Source Routing with Protocol-oblivious Forwarding
(POF) to Enable Efficient e-Health Data Transfers

Shengru Li, Daoyun Hu, Wenjian Fang, Zuging Zhu
School of Information Science and Technology,
University of Science and Technology of China, Hefei, China
TEmail: {zqzhy @ieee.org

Abstract—It has already been confirmed that software-defined
networking (SDN) can make the networks more programmable,
adaptive and application aware. However, due to the largeesle
and geographically-distributed nature of wide-area netwaks
(WAN), the scalability could become a critical issue if we
incorporate SDN for WANs (i.e, realizing SD-WANS). In this
paper, we design and implement a novel network system that ca
leverage source routing with the protocol-oblivious forwading
(POF) to facilitate efficient e-Health data transfers with low
setup latency. We develop the POF-based source routing pratol
to realize a pipeline based packet processing procedure, i
can replace the table-lookup based approach in traditionalSDN
networks and make the forwarding plane more efficient. The
proposed scheme is demonstrated experimentally, and thegelts
verify that with it, the flow-tables installed in each core svitches
in a POF-controlled SD-WAN can be minimized and the path
setup latency of traffic flows can be reduced significantly as aill.

Index Terms—Software-defined network (SDN), Wide area
network (WAN), Protocol-oblivious forwarding (POF)

I. INTRODUCTION

the next-generation Internet due to the fact that it decesipl
control and forwarding planes of a network and leverages
centralized NC&M to make it more programmable, adaptive
and application-aware [10]. Thanks to the advances on SDN,
the Big Data related traffic can be managed more efficiently
in WANs. However, due to the large-scale and geographically
distributed nature of WANS, the scalability could become a
critical issue when incorporating SDN for WANs. Specifigall
when the traffic volume increases, more and more flow-tables
will be installed in the switches, which can use up their
memory, make the table look-up and traffic scheduling in-
creasingly complex, and increase the communication oeerhe
significantly.

Unfortunately, the aforementioned issue cannot be ad-
dressed properly with the initial implementation of SD,,
OpenFlow [15]. This is because OpenFlow defines protocol-
dependent flow-matching rules, which can lead to repeated
flow-table installations and look-ups in the forwardingns#a
In an OpenFlow-controlled WAN, the interactions between th

Nowadays, the fast development of data-intensive appdwitches and OpenFlow controller need to bear a relatively

cations, such as e-Health, e-Science, e-commestte,has

long communication latency, which is due to the physical

brought us into the Big Data era [1]. It is known thatistance between them and intrinsic. Hence, when setting up
certain Big Data applications may generate huge volumadlow by configuring the flow-table on each switch along the
of data, which needs to be transferred over wide-area nptth, the hop-by-hop operation can cause a long setup delay.
works (WANSs) for timely processing. For instance, in a teleNote that, this is especially unwanted for the delay-sesmsit
medicine network, the health-monitoring devices worn by erHealth data transfers that usually operate as mice flo@]s [1
large population of subscribers can contribute a fair arhoun On the other hand, the increasing volume of flow-tables
of traffic for real-time processing [2, 3]. As the subscriercould be another killing factor for the software-defined WAN
usually locate in a geographically dispersed manner, itldvous (SD-WANS). Specifically, due to its user population, an
be challenging to transfer the data to the processing m¢sjuleOpenFlow-controlled SD-WAN usually needs to deploy a

with low latency. Hence, both flexible architecture and @ffi¢

huge number of flows [17], each of which may require to

protocols are required to achieve flexible traffic engiregeri install a flow-table on all the switches along the routinghpat
in WANS, especially when cloud-based data gathering a@bnsequently, the switches’ memory space for flow-tables

processing are needed [4-9].

can vanish quickly [18]. Further more, as pointed out by

Today’s WAN architecture uses distributed traffic engineefl0], most of the commercially-available OpenFlow-endble
ing mechanisms to reduce bandwidth congestion, but it hasitches cannot achieve a processing throughput of more tha
been proven to be inefficient due to the close coupling 660 Flow_Mods per second.
the control and forwarding planes of the network [10]. In In order to address the issues of OpenFlow mentioned
order to support Big Data applications more efficiently, WANabove, recent researches have considered to enhance the pro
also need a more programmable and adaptive architecture vgtammability and flexibility of SDN forwarding plane, with
effective network control and management (NC&M), which ithe protocol-oblivious forwarding (POF) technology [19] o

similar to the innovation trends in other types of networkis{

the programming protocol-independent packet processals (

14]. Recently, software-defined networking (SDN) has be¢R0]. The basic ideas behind POF and P4 are similar,
proposed as a break-through technology that is promising foying to decouple network protocols from the forwarding

procedure in SDN-enabled switches and make the forwarditihge packet to its destination. Hence, multiple flows caneshar
plane reconfigurable, programmable and future-proof. Motiee same flow-table in a core switch, if their forwarding et
specifically, POF develops a protocol-independent infitac use the same output port. Nevertheless, the proposed source
set that allows to express much more flexible packet prmuting approach is still protocol-dependent, which mahas
cessing than the current OpenFlow specifications [21, 2#e definition of the output port related matching fields rseed
while P4 mainly focuses on designing a high-level netwotio comply with the existing protocols and cannot be adjusted
programming language for protocol innovations. Note thadaptively for each network. Moreover, with this approdhb,
both approaches have attracted noticeable interests fnem volume of flow-table entries in each core switch still depend
open networking foundation (ONF), and are considered in i® the maximum number of output ports on a switch. We
project on protocol-independent forwarding (PIF) [23]. believe that this is still sub-optimal, and as we will shoteta

In this paper, we design and implement a novel netwoik this paper, the volume of flow-table entries can be further
system that can leverage source routing with POF to famglitareduced with a POF-based approach.
efficient e-Health data transfers with low setup latency. We

. . 1. POF PRIMER

develop the POF-based source routing protocol, and experi-
mentally demonstrate that with the proposed scheme, the flow This section briefly reviews the operation principle of POF
tables installed in each core switches in a POF-controlléfd its flow instruction set (POF-FIS) to provide a context
SD-WAN can be minimized. Our experimental results als@r the rest of the article. Basically, POF inherits the ratw
indicate that the setup latency of the traffic flows can I chitecture of OpenFlow,e., a centralized controller resides
reduced significantly. The rest of the paper is organized #s the control plane to manage the forwarding behaviors
follows. Section Il provides a brief survey on the relatedkvo ©f the switches in the forwarding plane with flow-tables.
The operation principle of POF is introduced in Section l1ifowever, the innovations provided by POF are the protocol-
Then, we describe our design of POF-based source routingfivious description for flow-matching fields and a set of
Section IV, and the experimental demonstrations are digcis9eneric flow instructions, with which protocol-indepentien
in Section V. Finally, Section VI summarizes the paper. Packet forwarding can be realized easily in the switches.

Flow Table 2
Fields
Fields

II. RELATED WORK

Field { Flow Table 0
offset; —jeFields
length; Fields

Instructions Instructions

A
£
%
7

In order to address the performance issues of SD-WANS,
people have proposed a few approaches. The authors of [24 ’{
proposed the scheme of HyperFlow, which utilizes a logycall !
centralized but physically distributed control plane thhance :
the performance of OpenFlow-enabled SDN networks. In the :

Pacl;e(Process :
T

Instructions Instructions

J‘?@

Flow Table 1
Fields
Fields

Instructions

Instructions

I

same direction, Dixiet al. [25] designed and implemented an L Proc
elastic architecture to coordinate distributed SDN cdlers \
for reducing the setup latency in SD-WANs. However, it is
known that in order to keep the network status consistent
among the distributed controllers, complicated synclratin
scenarios have to be implemented [26], while the approache&ig. 1 shows the packet forwarding procedure used in POF
mentioned above did not address the increased operatiohitches. Specifically, the switches use a sequence of igener
complexity due to the status synchronization. Therefdre, tkey assembly and table lookup instructions to accomplish
efficiency of NC&M would be impacted. packet parsing and flow matching. The key concepts regarding
On the other hand, researchers have also consideredPfdF are explained as follows.

| |
eader 0 ‘ [Header 2 ‘

Header 1 Payload ‘

Fig. 1. Packet forwarding procedure in POF switches.

reduce the interactions between the control and forwardinge
planes. In [27], an architecture named as KeyFlow was pro-
posed, which leverages a residue numeral system (RNS) to
make a forwarding device flow-stateless. Nevertheless, the
approach requires each switch to equip the special reminder
operation in its hardware, and moreover, the network archi-
tecture can hardly adapt to dynamic topology changes. Thes
authors of [28] considered the OpenFlow-based sourcenguti
approach. Specifically, in each packet, the scheme enedpsul

a series of output ports in one or more header fields supported
by OpenFlow €.g, VLAN header, MPLS label,etg, to
represent the routing path and the forwarding action on each
hop along it. Then, on the routing path, each OpenFlow switch
will extract its forwarding action in sequende(, matching to

the corresponding field that contains its output port) t@atir

Matching Fields: POF simply defines the search key of
a matching field as a tupleoffset, length-. Here,offset
indicates the start-location of the field in a packieg.(
how many bits the packet process pointer should skip
from the beginning of the packet to locate the field), while
lengthtells the field's length in bits [19].

POF-FIS: All the instructions in POF-FIS utilize the
tuple <offset, lengtb- to locate the data that they need
to operate on [21]. This provides us the freedom to
manipulate any bit(s) in packets at will, which is far more
flexible than the scheme in OpenFlow. For instance, in
the latest OpenFlow switch specificationse(version
1.5 [15]), thepushaction is still protocol-specific and
multiple actions have to be defined for each legacy
protocol €.g, pushMPLS, pushPBB, andpushVLAN).

However, all thesgushactions can be realized with oneheader fields are inserted in between Ethernet header and IP
generic instruction in POF, which iadd-field Specifi- header. Moreover, after inserting the new fields, we modhéy t
cally, by usingadd-field we can insert any field at anytypefield in Ethernet header to “0x0908” to indicate that the
position in a packet. POF-FIS even includesadculate- Ethernet frame contains a POF-based source routing packet.
field instruction to provide the support on arithmetic and@he detailed descriptions on the new fields are as follows.
logical operations. o Time-to-Live (TTL) This field occupiess bits and indi-

« Flow Tables The flow tables stored in a POF-enabled cates the remaining hops for the packet to travel to its
switch can be classified into four types., the masked- destination in the POF-based SD-WAN. Therefore, the
match (MM) table, the longest-prefix-match (LPM) table, value of this field will be set at the ingress edge switch,
the extract-match (EM) table, and the direct table (DT). and in each subsequent switch, its value is decreased by

These types of tables occupy different memory sizes and
can be searched with various table lookup algorithms.
Note that, a flow entry in all the tables consists of both
matching field(s) and related instruction(s), except for ,
DT, whose flow entries only include instructions. By
leveraging these tables, the forwarding procedure in a
POF-enabled switch can be abstracted as a data-path
pipeline, and hence the network programmability and
flexibility can be improved significantly.

1. When the packet is about to leave the POF-based SD-
WAN, the egress edge switch remove it by applying the
del-field instruction.

Port: This field occupies2 bitst, and its value identifies

an output port on a POF-enabled switch. Note that, a
source routing packet can contain multiftert fields to
represent the forwarding path, and all the fields form a
Port stack. Each switch pops the fiRort field (i.e., with
<offset=120 bits, length=32 bits) from thePort stack to

o Metadata Memory: When a switch needs to handle mul-
tiple tables in packet forwarding, it uses metadata mem- the value of thePort field to the metadata memory and
ory to store the flow information that the current table removing the field from the packsite. with the write-

processing generated for the next. POF-FIS defines three data-from-packeaind del-field instructions, respectively.
metadata-related instructionise(, write-metadatawrite-

metadata-from-packetaind set-field-from-metadaja

IV. POF-BASED SOURCEROUTING IN SD-WANS

In this section, we explain the proposed POF-based sourct [Tt Pot1 [Ptz | .| PN |
routing for SD-WANSs, and describe both the network ar- Ofetiis 08 40 72
chitecture and the forwarding procedure used by the POF+,
enabled switches. Fig. 2 shows the network architecture of
a POF-based SD-WAN, which consists of a centralized POF
controller, and core and edge switches. Note that, the eddeProcedure for Source Routing based Packet Processing
switches work as the gateways to peer networks, while theFigs. 4 and 5 show the principle and detailed procedure of
core switches focus on packet forwarding inside the SD-WAROF-based source routing, respectively. When the firstgtack

of a flow arrives at an ingress edge switch, it triggePaaket-

find the output port for the packet. This is done by writing

l Ethernet[Source Routing Header [IP [Data l

g. 3. Packet header format designed for POF-based sooutieg.

“[F POF Controller
a
DY AR

22\ Ve T~
-

o2
ETETE\ _ Edg Switch

"_Data center

Edge Switch

e 7C/ampu; Y
“_ Network |

In message to be sent to the POF controller, since there is no
flow entries to match against. Upon receiving thacket-In
message, the controller calculates a routing path for thve flo
and sends &low-Mod message to the ingress edge switch,
which encodes the designated output port to use on eachswitc
along the path. The ingress edge switch stores the outptsgt por

ige Switch

in its metadata memory, and will insert them into every packe
of the flow by using POF-FIS. The subsequent core switches
use a pre-installed pipeline-like matching rule that csissi

of multiple flow tables to process the packets, which will be
explained in detail in Fig. 6. Note that, since the forwagdin
path is encoded in each packet, the core switches do not need
A. Packet Design for Source Routing to have any interactions with the controller, and hence the

Thanks to the protocol-independent nature of POF, thegtup latency is reduced significantly.
is no need to reuse the header fields in legacy protocols®OF-FIS enable a lot of functions for the POF-enabled
(e.g, VLAN and MPLS). Basically, the packet fields carswitches, and thus by leveraging it, we can reduce the pro-
be tailored specially to enable efficient source routingteHe cessing burden on the controller and use source routing to
the fields are still designed to store the path Informatlon’lThe length of the field is determined according to Ruet-ID defined for

and Fig. 3 descr”?es the p_r(_)posed packet format_ for POBGF-enabled switches [29], as we encode Foet-ID of an output port in
based source routing. Specifically, the source routingeela this field.

Core Switch
POF-based WAN

&9 POF Switch

Network architecture.

Fig. 2.

" POF Controller Ingress
PR |

./ N
7NN Table 0 (MM)
Z :
/ ~
b 5 / : S~ Match Instructions POF Switch
-2 ~
~
— A} {96b,16b}==0x0908 | goto-direct-table: Table 1
1 % |
Ay)
Edge Switch Core Switch Core Switch Edge’Switch o

Table 1 (DT
POF-based WAN ()
[IPacket Instructions Wme*"eta
[]Source Routing Header write-medadata-from-packet: = = =~ 3‘3’9%
[0b,32b]=={120b, 32b}; ~ Ooge,
goto-table: Table 2 N et

Fig. 4. Operational principle of POF-based source routing.

l'— Metadata Memory

Port Buffer [0b, 32b]

Table 2 (MM) k
make the data-path much more intelligent. Before explginin Match Instructions /’

. . . . - Hield< ,40b>; -
the detailed packet forwarding procedure in the switches, w (120 8br=t | eta<oab, 1665 |« = =

output: port_id=[0b,32b];

introduce several notations to assist the description.
« <offset, length-: the field starting fronoffsetwith length

{112b,8b}==" del—field<12.0b, 32b>;
output: port_id=[0b,32b];

bits. Egress
. {offset, length: the value of the field determined with
<offset, lengtb- in a packet. Fig. 6. Procedure used to process the flow tables in corelssitfor source

. [offset, length the value of the field determined withrouting.
<offset, lengtb- in the metadata memory.

| value of theTTL field equals 1, the switch is the last

hop of this packet and it invokes ttiel-field instruction
to delete the whole source routing related fields in the
- - packet and restore thgpe field in the Ethernet header
e o to its original value €.g, 0x0800 for an IPv4 packet).
rite the Port- ther packet . . .

o Metadata processing Otherwise, the switch only removes tiRert field for

Jush souco | | Send Pecket a this hop. Theoutputinstruction is then used to forward

< the packet to its designated output padre. using the

Table miss

Table lookup;

Match

Port-ID stored in the metadata memory).

Pop source
routing header

Edge Switch p—— Finally, we can see that the overall processing in each
output port Core Switch switch behaves like a software program, which verifies the
i programmability of POF. Specifically, the processing on the

flow tables can be considered as functions, whose inputs and
Fig. 5. Procedures used by edge and core switches for sooutieg. outputs are the fields in the packet and the processed packet,
respectively. The metadata memory provides the support on
Fig. 6 shows the proposed procedure used to process saging information in temporary variables. The proposes pr
flow tables in a core switch for source routing. We use threedure makes the switches work as a stand-alone entity for
flow tables, including two MM tables and one DT table, tgacket processing and minimizes the interactions between t
realize the overall source routing functionality as follow control and forwarding planes. Furthermore, the number of
« The source routing packet arrives at the switch first gofgW tables installed on each core switch is fixed3asvhich
to Table 0, which includes an entry to check ttype IS @ small constant and does not depends on the maximum
field in its Ethernet header.e, with <offset, length- Number of output ports on the switches any more. Therefore,
equals<96 bits, 16 bits-. If its value equals 0x0908, we compared with the OpenFlow-based source routing scheme in
determines that it is a source routing packet and shoufBl: our proposed POF-based scheme consumes less memory
be sent to Table 1. on the switches and requires less communication overhead
. Table 1 is a DT, and the entries in it only includ€tween the controller and switches.
instructions, as shown in Fig. 6. Here, the switch executes

the write-metadata-from-packenstruction to copy the V. EXPERIMENTAL DEMONSTRATION
value at<120 bits, 32 bits- (i.e., thePort field to encode
the output port for this hop) to its metadata memory. In this section, we describe our proof-of-concept demon-

o Table 2 includes two entries that are used to determistration to verify the functionality of the proposed PORé&da
whether the switch is the packet’s last hop. Specificallgpurce routing scheme, and evaluates its performancenrster
it checks theTTL field (i.e, <112 bits, 8 bits). If the of path setup latency.

A. Experiments for Functionality Verification convert the packets to source routing ones by encoding the

We first build a POF-based network testbed to verifutput port information in them.
the functionality of the proposed POF-based source routingFig- 8(a) shows the ICMP packets captured on edge switch
scheme. The testbed consists of several software-based P&F ThelCMP_Requespacket enters the switch from Ethernet
enabled switches, which are realized by modifying the opeffierfaceethl and its designated output port & is eth2
source POFSwitch [29] and run its instances on stand-alof#e observe that the packet is converted to a source routing
high-performance Linux servers. We also extend the PCQE. in which theypefield in its Ethernet header is changed
platform [30] to develop a POF controller and also runs it ofp ‘0x0908”. Meanwhile, we notice that the packet's length
a Linux server. Fig. 7 shows the configuration of the testbécreases fromss Bytes to111 Bytes, which also confirms
for functionality verification, which possesses a line togy that oneTTL field (1 Bytes) and threéort fields (12 Bytes)
including 4 POF-enabled switch,e., two core switches and are inserted into the packet. THEMP_Reply packet from
two edge switches. Each edge switch connects to an IPv4 h&@st 2 to Host 1 travels in the opposite direction of the
We sendlCMP_Requespackets fromHost 1 to Host 2, and ICMP_Requestpacket. By looking at theype field in its

capture the packets in the POF-based network with Wireshafihernet header, we can also see that the packet is conterted
a source routing one at the edge switch. Meanwhile, ditast

<o 50F Controller 2 senddCMP_Replyto Host 1 to respond tdCMP_Request
o we can verify that the egress edge switch of tB®IP_Request
packet {.e. S;) does restore it to a common IPv4 packet.

Fig. 8(b) shows the ICMP packet captured at the Ethernet

NIC_Name (Port_ID)

POFSwitch

Png 10002 2 interfaceeth4of core switchS;. We observe that after passing
— % one hop, the firstPort field in the source routing header
e eth1

Host 1
10.0.0.1/24

Host 2 has been removed and the value of fhiEL field has been
10002 decreased by. The results in Fig. 8(b) indicate that by using
the packet processing procedure in Fig. 6, the core switoh ca
forward the source routing packets to the designated output
ports successfully.

Fig. 7.

Experimental testbed.

An ICMP_Requestpacket first arrives at edge switc$,
where it finds tﬂat trtf()are is no match rules cognfigured for P Path Setup Latency
Then, S; sends aPacket-Inmessage to the POF controller to To evaluate the proposed POF-based source routing scheme
ask for the forwarding policy. The POF controller handles tHurther,i.e,, without being restricted by the network elements
Packet-Inmessage, calculates a path together with the outghat we have, we modify Mininet [31] to support POFSwitch.
ports on each hop along it, and instructs edge swighto Then, we emulate the topology in Fig. 7 with Mininet and
increase the number of core switches in the setup to evaluate
the system’s performance on path setup latency. Specyficall
each experiment in Mininet, we emulate different numbers of
core switches and measure the path setup latency ffost 1
to Host 2 Note that, to emulate the situation in a practical SD-
WAN, we also generate background traffic in the network. We
use OpenFlow as the benchmark for performance comparison.

Fig. 9 shows the results on path setup latency. We can see
that our proposed POF-based source routing scheme achieves

‘ ICMP_Request packet w/ source routing header ‘

No. Time -+ Source

4 2.016600000 10.0.0.1

70:€2:84:08:75:74
7 2.018359000 70:e2:84:08:8a:f3 70:e2:84:08:75:74 0x0908
S 2.018622000 10.0.0.2 10.0.0.1 IcMP

Destination Protocol Le I Info
10.0.0.2 ICMP 98 Echo (ping) request

111 Ethernet II
103 Ethernet IT
98 Echo [(ping) reply

P Frame 6: 111 bytes on wire (888 bits), 111 bytes captured (888 bits) on interface 1
»Ethernet II, Src: 70:e2:84:08:75:74 (70:e2:84:08:75:74), Dst: 70:e2:84:08:§a:f3 (70:e2:84:¢
wData (97 bytes)
Data: 030000000300000007000000034500005495da4000.
[Length: 97]

ICMP_Reply packet w/ source routing header ‘
Eth Type TTL Ports

0000 70 e2 84 08 8a f3 70 e2

84 08 75 74

0010 _00 00 03]00 00 00 07] 00

00_00 OE 45 00 00 54 95

0020 da 40 00 40 Ol 90 cc Oa
0030 00 35 6f 11 82 00 03 6b
0040 S9 02 00 0O 00 00 00 10
0050 19 la 1b 1c 1d le 1f 20
0060 29 2a 2b 2c 2d 2e 2f 30

00 00 01 Oa 0O 0O 02 08
89 1b 56 00 00 00 00 69
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37

Pevenp.

Loutll
P S 8

much shorter path setup latency than the traditional scheme
with OpenFlow. Moreover, it can be observed that the path
setup latency from our proposed scheme does not increase

with the number of switches on forwarding path, while for
OpenFlow, the latency does increase significantly. Thieebs
vation is crucial to verify that our proposed scheme can fit
into the background of large-scale WANSs better.

The reason why the POF-based source routing can achieve
these advantages is two-fold. Firstly, since the contraltees
not have an unlimited processing capacity, it could be a#tdr
if there are a lot oPacket-Inmessages for new flows and it has
to respond by sendinglow-mod messages to all the switch
on the forwarding paths. Apparently, this would not be an
issue in our proposed scheme, since the controller onlysneed
to configure the edge switches for path setup and does not

(a) ICMP packets captured on edge POF switches.

No. Time Source Destination Protocol Lengtt Info

107 Ethernet II

»Frame 3: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface 0
»Ethernet II, Src: 70:e2:84:08:75:74 (70:e2:84:08:75:74), Dst: 70:e2:84:08:8a:f3 (70:e2:84:08:8a:f3)
wData (93 bytes)

Data: 02000000070000000345000054 1c

Length: 93
[Leng] Eth Type 7T Ports

0000 70 e2 84 08 8a f3 70 e2 84 08 75 7400 08[02|[00_ p..
0010 100 00 07 45 00 00 54 62 32 40 00 40 ...
0020 01 c4 68 0a 00 00 Ol Oa 00 00 02 08 00 74 ce 11
0030 97 00 02 44 8c 1b 56 00 00 00 00 4b e3 07 00 00
0040 00 00 00 10 11 12 13 14 15 16 17 18 19 1a 1b lc ..
0050 1d le 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c ... !"#$ %&' ()M,
0080 2d 2e 2f 30 31 32 33 34 35 36 37 -./01234 567

(b) ICMP packets captured on core POF switches.

Fig. 8. Wireshark captures to verify POF-based source mguti

have any interaction with the core switches. Specificahg t

160

—©—POF-based Source Routing

| |[—6—OpenFlow

140

s)

m
-
N
o

100

80

60

40} 1

Path Setup Latency (

206

o
©

0 1 1 1 1
3 4 5 6 7 8 9

Number of Switches

Fig. 9. Results on path setup latency.

(4]

(5]

(6]

(7]
(8]

El

[10]
[11]

[12]

(23]

three flow tables shown in Fig. 6 can be pre-installed on each
core switch to process any source routing packets. Secondi§!
in OpenFlow, the forwarding path can only be establisheet aft

the controller has configured all the switches on it, while oy15]

POF-based source routing scheme only needs to configure
the ingress and egress edge switches. Hence, the messag

propagation time can be saved as well.

VI. CONCLUSION

[17]

In this paper, we designed and implemented a novel néits]
work system that could leverage source routing with POF
to facilitate efficient e-Health data transfers with low et [19]
latency. We developed the POF-based source routing protoco
to realize a pipeline based packet processing proceduiehwhtzo]
could replace the table-lookup based approach in tradition
SDN networks and make the forwarding plane more efficierizl]

The proposed scheme was demonstrated experimentally, f’z‘}?
the results verified that with it, the flow-tables installed i

each core switches in a POF-controlled SD-WAN could be
minimized and the path setup latency of traffic flows could Hésl
reduced significantly as well.

ACKNOWLEDGMENT

[24]

This work was supported in part by the NSFC Projegts)
61371117, the Fundamental Research Funds for Central Uni-

versities (WK2100060010), Natural Science Research lé’trojé26

for Universities in Anhui (KJ2014ZD38), and the Strategic
Priority Research Program of the CAS (XDA06011202).

[1] P. Lu et al, “Highly-efficient data migration and backup for big data

(2]

(3]

REFERENCES

applications in elastic optical inter-datacenter netwgrkEEE Netw,
vol. 29, pp. 36-42, Sept./Oct. 2015.

O. Diallo, J. Rodrigues, M. Sene, and J. Niu, “Real-timesty process-
ing optimization for cloud-based wireless body area netadrinform.
Sci, vol. 284, pp. 84-94, Nov. 2014.

J. Rodrigues, S. Misra, H. Wang, and Z. Zhu, “Ambient stesl living
communications,JEEE Commun. Mag.ol. 53, pp. 24-25, Jan. 2015.

[27]

(28]

[29]
[30]

(31]

S. Li, Z. Zhu, H. Li, and W. Li, “Efficient and scalable cldeassisted
SVC video streaming through mesh networks,Proc. of ICNC 2012
pp. 944-948, Jan. 2012.

Z. Bai et al, “Experimental demonstration of SVC video streaming
using QoS-aware multi-path routing over integrated ses/iouters,” in
Proc. of ICC 2013 pp. 2276-2280, Jun. 2013.

Z. Zhu, S. Li, and X. Chen, “Design QoS-aware multi-patisioning
strategies for efficient cloud-assisted SVC video stregninheteroge-
neous clients,IEEE Trans. Multimediavol. 15, pp. 758-768, Jun. 2013.
C. Tsai and J. Rodrigues, “Metaheuristic scheduling @oud: A
survey,” [EEE Syst. J.vol. 8, pp. 279-291, Mar. 2014.

P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hydhdloud man-
agement for profit-driven multimedia cloud computingZEE Trans.
Multimedia vol. 17, pp. 1297-1308, Aug. 2015.

N. Xue et al,, “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycastEEE Trans. Multimedia
vol. 17, pp. 1617-1629, Sept. 2015.

D. Kreutz et al,, “Software-defined networking: A comprehensive sur-
vey,” Proc. of the IEEEvol. 103, pp. 14-76, Jan. 2015.

N. McKeown et al, “OpenFlow: Enabling innovation in campus net-
works,” Comput. Commun. Rewol. 38, pp. 69-74, Mar. 2008.

S. Li et al, “Flexible traffic engineering (F-TE): When OpenFlow meets
multi-protocol IP-forwarding,”IEEE Commun. Lettvol. 18, pp. 1699—
1702, Oct. 2014.

W. Lu et al, “Implementation and demonstration of revenue-driven
provisioning for advance reservation requests in Openi€lomtrolled
SD-EONSs,”IEEE Commun. Lettvol. 18, pp. 1727-1730, Oct. 2014.
S. Maet al, “QoS-aware flexible traffic engineering with OpenFlow-
assisted agile IP-forwarding interchanging,” Bmoc. of ICC 2015 pp.
8490-8495, Jun. 2013.

OpenFlow Switch Specifications. [Online]. Available:https:
Ilwww.opennetworking.org/images/stories/downloadis/sesources/
onf-specifications/openflow/openflow- switch-v1.5.0pngidf

8. Shirali-Shahreza and Y. Ganjali, “ReWiFlow: Resgtd wildcard

OpenFlow rules,Comput. Commun. Rewo. 45, pp. 29-35, Sep. 2015.
S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scéilgb of
software-defined networking/EEE Commun. Mag.vol. 51, pp. 136-
141, Feb. 2013.

M. Rifai, D. Lopez-Pacheco, and G. Urvoy-Keller, “Ceargrained
scheduling with software-defined networking switches,” Rmoc. of
SIGCOMM 2015 pp. 95-96, Aug. 2015.

H. Song, “Protocol-oblivious forwarding: Unleash tipewer of SDN
through a future-proof forwarding plane,” iRroc. of ACM HotSDN
2013 pp. 127-132, Aug. 2013.

P. Bosshartt al, “P4: Programming protocol-independent packet pro-
cessors,"Comput. Commun. Rewol. 44, pp. 87-95, Jul. 2014.

J. Yuet al, “Forwarding programming in protocol-oblivious instriget
set,” in Proc. of ICNP 2014pp. 577-582, Oct. 2014.

D. Hu et al, “Design and demonstration of SDN-based flexible flow
converging with protocol-oblivious forwarding (POF),” iRroc. of
GLOBECOM 2015pp. 1-6, Dec. 2015.

OF-PI: A Protocol Independent Layer. [Online].
Available: https://www.opennetworking.org/imagesf&s/downloads/
sdn-resources/white-papers/OF-PA_Protocol IndependentlLayer_
for_OpenFlow.v1-1.pdf

A. Tootoonchian and Y. Ganjali, “Hyperflow: A distrited control plane
for openflow,” in Proc. of INM/WREN 201,0pp. 3-3, Apr. 2010.

A. Dixit et al,, “Towards an elastic distributed SDN controller,” Rroc.
of ACM HotSDN 2013pp. 7-12, Aug. 2013.

] X. Chenet al, “Leveraging master-slave openflow controller arrange-

ment to improve control plane resiliency in SD-EON&pt. Express
vol. 23, pp. 7550-7558, Mar. 2015.

M. Martinello, M. Ribeiro, R. de Oliveira, and R. de Arige Vitoi,
“KeyFlow: a prototype for evolving SDN toward core netwogbfics,”
IEEE Netw, vol. 28, pp. 12-19, Mar. 2014.

S. Jyothi, M. Dong, and P. Godfrey, “Towards a flexibléadeenter fabric
with source routing,” inProc. of ACM SOSR 201pp. 10:1-10:8, Jun.
2015.

POFSwitch Introduction. [Online]. Available: httpwivw.poforwarding.
org/document/POFSwitchntroduction. pdf

POX. [Online]. Available: https://openflow.stanfoediu/display/ONL/
POX+Wiki#POXWiki- InstallingPOX

Mininet. [Online]. Available: http://mininet.org

