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Abstract This paper demonstrates a knowledge-based autonomous service provisioning framework for multi-
domain SD-EONs supported by a broker plane equipped with a deep-learning based traffic estimator. Simulation
results show that the proposed framework achieves ∼ 91% traffic prediction accuracy and ∼ 9× blocking reduction
compared to conventional solutions.

Introduction

Rapid growths of cloud-driven applications and ex-
pansion of datacenter networks are driving the demand
for advanced networking architectures that support
high-capacity and high quality-of-transmission (QoT)
guaranteed services across multiple domains end to
end. Among the emerging network paradigms, the re-
cently developed multi-domain software-defined elas-
tic optical networking (SD-EON)1 technologies are
known to be able to support flexible and high-capacity
inter-domain services with enhanced service reaches.
Recent publications reported routing, modulation and
spectrum assignment (RMSA) algorithms based on ei-
ther flat2 or hierarchical3 control plane architectures to
enable multi-domain SD-EONs with improved network
throughput. However, all these existing solutions con-
sider only fixed service provisioning strategies regard-
less of changing network capacity demands, possibly
leading to poor and ineffective utilization of network re-
sources. On the other hand, recent breakthroughs in
deep learning offer an opportunity for network oper-
ators to intelligently manage their networks using big
data analytics4,5.

In this paper, we propose a deep learning
knowledge-based autonomous service provisioning
framework for broker-based multi-domain SD-EONs. A
deep neural network (DNN) based traffic estimator as
well as an inter-domain RMSA approach that can per-
form autonomous traffic engineering according to the
obtained knowledge (i.e., predicted traffic) are devel-
oped for the framework. Numerical results indicate that
high accuracy in traffic prediction and effective reduc-
tions in blocking rates can be achieved.

Autonomous Service Provisioning Framework

Fig. 1 shows the designed block diagram of a broker-
based multi-domain SD-EON for enabling knowledge-
based autonomous service provisioning. Conceptu-
ally, the multi-domain SD-EON employs a hierarchical
control and management architecture, where a broker
plane lies above the domain manager plane to coor-
dinate cross-domain resource configurations. In addi-
tion to performing data monitoring and analytics for the
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Fig. 1: Broker-based multi-domain SD-EON architecture en-
abling knowledge-based autonomous service provisioning.

intra-domain management, each domain manager also
abstracts the monitored data for the broker to enable
a network-wide coordination and service provisioning
based on the observe-analyze-act cycle4. Specifically,
by collecting and archiving the inter-domain lightpath
request data over time, the broker can analyze the in-
herent rules and correlations lying in the multi-domain
traffic (i.e., knowledge) and conduct real-time traffic
matrix estimations accordingly. Autonomous traffic en-
gineering (e.g., load balancing), thus can be achieved.
For instance, in Fig. 3, if the broker perceives the po-
tential burst traffic from D3 to D1 and D3 to D4 after
observing the lightpath request from D6 to D3 (e.g., for
collaborative computing applications), it may make cur-
rent requests bypass the links inter-connecting these
domains to avoid generating bottlenecks on them. Note
that, with proper data modeling and acquisition, the
proposed architecture can support variants of other au-
tonomous services, such as QoT-aware path reconfig-
uration, anomaly detection, failure recoveries.

Deep Learning based Traffic Estimator

We take advantage of deep learning architectures re-
lating to pattern recognition and adopt a DNN-based
traffic estimator (as shown in Fig. 2) for the bro-
ker. Let G = {Dm} denote the multi-domain SD-EON,
the input of the DNN can be represented by Φt0 =
{

λ t
m,n,∀Dm,Dn ∈ G, t ∈ [t0−TI , t0−1]

}

, where λ t
m,n is the

traffic demand from domain Dm to domain Dn at time t
and TI is the size of the input time window (i.e., the num-
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Fig. 2: DNN-based traffic estimator.

ber of nodes in the input layer is TI |G|(|G|−1)). Each
node j in layer i(i > 1) takes the values from its lower
layer (layer i−1) as input and calculates its output as,

hi, j = f
(

wT
(i−1, j)h(i−1)+b

)

, (1)

where f (·) is the activation function and w(i−1, j) is a
weight vector for edges from all the nodes in layer i−1
to node j. Therefore, each layer is a higher-level rep-
resentation of the initial input data and by using such
multiple hidden-layer representations, the DNN is ex-
pected to extract the most useful features, e.g., the
spatial and temporal correlations of the inter-domain
traffic. Finally, the top layer leverages the learned fea-
tures and performs a regression task to predict Θt0 =
{

λ t
m,n,∀Dm,Dn ∈ G, t ∈ [t0, t0+TO −1]

}

. Once the DNN
structure is determined, we can train the DNN by iter-
atively adjusting the values of w using the back prop-
agation algorithm to minimize the difference between
the predicted results and the real labels. Here, we
can also include other attributes such as, bandwidth
requirements and service durations of the lightpath re-
quests, in order to build a more advanced and complete
learning structure.

Inter-Domain RMSA Design
Based on the developed traffic estimator, we design

an inter-domain RMSA algorithm (namely, RMSA-DL)
that can enable the broker intelligently steering multi-
domain traffic to enhance the network throughput. Al-
gorithm 1 shows the principle of RMSA-DL. At each
operation time, we first update the input of the traf-
fic estimator to generate new predicted traffic matrixes
(Line 2). Then, for each pending inter-domain lightpath
request, the broker collects virtual links from domain
managers to construct a mesh-based topology abstrac-
tion3 for the multi-domain SD-EON in Line 4. Phys-
ically, virtual links refer to the path segments from the
source node to domain border nodes, from domain bor-
ders to the destination node and between domain bor-
der nodes for source, destination and intermediate do-
mains, respectively. Line 5 calculates k shortest paths
in the virtual topology for the request, and Lines 6-
10 count the spectrum utilization and predicted traf-
fic on the inter-domain links traversed by each candi-
date path. Finally, the broker selects the path by jointly

Fig. 3: Six-domain topology used in the simulations.
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Fig. 4: Basic traffic model for synthetic data generation.

minimizing these two metrics and performs modulation
and spectrum allocations accordingly with the first-fit
principle (Lines 11-12). Here, U0 and V0 are for nor-
malization, and we use the exponential operation over
Vp
V0

−β to nonlinearly scale the weight of predicted traf-
fic, i.e., predicted traffic dominates the path selection
when heavy traffic load is anticipated (Vp

V0
≫ β ), and

vice-versa.

Algorithm 1: Principle of RMSA-DL
1 for each operation time t0 do
2 predict Θt0 ;
3 for each pending inter-domain lightpath request do
4 build a mesh-based virtual topology G′ ;
5 calculate k shortest paths in G′ ;
6 for each candidate path p do
7 store inter-domain links on p in L;
8 calculate Up as total spectrum usage on L;
9 calculate Vp as total predicted traffic on L;

10 end

11 calculate ωp =
Up
U0

+α

(

Vp
V0

−β
)

,∀p;

12 set up lightpath p∗ = argmin
p

{

ωp
}

with the first-fit modulation and

spectrum allocation scheme;
13 end
14 end

Simulation Results
We evaluate the performance of the proposed frame-

work with extensive simulations using the six-domain
topology in Fig. 3. Synthetic traffic model is mea-
sured in the simulations. Specifically, each domain
Dm is associated with a basic traffic model πm (t) =
π0 (t −∆tm), in which π0(t) is depicted by Fig. 4 and
∆tm ∈ [0,0,4,4,8,8] hours is the time offset. Then,
given the distance d (number of intermediate domains)
among domains, the traffic model for each domain pair
(Dm,Dn) is obtained as,

ψm,n (t) =∑
Dl

πl (t)η l
m,nρ−(dl,m+dl,n)/2, (2)

with ρ equal to 11/10and η l
m,n equal to 1/15 (l 6=m,n) or

3/5 (otherwise). The idea behind this linear combina-
tion is to build a highly correlated and distance depen-
dent multi-domain traffic model in the absence of real
traffic traces.
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Fig. 5: Comparison between predicted and observed loads
(γ = 1), (a) from D1 to D2 and (b) from D3 to D6.

Tab. 1: Average prediction accuracy.
Traffic Scenario (γ) 0.4 0.5 0.6 0.7
Prediction Accuracy 88.62% 89.89% 90.73% 91.42%
Traffic Scenario (γ) 0.8 0.9 1.0
Prediction Accuracy 91.92% 92.49% 92.89%

We first evaluate the prediction accuracy of the pro-
posed traffic estimator under different traffic scenarios
by scaling ψm,n (t) with a ratio γ ranging from 0.4 to
1. For each scenario, 100000and 5000data points to-
gether with the corresponding labels are generated for
training and testing respectively, where each data point
(i.e., Φt0) and label (i.e., Θt0) follow a Poisson process
with the mean values taken from ψm,n (t). TI and TO

are set to be 10 and 4, and hence the input and output
layers consist of 300 and 120 nodes, respectively. We
implement a DNN consisting of 4 hidden layers, which
each has a dimension of 100 nodes. Each node in the
hidden layers adopts f1(x) = max(x,0) as the activation
function while the output layer applies f2(x) = x. Fig. 5
shows two snapshots for the comparison between pre-
dicted and observed loads over the testing data when
γ = 1. We observe that the DNN can perfectly predict
the trends of the traffic loads between domains. Ta-
ble 1 summarizes the results on average prediction ac-
curacy for different traffic scenarios, which is defined

as 1−
(
∣

∣

∣
λ̃ t

m,n −λ t
m,n

∣

∣

∣
/λ t

m,n

)

. It can be seen that the pre-

diction accuracy increases with γ and larger than 90%
accuracy is achieved for most of the cases. The ra-
tionale behind this observation is that the actual traf-
fic at each time point is generated through a Poisson
model, and therefore, the produced random deviations
are more significant when the mean values are rela-
tively small.

Next, we conduct dynamic multi-domain lightpath
provisioning simulations to compare the performance
of the designed RMSA-DL algorithm with that of RMSA-
KSP-FF, which performs Lines 4-5 of Algorithm 1 but
provisions the first available path candidate for each
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Fig. 6: Blocking Probability.

request. The modulation and spectrum allocation
schemes from the two algorithms are the same. We as-
sume that each fiber link in the multi-domain SD-EON
can accommodate 358 frequency slots with a channel
bandwidth of 12.5 GHz, and each domain border node
is equipped with 50optical-electrical-optical converters.
The dynamic inter-domain lightpath requests are gen-
erated according to the aforementioned traffic model,
with the demanded transmission rate distributed within
[25,250] Gb/s and the average service duration being
20 time points. For RMSA-DL, α, β , U0 and V0 are set
as 20, 0.5, 358 and 3500, respectively. Moreover, we
generate intra-domain lightpath requests for each do-
main with a proportion of intra-domain traffic to inter-
domain traffic being 0.4. Fig. 6 plots the results on
blocking probability for inter-domain traffic from the two
algorithms, and we can see that RMSA-DL effectively
improves the network throughput. The advantage of
RMSA-DL reduces when γ increases, especially when
γ ≥ 0.8, due to the fact that the network already gets
saturated.

Conclusions
In this paper, we proposed a knowledge-based au-

tonomous service provisioning framework enabled by
a DNN-based traffic estimator for broker-based multi-
domain SD-EONs. Simulation results verified the fea-
sibility of the proposed framework for RMSA, demon-
strating ∼ 91% traffic prediction accuracy and ∼ 9×
blocking reduction for inter-domain traffic compared to
RMSA solutions without deep learning (i.e., RMSA-
KSP-FF).
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