Flow has no other choices but to add match fields constantly
[18]. This, however, can restrict the effectiveness of software-
defined vehicular networks, since special-purpose protocols
that have not been standardized in OpenFlow specifications
(e.g., dedicated short-range communication (DSRC) [15]) are
used frequently in vehicular networks. Hence, people are seek-
ing for the SDN technologies that can further enhance the net-
work programmability and realize a protocol-independent data
plane, and both the protocol oblivious forwarding (POF) [19,
20] and programming protocol-independent packet processors
(P4) [21] have been put forward for this purpose. Moreover, to
improve the security of software-defined vehicular networks,
one may expect the SDN switches to support runtime protocol
customization. This is because changing the network protocol
in runtime helps to make network operations more private
and thus more difficult to be compromised. POF fits to this
requirement in principle.

SDN Controller

SDN Switch

Control Flow

Data Plane Link

SDN Switch

SDN Switch

Access Point

Access Point

Access Point

Fig. 1. Architecture of a software-defined vehicular network.

POF uses a three-tuple<offset, length, value> to generalize
the description of match fields, and also introduces a generic
flow instruction set (POF-FIS) [19] to operate on it. Here,
offset tells the start bit-location of a match field in packets,
length indicates the field’s length in bits, andvaluedescribes
the field’s value. For instance, theDestination IP Addressfield
in an IPv4 packet can be described withoffset= 30 bytes and
length= 4 bytes, while itsvalue is the 4-byte IPv4 address.

2

Fig. 2 describes an example on how to process IPv4 packets
in SDN switches according to the working principle of POF.
Firstly, the switch needs to check whether the packet is an
IPv4 one. This is achieve by examining whether the value of
the Typefield (i.e., {offset= 12 bytes,length= 2 bytes}) in
the packet’sEthernet Headeris 0x0800. If not, the packet gets
dropped directly. Otherwise, the switch continues to extract the
Destination IP Addressfield (i.e., {offset= 30 bytes,length=
4 bytes}), and uses its value to find the match rule of the packet
(i.e., the corresponding packet forwarding action(s)). Next, the
switch needs to decrease the value of the packet’sTTL field
(i.e., {offset= 22 bytes,length= 1 byte}) by one. If theTTL
field becomes zero, the packet will be dropped. Otherwise,
the switch recalculates and updates theChecksumfield in the
packet (i.e., {offset= 24 bytes,length= 2 bytes}) according
to the value of the wholeIPv4 Header(i.e., {offset = 14
bytes,length= 20 bytes}). The packet processing procedure
shown in Fig. 2 indicates that with POF, the SDN switches
can process and forward packets without knowing the actual
network protocol in the data plane. Hence, POF makes the
data plane completely protocol-independent and can support
new protocols in a future-proof manner.

Field@{12B,2B} = 0x0800?

Extract field@{30B,4B} and find

match rule;

Set field@{22B,1B} as

field@{22B,1B} minus 1

Field@{22B,1B} = 0?

Y

Y

Recalculate field@{14B,20B} and

update field@{24B,2B}.
Drop.

N

N

Fig. 2. Example on processing IPv4 packets according to POF.

Previously, people have discussed the working principle
of POF in [18, 19], implemented POF-enabled controller
and network virtualization hypervisor in [18, 22, 23], and
performed functional demonstrations in [24–27]. However,the
implementation and demonstration of high-throughput POF
switches were still missing. Without a powerful switch like
OpenvSwitch (OVS) [28], one can never fully explore the
benefits of POF. OVS is an open-source software-based switch
that can realize high-throughput packet forwarding based on
OpenFlow. Nevertheless, since the organization and processing
schemes of POF-based flow entries are significantly different
from those in OpenFlow switches, the optimization techniques
developed to improve the performance of OVS [28, 29] cannot
be directly utilized to design high-throughput POF switches.
By leveraging P4, the authors of [30] have realized a protocol-

independent software-based switch,i.e., PISCES. However,
the switch needs to be recompiled every time when it has
to support a new protocol.

In this paper, we present our design of a software-based POF
switch (PVS) that supports runtime protocol customizationin
principle. We implement PVS in a switch box that is based
on the advanced telecommunications computing architecture
(ATCA), by leveraging the packet processing accelerating tool
provided by data plane development kit (DPDK) [31]. Com-
pared with the software-based POF switch that was reported in
[18], PVS adopts new hardware/software designs to achieve a
much higher packet forwarding throughput. We also propose
a flow table management scheme, which organizes the flow
entries in PVS based on their popularity, to further improvethe
performance. Our proposal is then experimentally demonstrat-
ed in a real network testbed. The experimental demonstrations
verify that PVS can achieve a packet forwarding rate of10
Gbps when the packets’ size is512 bytes, and the flow table
management scheme can effectively improve its throughput.

The rest of this paper is organized as follows. We describe
the architectural design of PVS in Section II. The flow table
management scheme is discussed in Section III, and Section
IV presents the experimental results on PVS. Finally, we
summarize the paper in Section V.

II. A RCHITECTURAL DESIGN OFPVS

Fig. 3 shows the forwarding model of PVS. In this model,
each packet directly gets processed by a pipeline, which is built
with the multi-stage flow tables that are based on POF-FIS
[22]. Specifically, the header fields of packets (i.e., the flow
entries’ match fields) are extracted according to the POF-style
three-tuple<offset, length, value>. Therefore, when PVS is
up and working (i.e., at “runtime”), POF controller can add,
remove and modify flow entries for specifying match-action
rules to support new protocols on-the-fly. Moreover, POF-
FIS also defines theWrite-metadatainstruction, which enables
flow tables to extract an arbitrary bit-block in a packet and
cache it in PVS’metadata memoryfor later use in a pipeline.
Hence, the packet processing and forwarding in PVS is more
flexible than that in OVS [28] and PISCES [30], since the pre-
defined packet parser is not required anymore. Consequently,
PVS can support runtime protocol customization in principle.
To realize the forwarding model in Fig. 3, we design the
architecture of PVS as that in Fig. 4(a), which runs on a Linux
system and uses DPDK to ensure high-throughput packet
forwarding throughput [18].

Note that, to improve its throughput, OVS builds a fast path
that consists ofMicroflow Cacheand Megaflow Cache[28,
29]. Specifically, when it receives a new packet flow, OVS
creates an entry in bothMicroflow CacheandMegaflow Cache,
and when they are full, new flows would be processed in the
slow path. However, the cache management in OVS does not
consider the popularity of flow tables, and thus when there are
multiple simultaneous flows, the packet arrival sequence can
affect its forwarding performance [29]. Moreover, the flexible
match fields in POF would make the table cross-product
computation forMegaflow Cachemuch more complex, even

3

Ingress Egress

PVS

Protocol
Customization

<offset, length>
Match

Translate

Flow_Mod

POF
Controller

GUI

API

Metadata Memory

Packet Processing Pipelines

Match-Action

Table

Match-Action

Table
Match-Action

Table

Fig. 3. Forwarding model of PVS.

though it is already very complex in OVS [28]. Considering
these issues, we design the modules forCold Tables (C-Tbl),
Hot Tables (H-Tbl), Exact Flow Entry Generation (EFE-Gen),
andPacket Processing (Pkt-Proc)in PVS.

When a packet is received from the DPDK ports,Pkt-
Proc looks upH-Tbl. If an entry can be found there for the
packet, it processes the packet according to the matched entry.
Otherwise,Pkt-Proccontinues to checkC-Tbl for the packet,
and if it still cannot find any entry there, it will tell theSwitch
Control (Sw-Ctrl)module to encode the packet in aPacket In
message to send to the POF controller. Here,H-Tbl stores the
flow entries generated byEFE-Gen, which are all for exact
match. Hence,Pkt-Proc can search for flow entries inH-Tbl
quickly with hash match. On the other hand,C-Tbl stores the
flow entries that are just received from the POF controller
throughSw-Ctrl. These flow entries may have masks, and for
each flow entry, the mask can be discontinuous in terms of bit-
location. Therefore, matching to an entry inC-Tbl would be
slower than that inH-Tbl, since both the longest prefix match
(LPM) and hash match are not feasible. The hash match inH-
Tbl has a complexity ofO(1), and the complexity of searching
H-Tbl is O(n), wheren is the number of entries in it. The
complexity of entry match inC-Tbl is O(m), wherem is
the number of bits to match in each entry, while the search
complexity ofC-Tbl is the same as that ofH-Tbl.

EFE-Gengenerates an exact flow entry based on an entry
in C-Tbl and stores it inH-Tbl, when Pkt-Proc determines
that the entry inC-Tbl is popular according to the history of
packet processing.Sw-Ctrlmanages all the functional modules
in PVS, and it is also responsible for initializing the local
resources in PVS and executing the POF control messages
received from the POF controller at runtime. When PVS
is handshaking with the POF controller,Sw-Ctrl gets the
configuration of PVS (e.g., the settings of switch ports and
flow table capacity) from theConfiguration Database (Cfg-
DB) and stores the configuration received from the controller
(e.g., the settings ofH-Tbl and C-Tbl) in Cfg-DB. The POF
Protocol Stackmodule is in charge of the communications
with the POF controller,i.e., parsing the control messages from
the POF controller and encapsulating control messages to send
to the POF controller.

We implement PVS in a switch box that is based on ATCA
and runs Linux. As shown in Fig. 4(b), the PVS system uses
a standard 3U chassis that consists of two linecards,i.e.,
for computing and switching, respectively. The switch box is
equipped with12 10GbE ports and two 1GbE ports.

III. F LOW TABLE MANAGEMENT IN PVS

In this section, we describe the proposed flow table man-
agement scheme for moving flow entries betweenC-Tbl and
H-Tbl with the assistance ofEFE-Gen.

Configuration
Database

Cold Tables

Exact Flow Entry
Generation

DPDK Driver

Kernel Space

User Space

Interface w/ POF controller

Hot Tables

PVS

Packets

POF Protocol Stack

Network Interface Card (NIC)

DPDK Ports

Packet Processing

Switch Control

(a) Architecture of PVS.

(b) Picture of PVS system.

Fig. 4. Design and implementation of PVS.

A. Problem Description

It is known that the packet forwarding performance of an
SDN switch can be significantly affected by its flow table look-
up scheme. This also applies to our PVS. Similar as OVS, PVS
also takes the priority of flow entries into consideration. This
means that if a packet matches to multiple flow entries, PVS
processes it according to the one with the highest priority and
ignores the remaining entries. Hence, sorting the flow entries
in descending order of their priority would help to reduce
the complexity of average flow table look-up. Nevertheless,in
addition to the priority, the popularity of flow entries would
also affect the complexity of flow table look-up. For instance,
if the packets of an elephant flow match to an entry whose
priority is low, PVS has to go through most of the entries for

4

a match frequently. Therefore, the organization of flow entries
in PVS should be adjusted dynamically according to not only
their priority but also their popularity, which is actuallyour
motivation to introduceC-Tbl andH-Tbl in PVS.

IP=10.1.1.1 Act 1

IP=10.1.1.1 Act 1

Match ActionEntry ID Priority

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

2

1

3

9

9

1

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

2

1

3

9

9

1

(a) Sort flow entries in a table (correct scenario).

IP=10.1.1.1 Act 1

IP=10.1.1.1 Act 3 X

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

2

1

3

9

9

1

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

2

1

3

9

9

1

(b) Sort flow entries in a table (incorrect scenario).

H-Tbl

C-TblC-Tbl

Packet Processing

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

IP Prefix=10.0.0.1/32 Act 3

IP Prefix=10.0.0.2/32 Act 3

2

1

3

9

9

1

2

1
IP=10.0.0.1 Act3

IP Prefix=10.1.2.0/24

IP Prefix=10.1.1.0/24

IP Prefix=10.0.0.0/8

Act 2

Act 1

Act 3

2

1

3

9

9

1

IP=10.0.0.2 Act3

H-Tbl

Packet Processing

IP=10.0.0.1 Act3

E
F

E
-G

e
n

(c) Update flow entries inH-Tbl.

Fig. 5. Examples on flow table management.

Note that, a straightforward way to adjust the organization
of flow entries dynamically in PVS is to sort them first by
the priority and then by the popularity [32]. For example, in
Fig. 5(a),Entry 2 is the most popular one in the table1 and its
priority is also the highest. Hence, after two rounds of sorting,
it takes the first place in the table whileEntry 1 becomes
the second. Then, when a packet with IP address “10.1.1.1”

1In Fig. 5, we use the darkness of its color to denote the popularity of a
flow entry, i.e., the darker its color is, the higher its popularity is.

comes in, the match result is correct as indicated in Fig. 5(a).
However, this might not always be the case. For instance, in
Fig. 5(b), even though the priority ofEntry 3 is lower than
that of Entry 1, it is more popular thanEntry 1. Then, after
two rounds of sorting, if PVS just takes the first match and
then processes the packet with IP address “10.1.1.1” using the
matched action ofEntry 3, the action would be incorrect. A
similar issue has been pointed out in [32] too, but the authors
considered it as an open question for their future work.

The aforementioned issue comes from the dilemma that
fast table look-up and exact flow entry search can hardly
be realized in a single table. Therefore, we come up with
a scheme to selectively generate exact flow entries fromC-
Tbl with EFE-Genand store them inH-Tbl. The proposed
scheme is illustrated in Fig. 5(c), whereC-Tbl stores all the
flow entries that can have masks and are sorted by the priority.
When PVS determines that a flow entry inC-Tbl is popular,
EFE-Gengenerates one or more exact flow entries from it
and stores the result inH-Tbl. All the exact flow entries inH-
Tbl are sorted by the popularity, and thus they can be searched
quickly with hash match to accelerate packet forwarding. Note
that, since the packets from multiple flows can match to the
same masked flow entry inC-Tbl, EFE-Gen can generates
multiple exact flow entries from the masked one and put them
in H-Tbl, as shown in Fig. 5(c). In addition to this negative
case, we also need to address the situations in whichH-Tbl is
full or the entries inH-Tbl is not popular anymore. Therefore,
we need to update the flow entries inH-Tbl dynamically.

B. Flow Table Management Algorithm

The flow table management scheme in PVS includes three
steps, which are executed periodically with a fixed intervalT .
Specifically, we determine the popular entries inC-Tbl with
the procedure inAlgorithm 1. When the system first starts,
Line 1 initializes the counters of all the flow entries inC-Tbl
as zero and stores them in the arrayc0[]. Then, in the for-loop
that coversLines 2-10, we find and update the popular flow
entries inC-Tbl every time periodT . Specifically, the for-loop
coveringLines3-9 first dumps and records the counters of all
the flow entries inc[], and then find the popular entries by
comparing each entry’s counter with a thresholdη. Note that,
we refer to the number of entries inC-Tbl asC-Tbl.entryNum.
Lines 5-7 compare the current and previous values of the
counter of each entry. If the increment on the counter is larger
thanη, Line 6 sets thehot-flagof the entry as TRUE.Line 8
updates the counter’s value inc0[i].

Here, the thresholdη is obtained in an adaptive manner as
shown inAlgorithm 2. First of all, Line 1 initializesη as the
average popularity of the entries (i.e., the average value of
their counters) inC-Tbl. Then, after each time periodT , Line
3 obtains the popularity of the entry that is the closest to the
position of bottom10% in H-Tbl as ε. Lines 4-8 updateη.
Specifically, if H-Tbl is not full, Line 5 sets the threshold as
η = min(η, ε), and thus we can insert as many popular exact
flow entries inH-Tbl as possible. Otherwise, we should update
H-Tbl in a slower manner and hence, the threshold is set as
η = ε in Line 7. Next, after obtaining the popular entries in

5

C-Tbl, we useEFE-Gento generate exact flow entries out of
them. Finally, we update the entries inH-Tbl. Specifically, we
replace the entries inH-Tbl with the newly-generated ones
from C-Tbl, whose popularity is higher. Note that, to ensure
the completeness ofC-Tbl, we would not delete an entry from
it even if one or more exact flow entries have been generated
out of it and inserted inH-Tbl.

Algorithm 1: Find Popular Flow Entries inC-Tbl

1 initialize all the entries’ counters in arrayc0[] as0;
2 for every time periodT do
3 for every entryi ∈ [0,C-Tbl.entryNum] do
4 dump and record the entry’s counter inc[i];
5 if c[i]− c0[i] > η then
6 sethot-flagof the entry as TRUE;
7 end
8 c0[i] = c[i];
9 end

10 end

Algorithm 2: Update Self-Adaption Thresholdη

1 initialize η as the average popularity of entries inC-Tbl);
2 for every time periodT do
3 setε as the popularity of the entry closest to the

position of bottom10% in H-Tbl;
4 if H-Tbl is not full then
5 η = min{η, ε};
6 else
7 η = ε;
8 end
9 end

Algorithm 3: Flow Table Management

1 entry= LookUp(H-Tbl) with hash;
2 if entry= NULL then
3 entry= LookUp(C-Tbl);
4 if (entry 6= NULL) AND (itshot-flag is TRUE)then
5 generate exact flow entryentry’ out of entry;
6 insertentry’ in H-Tbl;
7 sethot-flagof entry as FALSE;
8 end
9 end

10 if entry 6= NULL then
11 process packet according to theaction of entry;
12 else
13 sendPacket In to POF controller;
14 end

Algorithm 3 shows the overall procedure of flow table
management in each operation. When a packet arrives, PVS
first checksH-Tbl and if a match can be found, it processes
the packet accordingly and skipsC-Tbl to avoid unnecessary
search there. Otherwise, PVS will checkC-Tbl for a match.

Note that, inLine 7, we set thehot-flagof an entry inC-Tbl
as false, if an exact flow entry has been generated out of it
and inserted inH-Tbl. This is performed to avoid to generate
duplicate exact flow entries in subsequent operations.

IV. PERFORMANCEEVALUATION

In this section, we conduct experiments in a real network
testbed to evaluate the performance of PVS as shown in Fig.
6. The testbed uses a POF controller which is programmed
based on POX [18] to control the PVS in the data plane.
We implement PVS in a switch box (i.e., ATCA). And a
commercial traffic generator (i.e., BigTao with two 10GbE
ports) is utilized to generate the testing traffic.

POF Controller

ATCABigTao

Fig. 6. The topology of the experiments.

A. Packet Forwarding Throughput

We first measure the single-port packet forwarding through-
put of the PVS system. The experiments use the traffic
generator to send a10 Gbps flow to PVS, change its packet
size from64 to 1500 bytes, let the controller install one entry
in C-Tbl, and measure the throughput of PVS.

Packet Size (Byte)
64 128 256 512 1024 1500

D
at

a-
R

at
e

(G
bp

s)

0

2

4

6

8

10

Input
Throughput of PVS

Fig. 7. Single-port packet forwarding throughput.

Fig. 7 shows the experimental results. It can be seen
that the PVS system can achieve line-rate forwarding (i.e.,
a throughput of10 Gbps) when the packet size is longer
than 512 bytes, which corresponds to a packet processing
rate of2.44× 106 pps. However, when the packet size keeps
decreasing, the throughput of PVS decreases. This is because
when the packet size decreases, the PVS system needs to

6

process more packets every second. Note that, even though the
throughput of PVS is around2.6 Gbps when the packet size is
64 bytes, the packet processing rate is actually higher than that
of the case with512-byte packets. This is just a preliminary
demonstration of our PVS system to confirm that it has the
potential to achieve high-throughput protocol oblivious packet
forwarding. The current PVS can still be optimized in a few
perspectives,e.g., incorporating parallel processing with multi-
core, which will be addressed in our future work.

B. Impact Factors of Packet Forwarding Throughput

As PVS runs flow table management periodically with
a fixed interval T , its throughput can be affected byT
too. Hence, we send100 flows with a total data-rate of10
Gbps to PVS, changeT within [0.001, 1] ms, and obtain the
throughput results in Fig. 8. We observe that whenT is shorter
than 0.2 ms, the frequent flow table management operations
would affect the throughput of PVS significantly, but whenT

approaches to1 ms, flow table management would not degrade
the throughput of PVS anymore.

Time Interval T (ms)
0 0.2 0.4 0.6 0.8 1

D
at

a-
R

at
e

(G
bp

s)

2

3

4

5

6

7

8

9

10

Packet Size = 512 Bytes
Packet Size = 256 Bytes
Packet Size = 128 Bytes
Packet Size = 64 Bytes

Fig. 8. Impact of flow table management intervalT .

Meantime, the number of flows can affect the performance
of flow table management. This is because when a packet
arrives, PVS would need to searchH-Tbl, and the search
complexity ofH-Tbl is O(n), wheren is the number of flow
entries in it. Hence, when there are more concurrent flows, the
number of flow entries inH-Tbl becomes larger, which would
decrease the throughput of PVS. Fig. 9 shows the experimental
results on the impact of the number of flows on the throughput
of PVS. Here, we setT as {1, 0.1, 0.01, 0.001} msec, and
select the packet size as512 bytes. We can see that whenT is
shorter than1 msec, the number of flows has a larger impact
on the throughput of PVS than that in the cases whenT is
longer than1 msec. The similar trend can also be observed in
the experiment results shown in Figs. 11(a) and 11(b).

C. Performance of Flow Table Management

Next, we conduct an experiment to further verify the effec-
tiveness of flow table management. The POF controller first
installs 100 flow entries in PVS, and then we let the traffic
generator send100 flows, each of which is at100 Mbps and
uses a packet size of512 bytes. Each flow matches to an entry

Number of Flows (Packet Size = 512 Bytes)
20 40 60 80 100

D
at

a-
R

at
e

(G
bp

s)

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

T = 1ms
T = 0.1ms
T = 0.01ms
T = 0.001ms

Fig. 9. Impact of the number of flows.

(b) Throughput of PVS without flow table management.

(c) Throughput of PVS with flow table management.

(a) Sending rate from traffic generator.

Fig. 10. Performance of flow table management.

in PVS, and we setT = 3 seconds for checking the changes
brought by flow table management in an observable time scale.
Fig. 10(a) shows the sending rate of the traffic generator.
The throughput of PVS without the flow table management
is plotted in Fig. 10(b), which indicates that the throughput of
PVS can only reach around 2 Gbps. This is because without
the flow table management, PVS has to go through all the
flow entries inC-Tbl to get matches for certain packets, which
increases the complexity of packet processing and thus limits
its throughput. Nevertheless, when the flow table management
is in place, the throughput of PVS increases to around 10 Gbps
after 3 seconds in Fig. 10(c). This verifies that generating exact
flow entries and inserting them inH-Tbl do effectively reduce
the complexity of packet processing in PVS.

We also compare PVS with OVS in terms of packet forward-
ing rate, and Fig. 11 shows the results. Here, the experiments
install 100 flow entries in an SDN switch (i.e., OVS v2.6,
OVS v2.7, or PVS), and let the traffic generator pump1 to
100 flows to it to emulate various traffic conditions. The total
data-rate is10 Gbps, which is split over the flows equally
in each experiment. We set the packet size as64 and 128

7

Number of Flows
0 20 40 60 80 100

D
at

a-
R

at
e

(G
bp

s)

0

2

4

6

8

10

OVS v2.7 (Latest Version)
OVS v2.6
PVS

(a) Packet size equals64 bytes.

Number of Flows
0 20 40 60 80 100

D
at

a-
R

at
e

(G
bp

s)

0

2

4

6

8

10

OVS v2.7 (Latest Version)
OVS v2.6
PVS

(b) Packet size equals128 bytes.

Fig. 11. Performance comparison of OVS and PVS.

bytes to get the experimental results in Figs. 11(a) and 11(b),
respectively. It can be seen that the performance trends of OVS
v2.7, OVS v2.6 and PVS are similar in Figs. 11(a) and 11(b).
The forwarding rate of PVS remains nearly unchanged because
it adopts hash match inH-Tbl. However, the forwarding rate
of OVS decreases with the number of flows and eventually
becomes comparable to that of PVS. This is because OVS
uses bitwise comparison for the entry matching in its fast path,
which is less time-efficient than the hash match inH-Tbl.

V. CONCLUSION

In this work, we studied how to realize a protocol-
independent data plane to better support software-defined
vehicular networks, by leveraging POF. The design of a
software-based PVS that supports runtime protocol customiza-
tion in principle was first presented. Then, we discussed the
implementation of PVS in a switch box based on ATCA, and
proposed a flow table management scheme to ensure high-
throughput packet forwarding. Our proposal was implemented
in a network testbed for experimental demonstrations. The
experimental results verified that PVS achieves line-rate packet
forwarding at10 Gbps when the packets’ size is512 bytes,
and the proposed flow table management scheme is effective.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Project
61371117, the SPR Program of the CAS (XDA06011202),
the Key Project of the CAS (QYZDY-SSW-JSC003), and the
NGBWMCN Key Project (2017ZX03001019-004).

REFERENCES

[1] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2015.

[2] Z. Zhu, S. Li, and X. Chen, “Design QoS-aware multi-path provisioning
strategies for efficient cloud-assisted SVC video streaming to heteroge-
neous clients,”IEEE Trans. Multimedia, vol. 15, pp. 758–768, Jun. 2013.

[3] W. Lu et al., “Implementation and demonstration of revenue-driven
provisioning for advance reservation requests in OpenFlow-controlled
SD-EONs,” IEEE Commun. Lett., vol. 18, pp. 1727–1730, Oct. 2014.

[4] S. Li et al., “Flexible traffic engineering (F-TE): When OpenFlow meets
multi-protocol IP-forwarding,”IEEE Commun. Lett., vol. 18, pp. 1699–
1702, Oct. 2014.

[5] C. Chenet al., “Demonstrations of efficient online spectrum defragmen-
tation in software-defined elastic optical networks,”J. Lightw. Technol.,
vol. 32, pp. 4701–4711, Dec. 2014.

[6] Z. Zhu et al., “OpenFlow-assisted online defragmentation in single-
/multi-domain software-defined elastic optical networks,” J. Opt. Com-
mun. Netw., vol. 7, pp. A7–A15, Jan. 2015.

[7] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,”IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[8] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[9] W. Fang et al., “Joint defragmentation of optical spectrum and IT re-
sources in elastic optical datacenter interconnections,”J. Opt. Commun.
Netw., vol. 7, pp. 314–324, Mar. 2015.

[10] X. Chen et al., “Flexible availability-aware differentiated protection in
software-defined elastic optical networks,”J. Lightw. Technol., vol. 33,
pp. 3872–3882, Sept. 2015.

[11] S. Li, W. Lu, X. Liu, and Z. Zhu, “Fragmentation-aware service provi-
sioning for advance reservation multicast in SD-EONs,”Opt. Express,
vol. 23, pp. 25 804–25 813, Oct. 2015.

[12] X. Chenet al., “Incentive-driven bidding strategy for brokers to compete
for service provisioning tasks in multi-domain SD-EONs,”J. Lightw.
Technol., vol. 34, pp. 3867–3876, Aug. 2016.

[13] Z. He, J. Cao, and X. Liu, “SDVN: enabling rapid network innovation
for heterogeneous vehicular communication,”IEEE Netw., vol. 30, pp.
10–15, Jul. 2016.

[14] Z. Ning et al., “A cooperative quality-aware service access system for
social internet of vehicles,”IEEE Internet Things, in Press, 2017.

[15] K. Hafeezet al., “Performance analysis and enhancement of the DSRC
for VANET’s safety applications,”IEEE Trans. Veh. Technol., vol. 62,
pp. 3069–3083, Sept. 2013.

[16] Z. Ning et al., “Vehicular social networks: Enabling smart mobility,”
IEEE Commun. Mag., vol. 55, pp. 49–55, Apr. 2017.

[17] ——, “Energy-aware cooperative and distributed channel estimation
schemes for wireless sensor networks,”Int. J. Commun. Syst., vol. 30,
p. e3074, Mar. 2017.

[18] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,”IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[19] J. Yu et al., “Forwarding programming in protocol-oblivious instruction
set,” in Proc. of ICNP 2014, pp. 577–582, Oct. 2014.

[20] S. Li et al., “Improving SDN scalability with protocol-oblivious source
routing: A system-level study,”IEEE Trans. Netw. Serv. Manag., in
Press, 2017.

[21] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[22] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,”IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[23] S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: flow-table virtualization
in POF-based vSDN hypervisor (PVX),” inProc. of ICNC 2018, pp. 1–
5, Mar. 2018.

[24] D. Hu et al., “Design and demonstration of SDN-based flexible flow
converging with protocol-oblivious forwarding (POF),” inProc. of
GLOBECOM 2015, pp. 1–6, Dec. 2015.

[25] S. Li, D. Hu, W. Fang, and Z. Zhu, “Source routing with protocol-
oblivious forwarding (POF) to enable efficient e-health data transfers,”
in Proc. of ICC 2016, pp. 1–6, Jun. 2016.

[26] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

8

[27] K. Han et al., “Leveraging protocol-oblivious forwarding (POF) to
realize NFV-assisted mobility management,” inProc. of GLOBECOM
2017, pp. 1–6, Dec. 2017.

[28] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proc. of USENIX NSDI 2015, pp. 117–130, May 2015.

[29] L. Molnar et al., “Dataplane specialization for high-performance Open-
Flow software switching,” inProc. of ACM SIGCOMM 2016, pp. 539–
552, Aug. 2016.

[30] M. Shahbazet al., “PISCES: A programmable, protocol-independent
software switch,” inProc. of ACM SIGCOMM 2016, pp. 525–538, Aug.
2016.

[31] DPDK: Data Plane Development Kit. [Online]. Available: http:
//dpdk.org/

[32] H. Chen and T. Benson, “The case for making tight controlplane latency
guarantees in SDN switches,” inProc. of ACM SOSR 2017, pp. 150–156,
Apr. 2017.

