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Distributed Online Scheduling and Routing of Multicast-Oriented Tasks
for Profit-Driven Cloud Computing
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Abstract—It is known that to support a few common applica-
tions well, e.g., datacenter (DC) backup, multicast-oriented tasks
need to be handled in inter-DC networks. In this letter, we pro-
pose an approach to schedule and route multicast-oriented tasks
in inter-DC networks with arbitrary topologies. Specifically, we
leverage Lyapunov optimization to develop a distributed online
approach that can maximize the time-average profit with only
local information. Besides, we also design a destination grouping
scheme to address the scalability issue of our proposed approach
and demonstrate that the number of queues in the system can
be reduced significantly. Extensive simulations verify the perfor-
mance of the proposed approaches.

Index Terms—Distributed online scheduling, multicast,
Lyapunov optimization, datacenter, cloud computing.

I. INTRODUCTION

O VER THE past few years, the development of cloud
computing has stimulated rapid deployment of inter-

datacenter (inter-DC) networks to connect geographically dis-
tributed DCs for offering high-quality and reliable services [1].
Meanwhile, we should notice that in order to support a few
common applications well, e.g., DC backup and migration, col-
laborative computing, etc, multicast-oriented tasks need to be
handled in the inter-DC networks. Hence, it would be rele-
vant to study how to schedule and route multicast-oriented tasks
effectively in inter-DC networks.

The routing of multicast-oriented services/tasks in DC-
related networks have been considered in existing work. The
authors of [2] have proposed an efficient and scalable multicast
routing scheme for intra-DC networks. However, the study was
based on the unique topologies of intra-DC networks (e.g., fat
tree) and did not address task scheduling. Meanwhile, without
considering task scheduling, people have investigated the multi-
cast routing and related resource allocation schemes for optical
networks in [3, 4], which can be applied to support inter-DC
communications.

In this letter, we propose an approach to schedule and route
multicast-oriented tasks effectively in inter-DC networks with
arbitrary topologies. Specifically, we leverage Lyapunov opti-
mization to develop a distributed online approach that can
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schedule and route multicast-oriented tasks based on local
information to maximize the time-average profit. Note that, a
similar scenario has been applied to maximize the throughput
of multi-rate multicast in wireless networks in [5]. However,
the authors only considered pre-determined multicast trees,
which makes their proposal not suitable to the dynamic sce-
nario addressed in this work. Hence, as we will show later in
Section V, applying their approach to our problem can result
in sub-optimal results. Besides, we also design a destination
grouping scheme to address the scalability issue of our pro-
posed approach, and demonstrate that the number of queues in
the system can be reduced significantly.

The rest of the letter is organized as follows. Section II
presents the problem formulation. The proposed distributed
online algorithm is described in Section III. Section IV
addresses the scalability issue of our proposal by proposing
the destination grouping scheme, and we evaluate the proposed
algorithms with numerical simulations in Section V. Finally,
Section VI summarizes the letter.

II. PROBLEM FORMULATION

A. System Model

We denote an inter-DC network as G(D,E), where D =
{1, . . . , |D|} is the set of DCs that are interconnected by the
links in set E, as shown in Fig. 1(a). The available bandwidth
on a link (i, j) ∈ E, which is between two adjacent DCs i and
j (i, j ∈ D), is defined as bi, j . In order to optimize the mul-
ticast schemes in the network dynamically, we assume that
the network is a discrete-time system that operates on time-
slots, i.e., the service provisioning scheme in it can be changed
at t = �t, 2�t, . . . , which can be further normalized as
t ∈ {1, 2, . . . }. A multicast-oriented task needs to be deliv-
ered to multiple destination DCs (i.e., denoted with set N) for
processing. Without loss of generality, we assume that in the
inter-DC network, the first |M| DCs can be used as multi-
cast destinations. Hence, the set of possible destination DCs is
M = {1, . . . , |M|}, where we have N ⊆ M ⊆ D.

In each DC i ∈ D, we allocate 2|M| − 1 queues to buffer
all the accepted tasks and categorize them based on their
destination sets [6]. Then, the queue in DC i for the tasks
whose destination sets equal N can be defined as QN

i (t). For
instance, if we assume that |M| = 3 for the inter-DC network
in Fig. 1(a), then we need to allocate 7 queues in DC i for the
multicast-oriented tasks, which are

Q(t) = {Q{1,2,3}
i (t), Q{1,2}

i (t), Q{1,3}
i (t), Q{2,3}

i (t),

Q{1}
i (t), Q{2}

i (t), Q{3}
i (t)}, ∀i ∈ D.
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Fig. 1. Scheduling and routing multicast-oriented tasks in inter-DC networks.

Note that, it is also necessary to sort these queues and assign a
unique index to each of them. Fig. 1(b) illustrates the scheme to
sort the queues and assign indices to them. Basically, the index
of a queue ranges from 1 to 2|M| − 1, and thus we can refer to
a queue QN

i (t) as Qk
i (t), where k ∈ K = {1, . . . , 2|M| − 1} is

its unique index.
At time t , there are Ak

i (t) tasks arriving at the k-th queue in
DC i , and the maximum value of Ak

i (t) is Amax , which is the
upper bound on incoming tasks per unit time. ak

i (t) denotes the
number of accepted tasks to the queue and satisfies

0 ≤ ak
i (t) ≤ Ak

i (t), ∀i ∈ D, k ∈ K. (1)

The time-average expectation of ak
i (t) is ak

i . We introduce
ck

i, j (t) to represent the number of tasks in k-th queue in DC i ,
which will be transferred to DC j . We assume that the data-size
of each task is identical1, as s. Hence, the resulting bandwidth
usage on link (i, j) is

∑
k

ck
i, j (t) · s, which should not exceed the

available bandwidth on link (i, j), namely∑
k

ck
i, j (t) · s ≤ bi, j , ∀i, j ∈ D, ∀(i, j) ∈ E. (2)

If we define the time-average expectation of ck
i, j (t) as ck

i, j , then
the total bandwidth usage on link (i, j) on average is

Ci, j =
∑

k

ck
i, j · s, ∀i, j ∈ D, ∀(i, j) ∈ E. (3)

In order to realize multicast, we need to duplicate a task and
dispatch the copies to its destination DCs. This can be achieved
with the following mechanism. We assume that a task’s des-
tination set is N. Then, at each time t , we try to duplicate the
task and dispatch the copies to a set of queues whose destination
sets do not overlap and have a union of N in the current DC. For
example, we can make two copies of a task in queue Q{1,2,3}

i (t)

and dispatch them to queues Q{1,3}
i (t) and Q{2}

i (t), and in the

mean time, the original task in Q{1,2,3}
i (t) is deleted. Next, the

copies are transferred to their next-hop DC(s) and enqueue in
the corresponding queues. This procedure is repeated until the
copies reach all their destination DCs. Note that, a task will still
be sent out even after reaching one of its destination DCs, if its
destination set has not been fully covered. For instance, at DC
1, a task to DCs {1, 2} will be processed locally and converted
to one targeting to DC 2 at the same time.

1Note that, this assumption would not affect the generality of our model, as
tasks with different data-sizes can be further divided into sub-tasks according
to an identical data-size.

We define a matrix to indicate all the possible task dis-
patching choices of a queue. For the k-th queue, its matrix
is Rk , each row of which represents a dispatching choice and
is denoted as nk , while each of its columns corresponds to a
queue. Supposing there are Nk choices for the k-th queue, we
can determine the size of Rk as Nk × (2|M| − 1). In Rk , the ele-
ment (nk, m) (i.e., on the nk-th row and m-th column) equals 1
if the nk-th choice of task dispatching sends a copy to the m-
th queue, otherwise it is 0. We still use the inter-DC network in
Fig. 1(a) as an example, R1 (i.e., k = 1) is for N = {1, 2, 3} and
we have2

R1 =

⎡
⎢⎢⎣

0, 1, 0, 0, 0, 0, 1
0, 0, 1, 0, 0, 1, 0
0, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 1, 1, 1

⎤
⎥⎥⎦

4×7

.

We then introduce a control variable rk,nk
i (t) to store the num-

ber of tasks in the k-th queue in DC i , which use the nk-th
dispatching choice at time t . Its value satisfies

rk,nk
i (t) ≤ Qk

i (t), ∀i ∈ D, k ∈ K. (4)

And we can model the queue evolution over time as

Qk
i (t + 1) = max

[
max

(
Qk

i (t) −
∑
nk

rk,nk
i (t), 0

)

+
∑
m,nm

rm,nm
i (t) · Rm(nm, k) −

∑
j

ck
i, j (t), 0

⎤
⎦

+
∑

j

ck
j,i (t) + ak

i (t).

(5)

B. Profit-Driven Optimization

We calculate the time-average profit of the whole system as
the margin between the revenue from serving the tasks and the
cost due to the bandwidth usage, which is formulated as

P = α ·
∑
i,k

ak
i −

∑
i, j

βi, j · Ci, j , (6)

where α is the fixed revenue coefficient and βi, j is the cost of
unit bandwidth on link (i, j). Basically, we assume that the
cloud service provider only owns the DCs, while the inter-
DC connections are rented from one or more Internet service
providers. Note that, this is also the case in many multi-DC
cloud systems3. The profit-driven optimization then becomes

Maximize P,

s.t. Eqs. (1)–(4),

Qk
i (t) keeps steady, ∀i ∈ D, k ∈ K.

(7)

2Here, to expedite task processing, we enforce the rule that each multicast-
oriented task has to be divided into those that cover smaller destination sets at
each dispatching, until it becomes a unicast-oriented one. Hence, {1, 2, 3} →
{1, 2, 3} is not considered as a feasible choice in R1.

3Other than the bandwidth usage, there may be other costs incurred by serv-
ing the tasks. As long as the costs are linear terms, they can fit into the model
in Eq. (6). We will consider nonlinear cost terms in our future work.
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III. DISTRIBUTED ONLINE SCHEDULING AND ROUTING

To maximize the profit while keeping the network stable, we
design a distributed online scheduling and routing algorithm.
With the Lyapunov optimization techniques in [7], we trans-
form the original optimization problem into the following three
independent sub-problems. Here, due to the page limit, we omit
the detailed derivations. Note that, there is apparently a trade-
off between the profit and the queue lengths in the DCs, and
hence we introduce an adjustable parameter V in the following
analysis to adjust this tradeoff.

1) Acceptance Control:

Minimize (Qk
i (t) − V · α) · ak

i (t), (8)

s.t. Eq. (1).

We can get the optimal value of ak
i (t) as

ak
i (t)∗ =

{
Ak

i (t), Qk
i (t) ≤ V · α,

0, otherwise,
(9)

which means that the k-th queue in DC i should accept ak
i (t)∗

tasks at time t .
2) Task Transfer: The number of tasks to be dispatched

among the queues in each DC can be decided by solving the
following optimization problem

Maximize
∑
nk

rk,nk
i (t) ·

(
Qk

i (t) −
∑

m

Qm
i (t) · Rk(nk, m)

)
,

(10)

s.t. Eq. (4).

In the nk-th row of Rk , we record all the non-zero elements’
column numbers in set Mnk . Then, Eq. (10) becomes

Maximize
∑
nk

rk,nk
i (t) ·

⎛
⎝Qk

i (t) −
∑

m∈Mnk

Qm
i (t)

⎞
⎠ ,

s.t. Eq. (4).

(11)

If we assume

n∗
k = argmax

⎧⎨
⎩Qk

i (t) −
∑

m∈Mnk

Qm
i (t)|∀nk ∈ [1, Nk]

⎫⎬
⎭ , (12)

we obtain the optimal value of rk,nk
i (t) as

rk,nk
i (t)∗ =

⎧⎪⎨
⎪⎩

Qk
i (t), nk = n∗

k ∧
∑

m∈Mnk

Qm
i (t) < Qk

i (t),

0, otherwise,
(13)

which indicates that at time t , there should be rk,nk
i (t)∗ tasks

dispatched from the k-th queue to other queues in DC i , using
the nk-th dispatching choice.

3) Bandwidth Allocation: The task routing among the DCs is
determined by solving the following optimization problem

Maximize
∑
i, j,k

ck
i, j (t) · (Qk

i (t) − Qk
j (t) − V · βi, j · s),

s.t. Eq. (2),
∑

j

ck
i, j (t) ≤ Qk

i (t), ∀i, (i, j) ∈ E, k.
(14)

Fig. 2. Example on destination grouping.

Here, we define

k∗ = argmax{Qk
i (t) − Qk

j (t) − V · βi, j · s|∀k ∈ K},
̂Qk

i, j (t) = Qk
i (t) − Qk

j (t) − V · βi, j · s,
(15)

and get the optimal value of ck
i, j (t)

∗ as

ck
i, j (t)

∗ =

⎧⎪⎨
⎪⎩

min

(
Qk

i (t), 	
bi, j

s


)

, k = k∗ ∧ ̂Qk
i, j (t) > 0,

0, otherwise.
(16)

Hence, at time t , there should be ck
i, j (t)

∗ tasks from the k-th
queue in DC i traveling to DC j through link (i, j).

IV. DESTINATION GROUPING FOR BETTER SCALABILITY

With the approach discussed above, the number of queues in
each DC is 2|M| − 1, which increases exponentially with the
size of the destination DC set M. This makes the approach
not scale well with |M|. We solve this issue by introducing
a destination grouping scheme. Specifically, we divide all the
destination DCs in M into groups each of which has at most
X members, where X is a relatively small number. Then, for
the destinations in each group, we allocate queues to cover
their combinations with the scheme in Section II-A. Hence, the
number of queues in each DC is upper-bounded by (2X − 1) ·
� |M|

X �, which only increases linearly with |M|. The procedure
proposed in Section III can still be used, with the only exception
that the task acceptance will be handled in a two-step manner.
Specifically, we first find the groups to cover a task’s destination
set, and then select specific queue(s) in each group to accept
the task. Fig. 2 shows an example of the destination grouping
scheme, where |M| = 4 and X = 2. We can see that the num-
ber of queues decreases from 15 to 6, while all the destination
combinations can still be covered.

V. PERFORMANCE EVALUATION

We use simulations to evaluate the performance of the pro-
posed approach, and leverage the work in [5] to design a
benchmark algorithm, i.e., Lyapunov optimization with pre-
determined multicast trees, for performance comparison. Note
that, the work in [5] tried to maximize the throughput, which
is different from our optimization objective. However, since in
our system, the volume of accepted tasks per unit time is just
the task processing throughput, there is a positive correlation
between profit and throughput, according to Eq. (6).
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Fig. 3. Simulation results.

A. Impact of Adjustable Parameter V

We first study the impact of parameter V on the tradeoff
between the time-average profit P and the average total length
of all the queues in the network Qtotal . We set the maximum
task arrival rate as Amax = 300, the data-size of each task is
s = 1, and the destinations of each task are randomly chosen.
The simulations use a 15-node random topology with |M| = 3.
The topology has bi, j = 60 for all the links in E, the link cost
βi, j is randomly chosen within (0, 10] for each link, and the
revenue coefficient is set as α = 10. Each simulation runs for
a period of 10000 time slots and the results are obtained by
averaging the outputs of 5 independent simulations. Fig. 3(a)
shows the results of P and Qtotal . We can see that Qtotal

increases almost linearly with V , while P gradually approaches
to a plateau when V increases. These results verify that the
proposed approach works as expected.

B. Scalability Evaluation

We then evaluate the scalability of our proposed approach.
Firstly, we increase |M| to 4 but keep all the other parameters
unchanged. Here, we compare the scheme with the destination
grouping with the one without it. The grouping scheme uses
X = 2 DCs and thus obtains two groups. Fig. 3(b) plots the
results of the time-average profit and the average total length
of all the queues in the network, where Pg and Qtotal

g are from

the scheme with destination grouping. We observe that Qtotal

and Qtotal
g are similar, while Pg is consistently higher than P .

These observations are really promising, since they indicate that
the destination grouping scheme not only deals with the scal-
ability issue well but also makes the system more profitable.
This is basically because since the destination grouping scales
down the queuing system by managing the queues in differ-
ent groups independently, the possibility of transmitting tasks
unwisely among queues decreases and so does the cost.

The simulations then use |M| = 9 and X = 3 to get three
groups. Table I shows the results, which still indicate that Pg

gradually approaches to a plateau when V increases. The aver-
age total lengths of the queues in the three groups, i.e., Q1, Q2
and Q3, exhibit similar values at each V , and thus the traffic
loads in the groups are balanced well.

C. Performance Comparisons With Benchmark

Finally, we evaluate our proposed approach against the
benchmark developed based on the work in [5]. For the

TABLE I
RESULTS OF DESTINATION GROUPING SCHEME (|M| = 9, X = 3)

benchmark, all the multicast trees are properly chosen to
optimize its performance, and to address the complexity of
the multicast tree calculation, we use the 5-node topology in
Fig. 1(a) and set |M| = 3 and Amax = 500. As the inter-DC
network is small, our approach does not group destinations.
Fig. 3(c) shows the results of the time-average profit and

average total length of all the queues, where Pb and Qtotal
b

are from the benchmark. Our approach is more profitable than
the benchmark, and when V increases, P approaches to a
much higher plateau than Pb. The tradeoff is that Qtotal is

longer than Qtotal
b , which is because the benchmark always

uses pre-determined multicast trees with optimized paths, the
queuing overheads are reduced.

VI. CONCLUSION

We proposed a distributed online approach to schedule and
route multicast-oriented tasks in inter-DC networks for maxi-
mizing the time-average profit. A destination grouping scheme
was also designed to address the scalability issue of the pro-
posal. Simulation results indicated that our proposal could
outperform the existing approach in terms of profit.
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