
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Novel Location-Constrained Virtual Network
Embedding (LC-VNE) Algorithms Towards

Integrated Node and Link Mapping
Long Gong, Student Member, IEEE, Huihui Jiang, Yixiang Wang, and Zuqing Zhu, Senior Member, IEEE

Abstract— This paper tries to solve the location-constrained
virtual network embedding (LC-VNE) problem efficiently.
We first investigate the complexity of LC-VNE, and by leveraging
the graph bisection problem, we provide the first formal proof of
the N P -completeness and inapproximability result of LC-VNE.
Then, we propose two novel LC-VNE algorithms based on a
compatibility graph (CG) to achieve integrated node and link
mapping. In particular, in the CG, each node represents a
candidate substrate path for a virtual link, and each link indicates
the compatible relation between its two endnodes. Our theoretical
analysis proves that the maximal clique in the CG is also
the maximum one when the substrate network has sufficient
resources. With CG, we reduce LC-VNE to the minimum-
cost maximum clique problem, which inspires us to propose
two efficient LC-VNE heuristics. Extensive numerical simulations
demonstrate that compared with the existing ones, our proposed
LC-VNE algorithms have significantly reduced time complexity
and can provide smaller gaps to the optimal solutions, lower
blocking probabilities, and higher time-average revenue as well.

Index Terms— Network virtualization, maximum clique,
location-constrained virtual network embedding (LC-VNE), com-
patibility graph (CG), inapproximability.

I. INTRODUCTION

S INCE its inception, Internet has been growing rapidly
with more network elements and end-users, larger volume

of traffic, and more various applications. Due to the huge
scale and coexistence of numerous service providers, Internet
infrastructure has recently been brought into “ossification” [1],
which means that it becomes more and more difficult to
support new networking mechanisms and applications timely.
Especially, recent advances on Big Data applications [2], [3]
made this trend more explicit. It is known that network
virtualization allows heterogeneous virtual networks to coexist
in the same substrate/physical network and share the resources

Manuscript received April 11, 2015; revised August 3, 2015; accepted
February 21, 2016; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor P.-J. Wan. This work was supported in part by the NCET Project
under Grant NCET-11-0884, the National Natural Science Foundation of
China under Project 61371117, the Fundamental Research Funds for the Cen-
tral Universities under Grant WK2100060010, the Natural Science Research
Project for Universities in Anhui Province under Grant KJ2014ZD38, and
the Strategic Priority Research Program of the Chinese Academy of Sciences
under Grant XDA06011202.

The authors are with the School of Information Science and Technology,
University of Science and Technology of China, Hefei 230027,
China (e-mail: gonglong@mail.ustc.edu.cn; hhjiang@mail.ustc.edu.cn;
yx153054@mail.ustc.edu.cn; zqzhu@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2016.2533625

(e.g., CPU, storage, and bandwidth) efficiently [4]. There-
fore, it has been considered as a promising solution to the
Internet ossification, and has attracted intensive attentions
from both academia and industry [4]–[7]. With network
virtualization, the role of Internet service providers (ISPs)
evolves into two entities: infrastructure provider (InP) and
service provider (SP). InPs own substrate/physical networks
(i.e., network infrastructure), while SPs lease substrate
resources from InPs to build virtual networks for end-users.

One of the vital challenges in network virtualization is how
to allocate resources in a substrate network to virtual network
requests (VNRs) efficiently, which is also known as virtual
network embedding (VNE) [8]. Specifically, VNE finds each
virtual node (VN) a unique substrate node (SN) to meet
its computing resource requirement and selects a set of
substrate paths to satisfy the bandwidth requirement of each
virtual link (VL). The former procedure is the so-called
node mapping, while the latter is link mapping. VNE is an
NP-hard problem [9]. Previously, to solve it for different
scenarios, researchers have developed several integer linear
programming (ILP) and mixed ILP (MILP) models and a few
heuristics [10]–[23].

Meanwhile, it is known that many emerging network
virtualization applications may impose location constraints on
VNs, similar to other location-aware applications [24]–[27].
For instance, a service provider of teleconference needs
to apply the location constraints to VNs such that the
user-perceived latency is short enough for guaranteed quality-
of-experience (QoE). Nevertheless, the existing algorithms for
generic VNE are not suitable for solving this type of location-
constrained VNE (LC-VNE) problems [14]. Specifically, the
introduction of location restrictions dramatically increases
the difficulty on both the complexity analysis and algorithm
design, especially when we want to achieve integrated node
and link mapping. By formulating LC-VNE as an MILP,
the authors of [14] proposed a relaxation-based method.
Later, a column generation based approach was developed
in [15]. However, both of these two approaches suffered
from relatively high time complexity. The study in [28] also
considered LC-VNE, but instead of using the generic network
model in [14], it incorporated a specific node mapping
model. To the best of our knowledge, there has been no
comprehensive complexity analysis on LC-VNE, which makes
how to solve LC-VNE efficiently a rather difficult problem.

In this work, we aim at designing efficient LC-VNE
algorithms based on the generic network model in [14].

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

We first analyze the complexity of LC-VNE. Specifically, by
leveraging graph bisection [29], we prove that the decision
version of LC-VNE is NP-complete and also provide the
in-approximatibility result of it. These findings make us give
up the efforts on looking for polynomial-time approximation
proposals and switch to efficient heuristics. Hence, we pro-
pose two novel efficient LC-VNE algorithms for achieving
integrated node and link mapping based on compatibility
graph (CG). First of all, we develop the approach to build
a CG, in which each node represents one candidate substrate
path for a VL, while each link indicates the compatible relation
between its two end-nodes. Secondly, our theoretical analysis
proves that the CG has a very good property that the maximal
clique in it is also the maximum one, when the substrate
network satisfies certain conditions, which will be specified in
Theorem 4 in Subsection V-B2. Finally, with CG, we reduce
LC-VNE to the minimum-cost maximum clique problem [29]
and propose two heuristics, namely, greedy LC-VNE based
on CG (G-CG), and load-balance enhanced LC-VNE based
on CG (LBE-CG). With extensive numerical simulations, we
demonstrate that the proposed CG-based LC-VNE algorithms
outperform existing ones by achieving smaller gaps to the
optimal solutions and providing lower blocking probability and
higher time-average revenue. Moreover, they also yield lower
time complexity and supply better fairness among VNRs that
have different sizes.

In summary, the contributions of this work are as follows.
• We provide the first formal proof of the NP-complete-

ness of LC-VNE and give its in-approximatibility result.
• We develop two novel LC-VNE algorithms based on CG

to facilitate integrated node and link mapping, and prove
the good property of CG through theoretical analysis.

• We conduct extensive simulations to demonstrate that
the proposed algorithms achieve better performance and
lower time complexity than the existing ones.

The rest of this paper is organized as follows. Section II
summarizes the related work. In Section III, we provide the
network models and problem description. Section IV analyzes
the complexity of LC-VNE and gives its in-approximability
result. Section V describes the CG-based LC-VNE algo-
rithms, and their performances are evaluated in Section VI.
Finally, Section VII summarizes the paper.

II. RELATED WORK

As a major challenge of network virtualization, VNE has
recently attracted intensive interests. For a complete review
of the previous work on VNE, one is encouraged to read the
two surveys in [8] and [30]. In [10], by defining the local
resource of a node as its computing capacity multiplying the
total bandwidth capacity of all its incident links, Yu et al. pro-
posed a two-phase VNE algorithm that included greedy-based
node mapping and link mapping using K-shortest paths.
Later studies found that the performance of VNE can be
improved by considering the topology information (i.e., global
resource) in node mapping [11]–[13], [21]. With the consid-
eration of global resource in the whole substrate network, the
work in [11], [13], and [21] adopted PageRank [31] inspired
approaches for node mapping, while Wang et al. leveraged

TABLE I

NOTATIONS

the metric of centrality [32] to achieve the similar goal [12].
However, these investigations did not consider LC-VNE,
which is very important for many emerging network virtu-
alization applications.

To solve LC-VNE, Chowdhury et al. developed an aug-
mented graph based approach, used it to model LC-VNE
as a multi-commodity flow (MCF) problem, and formulated
an MILP for coordinated node and link mapping [14]. They
also proposed heuristics based on techniques such as linear
programming (LP) relaxation together with deterministic or
random rounding to overcome the intractability of the MILP.
In [17], Papagianni et al. extended this MILP model to
consider multi-dimensional resource requirements on both
VNs and VLs and addressed quality-of-service (QoS) issues.
Nevertheless, it is known that LP is relatively time-consuming,
even though it can be solved in polynomial time. Moreover,
LP relaxation together with rounding may not always provide
good solutions and can even lead to infeasible ones under
certain circumstances [33]. In [15], Hu et al. formulated a
path-based MILP model and utilized column generation to
solve LC-VNE. However, time complexity is still an issue
for this proposal. Note that, high time-efficiency of network
control and management is essential for online operations [34].
Recently, focusing on LC-VNE in optical network virtualiza-
tion, Zhao et al. proposed an ILP model and two heuristic
algorithms in which they allowed multiple VNs to be embed-
ded onto the same SN [28].

In this work, we develop two novel LC-VNE algorithms
based on compatibility graph (CG). As we will show later, the
proposed algorithms achieve integrated node and link mapping
efficiently with significantly reduced time complexity.

III. NETWORK MODELS AND PROBLEM DESCRIPTION

In this section, we describe the network models and define
the LC-VNE problem. Here, Table I summarizes the main
notations used in this paper.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 3

Fig. 1. An example of LC-VNE. (a) Substrate network. (b) VNRs. (c) LC-VNE solutions.

A. Network Models

1) Substrate Network: We model the substrate network
as an undirected graph, denoted as Gs(V s, Es), where
V s and Es are the sets of substrate nodes (SNs) and substrate
links (SLs), respectively. Each SN vs ∈ V s has a computing
capacity cs

vs , while the bandwidth capacity of each SL is bs
es .

Each SN vs is also associated with a location lsvs . The set
of loopless paths in Gs(V s, Es) is denoted as P s, and the
set of paths that start/end at node vs is P s

vs . For two SNs
vs
1, v

s
2 ∈ V s, we pre-calculate K shortest paths between them

and denote the path set as P s
vs
1,vs

2
. Fig. 1(a) shows an example

of substrate network. For simplicity, the location of each SN
is omitted. The numbers around the SNs and on the SLs are
their computing and bandwidth capacities, respectively.

2) Virtual Network: The virtual network request (VNR) is
also modeled as an undirected graph, Gr(V r, Er). The com-
puting requirement of each virtual node (VN) vr ∈ V r is cr

vr ,
while the bandwidth requirement of each virtual link (VL)
er ∈ Er is denoted as br

er . For LC-VNE, we assume that
each VN vr ∈ V r has a preferred location, denoted as lrvr .
Based on lrvr , vr can only be mapped onto a set of
candidate SN(s), Φs

vr ⊆ V s, which is defined based on the
preferred location lrvr and a radius ρ, i.e., Φs

vr = {us ∈
V s : ||lsus − lrvr || ≤ ρ}. Here, ||lsus − lrvr || is the distance
between the two locations. Each VL er ∈ Er is also associated
with a candidate substrate path set, P s

er , which includes the
substrate paths between the candidate SNs of the two end-
nodes of er, i.e., P s

er =
⋃

vs
1∈Φs

er
+

⋃

vs
2∈Φs

er−

P s
vs
1 ,vs

2
, where er

+/er−

denotes the two end-nodes of er. Fig. 1(b) shows two VNRs.
The numbers in the rectangles around the VNs denote their
computing requirements, the numbers in the braces around the
VNs indicate their candidate SNs, and the numbers on the VLs
are their bandwidth requirements.

B. Problem Description of LC-VNE

Generic VNE provisions proper resources from the substrate
network to support VNRs [10], while LC-VNE is a special
scenario of it. In node mapping, we select a unique SN for each
VN to satisfy its computing and location requirements, while
in link mapping, we establish one or more substrate paths for
each VL to meet its bandwidth requirement. Fig. 1(c) shows

the LC-VNE results for embedding the VNRs in Fig. 1(b)
onto the substrate network in Fig. 1(a). More specifically, the
node mapping for the two VNRs are {a → 1, b → 3, c → 4}
and {e → 4, z → 5}, respectively, while the link mapping
relations are {(a, b)→ {1−3}, (a, c)→ {1−2−4}, (b, c)→
{3−5−4}} and {(e, z)→ {4−5, 4−6−5}}. The objective
of LC-VNE is to accommodate as many VNRs as possible, or
to maximize the revenue of the InP, which is formally defined
in Eqs. (11)-(12) in Subsection VI-A.

IV. COMPLEXITY OF LC-VNE

In this section, we analyze the complexity of LC-VNE.
Firstly, we transform a well-known NP-complete prob-
lem, i.e., the graph bisection problem (decision version)
[29, p. 210, Problem ND17], into our LC-VNE problem, and
prove that the decision version of LC-VNE is NP-complete.1

Then, we investigate the hardness of approximating LC-VNE,
and prove that approximating LC-VNE within a factor of m1−ε

is also NP-hard, for some ε > 0, where m is the size of the
substrate network, i.e., the number of SNs. Before conducting
the proof, we give the formal definitions of the problems.

Definition 1 [LC-VNE (Decision Version)]: Given the
substrate network Gs(V s, Es) with computing and bandwidth
capacity cs

vs and bs
es on each SN vs and SL es, respectively, a

location lsvs associated with each SN vs, a VNR Gr(V r, Er),
|V r| ≤ |V s| with computing and bandwidth requirement cr

vr

and br
er on each VN vr and VL er, respectively, the location

constraint Φs
vr ⊆ V s for each VN vr, and a positive number Q,

the problem is to ask whether there is an LC-VNE solution
whose total resource consumption is no more than Q, i.e.,

R =
∑

vr∈V r

cr
vr +

∑

er∈Er

∑

ps∈fL(er)

|ps| · ber

ps ≤ Q, (1)

where fL(·) is the link mapping relation, |ps| denotes the
hop-count of substrate path ps, and ber

ps is the bandwidth
that is allocated on ps for VL er. An LC-VNE solution has
two related mappings: fN : V r → V s and fL : Er → P s,
and by allocating bandwidth ber

ps on each embedded path ps

for VL er, it satisfies the following constraints.

1Although the NP-hardness of VNE was proved in [9], to the best of our
knowledge, there has been no formal proof of the NP-hardness of LC-VNE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

• Location Constraint: each VN can only be embedded
onto the SN that is in its candidate SN set, i.e.,

vs ∈ Φs
vr , if fN(vr) = vs, ∀vr ∈ V r. (2)

Here, the location constraint may come from the function-
ality, security, or availability requirements of VNs [30].

• One-to-One Node Mapping Constraint: each VN in the
same VNR can only be mapped onto a single SN and any
two different VNs in a single VNR cannot be mapped
onto the same SN, i.e.,

fN (vr
1) = fN (vr

2), if and only if vr
1 = vr

2 . (3)

Note that one-to-many node mapping is not resource-
efficient, because if we split a VN and embed it onto
multiple SNs, additional bandwidth resources need to
be allocated on the substrate paths among the SNs to
support the VN’s internal communication. On the other
hand, many-to-one node mapping makes a VNR more
vulnerable to substrate network failures, e.g., a single SN
failure can bring down multiple VNs [20].

• Link Mapping Constraint2 : each VL should be mapped
onto the path(s) connecting the SNs that its two end-nodes
are embedded onto, i.e.,

fL(er) ⊆ P s
fN (er

+),fN (er
−), ∀er ∈ Er, (4)

where er
+ and er

− are the two end-nodes of VL er.
• Computing Capacity Constraint: the computing capacity

of an embedded SN should satisfy the computing require-
ment of the corresponding VN, i.e.,

cr
vr ≤ cs

vs , if fN (vr) = vs, ∀vr ∈ V r. (5)

• Bandwidth Capacity Constraint: the allocated band-
width on each SL should not exceed its bandwidth
capacity, while satisfying the bandwidth requirements of
VLs, i.e.,

bs
es ≥

∑

er∈Er

∑

ps∈fL(er)

ber

ps · Ies

ps , ∀es ∈ Es, (6a)

br
er =

∑

ps∈fL(er)

ber

ps , ∀er ∈ Er, (6b)

where ber

ps is the amount of bandwidth that is allocated
to accommodate VL er on path ps, and Ies

ps is a known
parameter, which indicates whether ps traverses es or not,
i.e., Ies

ps = 1 if ps traverses es, otherwise, Ies

ps = 0.
Definition 2 [Graph Bisection Problem (Decision Ver-

sion)]: Given a graph G(V, E) and an integer K ∈ (0, |E|], the
problem is to ask whether there exist two subsets V1 and V2

of V , satisfying that V = V1 ∪V2, V1 ∩V2 = ∅, |V1| = � |V |
2 �,

|V2| = |V |
2 � and the number of links between them is no

more than K , i.e., |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| ≤ K .
Theorem 1: The LC-VNE problem is NP-complete.

2Note that the link mapping scheme described here is generic and allows
path splitting, i.e., one VL can be embedded onto one or more substrate paths.
For a more specific scheme that only uses single-path mapping [21], fL(er)
should only include one substrate path.

Proof: It is easy to verify that LC-VNE belongs to NP
because given an LC-VNE solution, we can test whether it is
the desired one3 by checking Eqs. (1)-(6) in polynomial time.

We then transform the graph bisection problem into
LC-VNE. Let {G(V, E), K} be an arbitrary instance of
graph bisection. We can build an instance of the LC-VNE
problem, which includes a substrate network Gs(V s, Es),
a VNR Gr(V r, Er) and a positive number Q. We will prove
that a desired LC-VNE solution exists if and only if there
exists a desired graph bisection for {G(V, E), K}.

We first design the polynomial-time transformation, in
which VNR Gr(V r, Er) consists of two main components:

1) Component One has the same structure as the instance
of graph bisection {G(V, E), K}, i.e.,

V r
1 = V, Er

1 = E.

Since they are adopted directly from G, we refer to
the VNs as O-nodes (i.e., original nodes) and denote
them as V r

1 = {or
1, o

r
2, . . . , o

r
|V |}. For each VN or

i , the
corresponding node in G is denoted as oi. Similarly, we
call VLs in Er

1 as O-links (i.e., original links).
2) Component Two is a set of |V | VNs, which are named

as X -nodes (i.e., extra nodes) and denoted as {xr
i }, i.e.,

V r
2 = ∪|V |

i=1{xr
i }, Er

2 = ∅.
There is a link between every pair of O-node and X -node,
which is named as an XO-link. The set of XO-links are
denoted as follows,

Er
1,2 = {(or

i , x
r
j) : or

i ∈ V r
1 and xr

j ∈ V r
2 },

Each VN or VL in the VNR has a unit requirement on
computing or bandwidth resource.

The substrate network has three components, which can be
understood as two islands connected by a bridge.

1) Components One and Two are the two islands, which
are referred to as V-island and U-island, respectively.
Actually, they are two complete sub-graphs, each of
which has |V | SNs,

• V-island,

V s
1 =

|V |⋃

i=1

{vs
i }, Es

1 = {(vs
i , v

s
j) ∈ V s

1 × V s
1 : i �= j}.

• U-island,

V s
2 =

|V |⋃

i=1

{us
i}, Es

2 = {(us
i , u

s
j) ∈ V s

2 × V s
2 : i �= j},

where X × Y returns the Cartesian product [35] of sets
X and Y , i.e., X × Y = {(x, y) : x ∈ X and y ∈ Y }.

2) Component Three is the bridge that represents the
connections between V-island and U-island. We call it
as VU-bridge. The ingress- and egress-ends of VU-bridge
are denoted as κs

1 and κs
2. All the SNs in V- and U-islands

are connected to the ingress- and egress-ends, respec-
tively. There are two paths in VU-bridge, i.e., one goes

3Note that, by saying a “desired” LC-VNE solution, we mean that the
LC-VNE solution satisfies Eq. (1).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 5

Fig. 2. Example on the transformation from (a) an instance of minimum graph bisection (K = 2) to (b) the instance of LC-VNE (Q = 48).

through the link connecting κs
1 and κs

2 with a capacity

of K +
(⌊

|V |
2

⌋)2

+
(⌈

|V |
2

⌉)2

, and the other traverses

a line topology with Δ hops, on which the capacity of
each SL is 2|V |2. The mathematical descriptions of all
the SNs and SLs in VU-bridge are as follows.

V s
3 =

Δ+1⋃

i=1

{ιsi} ∪ {κs
1, κ

s
2},

Es
31 = {(vs

i , κ
s
1) : vs

i ∈ V s
1 } ∪ {(us

i , κ
s
2) : us

i ∈ V s
2 },

Es
32 = {(κs

1, ι
s
1), (ι

s
Δ+1, κ

s
2)} ∪

Δ⋃

i=1

{(ιsi , ιsi+1)},

Es
33 = {(κs

1, κ
s
2)},

where ιsi , i = 1, 2, . . . , Δ + 1 are the SNs on the Δ-hop
line topology, where Δ > 1 is a constant number.

All the SNs in the substrate network have a unit capacity of
computing resource, and all the SLs (except for those being
explicitly described) also have a unit capacity of bandwidth.

The location constraints are set as follows,

Φs
or

i
= {vs

i , u
s
i}, i = 1, 2, . . . , |V |,

Φs
xr

i
=

⎧
⎨

⎩
V s

1 , i ≤ |V |
2

,

V s
2 , otherwise,

where vs
i and us

i are the i-th SNs in V-island and U-island,
respectively.

The positive number Q is set as

Q = 2|V |+ |V |2 + |E|+ 2K + 2

(⌈ |V |
2

⌉2

+
⌊ |V |

2

⌋2
)

.

(7)

It is easy to verify that the construction above can be
finished in polynomial time.

Fig. 2 gives an example of such a transformation with
|V | = 4, |E| = 4, and K = 2. For the VNR, all
the VNs and VLs have a unit requirement, and their loca-
tion constraints are shown by their colors and/or patterns

(e.g., Φs
o1

= {v1, u1} and Φs
x1

=
4⋃

i=1

{vi}). For the substrate

network, the orange and green regions correspond to V-island
and U-island, respectively. All the SNs have a unit computing
capacity and all the black SLs have a unit bandwidth capacity,
while the bandwidth capacities of the red and green SLs are
10 and 32, respectively. Here, for simplicity, we omit the
superscripts of all the VNs and SNs.

Then, we prove that the instance of LC-VNE has a desired
solution if and only if there is a desired graph bisection of V ,
i.e., V1 and V2, satisfying V1 ∪ V2 = V , V1 ∩ V2 = ∅, |V1| =
� |V |

2 �, |V2| = |V |
2 � and |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| ≤ K .

Suppose that the two disjoint subsets V1 and V2 are
the desired bisection of G(V, E). We denote K̃ =
|(u, v) ∈ E : u ∈ V1, v ∈ V2|. Then, we have K̃ ≤ K .
Firstly, we obtain the node mapping as follows.

• Node Mapping of O-Nodes,

fN(or
j) =

{
vs

j , if oj ∈ V1,

us
j , otherwise,

j = 1, 2, . . . , |V |.

• Node Mapping of X -Nodes,

1) If i ≤ |V |
2 ,

fN (xr
i) = vs

πi
, vs

πi
∈ V s

1 \ {fN(vr) : vr ∈ V r
1 }.

2) If i > |V |
2 , we let k = i− |V |

2 � and have

fN (xr
i) = us

πk
, us

πk
∈ V s

2 \ {fN (vr) : vr ∈ V r
1 }.

Here, πi denotes the index of the i-th remaining SN in
an island (i.e., the SN that has not accommodated any
O-nodes in V-island or U-island),
and X \ Y = {z : z ∈ X
and z /∈ Y }.

The link mapping is relatively obvious when we have
obtained the node mapping, which is as follows,

1) Case One: Both end-nodes of a VL (vr
1 , v

r
2) are mapped

onto SNs in the same island, and the link mapping is

fL((vr
1 , vr

2)) = {fN(vr
1)− fN (vr

2)}.
The number of the VLs in this case is 2� |V |

2 � |V |
2 � +

|E| − K̃ , and hence, the consumed bandwidth resources
are 2� |V |

2 � |V |
2 �+ |E| − K̃ units.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

2) Case Two: The end-nodes of a VL (vr
1 , v

r
2) are mapped

onto SNs in different islands. In this case, VU-bridge will
be crossed to embed the VL, w.l.o.g., we assume that
fN (vr

1) ∈ V s
1 is in V-island and fN(vr

2) ∈ V s
2 locates in

U-island. Then, the link mapping is

fL((vr
1 , vr

2)) = {fN(vr
1)− κs

1 − κs
2 − fN (vr

2)}.

The number of the VLs in this case is
(
� |V |

2 �
)2

+
(
 |V |

2 �
)2

+ K̃ , and the consumed bandwidth resources

are 3
((
� |V |

2 �
)2

+
(
 |V |

2 �
)2

+ K̃

)

units.

Finally, the total resource consumption of the LC-VNE
solution mentioned above is

Q̃ = 2|V |+ |V |2 + |E|+ 2K̃ + 2

(⌈ |V |
2

⌉2

+
⌊ |V |

2

⌋2
)

.

As K̃ ≤ K , we have Q̃ ≤ Q, which means that the LC-VNE
solution is a desired one.

For the example in Fig. 2, if we assume that the desired
graph bisection for the instance in Fig. 2(a) is V1 = {o1, o3}
and V2 = {o2, o4}, the corresponding LC-VNE solution is as
follows.

1) Node Mapping:

{o1 → v1, o2 → u2, o3 → v3, o4 → u4,

x1 → v2, x2 → v4, x3 → u1, x4 → u3}.
2) Link Mapping:

{(o1, o2)→ {v1 − κ1 − κ2 − u2},
(o3, o4)→ {v3 − κ1 − κ2 − u4},
(o1, x3)→ {v1 − κ1 − κ2 − u1},
(o1, x4)→ {v1 − κ1 − κ2 − u3},
(o3, x3)→ {v3 − κ1 − κ2 − u1},
(o3, x4)→ {v3 − κ1 − κ2 − u3},
(x1, o2)→ {v2 − κ1 − κ2 − u2},
(x1, o4)→ {v2 − κ1 − κ2 − u4},
(x2, o2)→ {v4 − κ1 − κ2 − u2},
(x2, o4)→ {v4 − κ1 − κ2 − u4},
(o1, x1)→ {v1 − v2}, (o1, x2)→ {v1 − v4},
(o3, x1)→ {v3 − v2}, (o3, x2)→ {v3 − v4},
(o2, x3)→ {u2 − u1}, (o2, x4)→ {u2 − u3},
(o4, x3)→ {u4 − u1}, (o4, x4)→ {u4 − u3},
(o1, o3)→ {v1 − v3}, (o2, o4)→ {u2 − u4}}.

Conversely, assuming that fN and fL are for the desired
LC-VNE solution and Q̃ denotes the total resource consump-
tion, we can get the following graph bisection, V1 and V2,

{
oj ∈ V1, if fN (or

j) = vs
j .

oj ∈ V2, if fN (or
j) = us

j .

As Q̃ ≤ Q, there will be at most K +
(� |V |

2 �
)2 +

(|V |
2 �
)2

VLs that are in Case Two. Among these VLs, there are

(
� |V |

2 �
)2

+
(
 |V |

2 �
)2

ones that are XO-links. Hence, there

would be at most K O-links, and we have |{(u, v) ∈ E : u ∈
V1, v ∈ V2}| ≤ K and get the desired graph bisection of G.

Eventually, we prove that the LC-VNE problem is
NP-complete.

Next, we focus on analyzing the hardness of approximating
LC-VNE. We first introduce the following lemma based on
[36, p. 373, Lemma 10.2] and [37, Th. 10.1].

Lemma 1: Given a minimization problem Π and an
NP-complete problem Λ, if there exists a polynomial-time
transformation g from Λ to Π, such that,

λ ∈ Λ ⇒ OPT (g(λ)) ≤ α,

λ /∈ Λ ⇒ OPT (g(λ)) > β,

where λ ∈ Λ means that instance λ is a “YES” instance for
problem Λ, and OPT (g(λ)) denotes the value of the optimal
solution of g(λ), then there is no β

α -approximation algorithm4

for optimization problem Π.
Based on Lemma 1, we get the following hardness result of

approximating LC-VNE.
Theorem 2: There exists some ε > 0 such that approximat-

ing LC-VNE problem within a factor of m1−ε is NP-hard,
where m is the size of the substrate network, i.e., the number
of SNs.

Proof: We first construct a transformation ĝ from graph
bisection (decision version, denoted as GBD) to LC-VNE
(optimization version), which is similar to the one we designed
in Theorem 1. The only difference is that, we set Δ =
poly(|V |)·Q in ĝ, where Q is defined by Eq. (7), and poly(|V |)
denotes a polynomial function of |V |, whose highest power is
no less than 1. It is obvious that ĝ is still a polynomial-time
one. Based on the analysis in Theorem 1, we can prove that
for any instance λ of graph bisection, we have

λ ∈ GBD ⇒ OPT (ĝ(λ)) ≤ Q,

λ /∈ GBD ⇒ OPT (ĝ(λ)) > Δ.

As Δ

2|V |+|V |2+|E|+2K+2
�� |V |

2 �2+ |V |
2 �2

� = poly(|V |) and

poly(|V |) ≈ |V s|1− 2
k+2 , where k ≥ 1 is the highest power

of poly(|V |), we can rewrite the reduction gap as |V s|1−ε =
m1−ε, for some ε > 0. Therefore, it is NP-hard to approxi-
mate LC-VNE within m1−ε, for some ε > 0.

The in-approximability result of LC-VNE above suggests
that our investigation on LC-VNE should switch from finding
approximation algorithms to designing efficient heuristics.
We design two efficient LC-VNE heuristics to minimize the
total resource consumption in Eq. (1) in the following sections.

V. LC-VNE FRAMEWORK BASED ON CG

In this section, we leverage compatibility graph (CG) to
design an LC-VNE framework that achieves integrated node
and link mapping. Algorithm 1 shows the overall procedure

4An α-approximation algorithm is a polynomial-time algorithm that can
always get a solution whose value is at most α times of the optimal for
a minimization problem or at least 1

α
of the optimal for a maximization

problem.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 7

Algorithm 1 LC-VNE Framework Based on CG

1 obtain the incoming VNR Gr;
2 get current status of the substrate network Gs;
3 preprocess VNR Gr with Algorithm 2;
4 construct CG for the LC-VNE with Algorithm 3;
5 if CG is successfully constructed then
6 get the maximum clique in CG with Algorithm 4;
7 if the maximum clique is found then
8 mark VNR Gr as accepted;
9 else

10 mark VNR Gr as blocked;
11 end
12 else
13 mark VNR Gr as blocked;
14 end
15 wait for the next VNR;

of the framework, which has two key steps: 1) constructing
the CG (Line 4), and 2) finding the minimum-cost maximum
clique (Line 6). Before them, we need to preprocess the VNR
with Algorithm 2 (Line 3) to generalize the framework to
support the cases in which the candidate SN sets for VNs
are not disjoint. The details of Algorithms 2-4 are explained
in the following subsections.

A. Preprocessing

Note that the algorithms discussed in Subsections V-B and
V-C work on the assumption that the candidate SN sets for any
two VNs in the VNR are disjoint, i.e., Φs

vr
1
∩Φs

vr
2

= ∅, {vr
1, v

r
2 :

vr
1 �= vr

2}. However, in practical LC-VNE, this may not always
be the case. Fortunately, we can apply preprocessing on VNRs
to generalize our framework and make the candidate SN sets
that have non-empty intersections disjoint.

The preprocessing works as follows. In Lines 2-8, we
remove all SNs that do not have enough computing capacities.
Then, for the VNR, we first get the number of the VNs
that an SN is a candidate for, and remove certain SNs from
the candidate SN sets of some VNs, according to the set
sizes. Specifically, for SN vs that is a candidate for two or
more VNs, we reserve it as the candidate for the VN whose
candidate SN set has the smallest size, and remove it from
the candidate SN sets of the rest VNs. Algorithm 2 shows the
detailed procedure, which ensures that an arbitrary VNR would
become the one whose VNs have disjoint candidate SN sets.
Its time complexity is O(|V r| · |V s|2). Note that even though
the preprocessing does reduce the solution space of LC-VNE,
it works well in practice, as we will show later in Section VI.

B. CG for LC-VNE

1) Construction of CG: To solve LC-VNE, we construct a
CG, in which each node represents a candidate substrate path
for a VL er ∈ Er, and if two substrate paths are compatible
with each other, we insert a link to connect their corresponding
nodes in the CG. Here, by saying two substrate paths are
“compatible”, we mean that they can carry two VLs in the

Algorithm 2 Preprocessing

input : Original candidate SN sets {Φs
vr}, SN set V s,

and VN set V r

output: New candidate SN sets {Φs
vr}

1 Ψvs ← ∅, ∀vs ∈ V s;
2 foreach vr ∈ V r do
3 foreach vs ∈ Φs

vr do
4 if cr

vr > cs
vs then

5 remove vs from Φs
vr ;

6 end
7 end
8 end
9 foreach vr ∈ V r do

10 foreach vs ∈ Φs
vr do

11 Ψvs ← Ψvs ∪ {vr};
12 end
13 end
14 foreach vs ∈ V s do
15 if |Ψvs | > 1 then
16 vr

m = arg min
vr∈Ψvs

|Φs
vr |;

17 Ψvs ← Ψvs \ {vr
m};

18 foreach vr ∈ Ψvs do
19 Φs

vr ← Φs
vr \ {vs};

20 end
21 end
22 end

Fig. 3. The compatibility graph (CG) for the upper VNR in Fig. 1(b).
The nodes in red represent the candidate substrate paths for VL (a, b), the
green ones are for VL (a, c), and the gray ones for VL (b, c). The shadow
region shows a maximum clique corresponded to the LC-VNE result shown
in Fig. 1(c).

VNR simultaneously. Or in other words, the substrate paths
should satisfy: 1) they are the candidate paths for two adjacent
VLs and have one SN as the common end-node, or 2) they
are the candidate paths for two VLs that are not adjacent.

Fig. 3 shows the CG for the upper VNR in Fig. 1(b). Here,
for simplicity, we only consider the shortest substrate path
for each SN pair in Fig. 1(a). Note that our CG construction
can also consider more candidate substrate paths in addition to
the shortest ones. Each row of the CG represents the candidate
substrate paths of a particular VL in the VNR. For instance,
since VNs a and b can be mapped onto SNs {1} and {3, 5},
respectively, VL (a, b) can be mapped onto substrate paths
{1 − 3} or {1 − 3 − 5}, as shown in the first row of the
CG. Then, the corresponding nodes in the CG are connected
according to the compatibility relation mentioned above.
In Fig. 3, the CG’s nodes for substrate paths {1 − 3} and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 CG Construction
input : Substrate network Gs and VNR Gr

output: CG Gc(V c, Ec) and construction status F

1 V c ← ∅, Ec ← ∅;
2 foreach er ∈ Er do
3 foreach p ∈ P s

er do
4 if min

es∈p
bs
es ≥ br

er then

5 insert a node in V c to represent p;
6 else
7 remove p from P s

er ;
8 end
9 end

10 if P s
er = ∅ then

11 return(F = FAILURE);
12 end
13 end
14 foreach er

1 ∈ Er do
15 foreach er

2 ∈ Er, er
2 �= er

1 do
16 if er

1 and er
2 are adjacent through VN vr then

17 foreach vs ∈ Φs
vr do

18 Ec ← Ec ∪ ((P s
er
1
∩ P s

vs)× (P s
er
2
∩ P s

vs));
19 end
20 else
21 Ec ← Ec ∪ (P s

er
1
× P s

er
2
);

22 end
23 end
24 end
25 return(F = SUCCESS);

{1− 2− 4} are connected, since the link mappings (a, b)→
{1 − 3} and (a, c) → {1 − 2 − 4} are compatible, i.e., they
can coexist in an LC-VNE solution. On the other hand, as the
link mappings (a, b)→ {1− 3} and (b, c)→ {5− 4} cannot
coexist, their nodes in the CG are not connected. The shadow
region shows a maximum clique, i.e., {{1− 3}, {1− 2− 4},
{3 − 5 − 4}}, which corresponds to the LC-VNE solution
in Fig. 1(c).

Algorithm 3 shows the detailed procedure of CG construc-
tion. Line 1 initializes the node set V c and link set Ec.
Lines 2-13 describe the construction of V c, which is the set
of the candidate substrate paths that have enough bandwidth
to serve the corresponding VLs. Note that, in this work, we
only consider single-path based link mapping [21]. Thus, in
Lines 3-9, we remove the candidate substrate paths whose
bandwidth capacities are insufficient for the corresponding
VLs. The CG construction can also be extended to consider a
more generic scheme in which multi-path based link mapping
is allowed, which will be our future work.

Theorem 3: The time complexity of Algorithm 3 is
O
(
K2 · |V s|3 · (|V r|2 + |V s|)), where K is the maximum

number of candidate substrate paths between any SN-pair.
Proof: For the for-loop covering Lines 2-13, since in the

worse case, each substrate path would be traversed once, its
time complexity is O(K · |V s|3).

For the for-loop covering Lines 14-24, as the time
complexity for calculating the intersection of two sets with

m and n elements (m ≤ n) is O
(
m · (1 + log

(
n
m

)
)
)

[38],
the set intersection in Line 18 would use
O(max{|P s

er
1
|, |P s

er
2
|, |P s

vs |}) operations,5 and the Cartesian
product in Line 18 needs at most |P s

vs |2 ≤ K2 · |V s|2
operations. As |Φs

vr | ≤ |V s|, we have max{|P s
er
1
|, |P s

er
2
|} <

K · |V s|2. Thus, each iteration in the inner for-loop that
covers Lines 17-19 has the complexity of O(K2 · |V s|2).
Furthermore, since the candidate SN sets for any two VNs in
the VNR are disjoint, Line 18 would be executed for at most
|V r|2 · |V s| times. Hence, the total number of operations
executed for Line 18 is bounded by O(K2 · |V r|2 · |V s|3).
Meanwhile, the maximum number of operations executed for
Line 21 would be less than

∑

er
1∈Er

∑

er
2∈Er:er

1 �=er
2

|P s
er
1
| · |P s

er
2
|.

Since the following relation holds

∑

er
1∈Er

∑

er
2∈Er:er

1 �=er
2

|P s
er
1
| · |P s

er
2
| <

(
∑

er∈Er

|P s
er |
)2

< K2 · |V s|4.

Therefore, the time complexity of Algorithm 3 is
O
(
K2 · |V s|3 · (|V r|2 + |V s|)).

2) Property of CG: We establish and prove the following
property of the CG constructed by Algorithm 3, since our
CG based LC-VNE algorithms rely on the maximum clique
of CG. In general, maximum clique problem in an arbitrary
graph is NP-hard to approximate within a factor of n1−ε, for
any ε > 0, where n is the size of the graph [39]. However,
finding a maximal clique is much easier and can be finished in
linear time, the following good property of CG ensures that our
CG-based LC-VNE algorithms do not have complexity issues.

Theorem 4: Given the substrate network Gs(V s, Es) and
VNR Gr(V r, Er), if the substrate network satisfies that, for
each VL, there is at least one substrate path to connect any
pair of its candidate SNs with enough bandwidth, i.e., {ps :
ps ∈ P s

vs
1 ,vs

2
, min

es∈ps
bs
es ≥ br

(vr
1 ,vr

2)} �= ∅, where vs
i ∈ Φs

vr
i
,

vr
i ∈ V r, i = 1, 2, vr

1 �= vr
2 , then in the CG, any maximal

clique is also the maximum clique.6 The size of the maximum
clique is equal to the number of VLs in the VNR, i.e., |Er|.

Proof: We first prove that the size of the maximum clique
in the CG cannot exceed |Er| by contradiction. Suppose that
the former is larger than the later. Then, according to the
Pigeonhole Principle [40], the maximum clique includes at
least two nodes that represent candidate substrate paths of the
same VL. However, Algorithm 3 has ensured that there would
be no link between two such nodes in the CG, and this results
in contradiction. Therefore, the size of the maximum clique
cannot exceed |Er|.

Also by using contradiction, we can prove that the size
of any maximal clique in the CG cannot be less than |Er|.
Here, for the sake of convenience, we say a VL is covered, if
one of its candidate substrate paths is included in a maximal
clique. Then, according to the Pigeonhole Principle, if the
size of a maximal clique is less than |Er|, there will be at

5Here, we use the relaxation that m · (1 + log n
m

) ≤ (2
1− 1

ln 2
ln 2

) · n ≈
1.0615n, for any n ≥ m > 0.

6A clique is a complete subgraph in a graph, a maximal clique is the clique
that we cannot add any other node into it and still make it a clique, and the
maximum clique is the clique that includes the most nodes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 9

least one VL that is not covered, which means that none of
its candidate substrate paths is compatible with those in the
maximal clique. We denote this maximal clique as MC, and
use L and UL to represent the covered and uncovered VLs,
respectively.

Let er
ul and er

l be any element in UL and L, respectively.
For any er

ul, denote k = | ⋃
er

l ∈L

er
l∧er

u1|. Here, we use operation

er
l ∧ er

u1 to obtain the common end-node(s) of er
l and er

ul.
Apparently, we have k > 0 because k = 0 indicates that er

ul

has no common end-node with any VL in L. Hence, according
to Algorithm 3, in the CG, all the nodes that represent the
candidate substrate paths of er

ul are connected with all the
nodes in MC. This, however, is contradicted with the fact
that MC is the maximal.

Therefore, we are left with two cases to analyze:

• k = 1: We consider those VLs in L, which are adjacent
to er

ul, and denote them as L0. Since we have k = 1,
all the VLs in L0 should have the same common end-
node with er

ul, which can be denoted as vr
0 . We assume

that vr
0 is mapped onto SN vs

0, i.e., fN (vr
0) = vs

0. Then,
according to Algorithm 3, all the nodes in the CG for the
substrate paths in P s

er
ul
∩ P s

vs
0

are connected with all the
nodes in MC. This, however, is also contradicted with
the maximal of MC.

• k = 2: Similar to the case of k = 1, we just need to
consider the VLs in L, which are adjacent to er

ul. For the
two common end-nodes, we denote them as vr

1 and vr
2 ,

and the corresponding SNs are vs
1 and vs

2, respectively.
Obviously, in the CG, all the nodes for the substrate paths
in P s

vs
1,vs

2
are connected with all the nodes in MC. Again,

this is contradicted with the maximal of MC.

Hence, we prove that the size of any maximal clique in
the CG cannot be less than |Er|, which in turn verifies
that in the CG, any maximal clique is also the maximum
clique.

C. Heuristic MCMC Algorithms

With CG, we can transform the LC-VNE problem into
the minimum-cost maximum clique (MCMC) problem. More
specifically, in order to solve LC-VNE, we need to find
the maximum clique to cover all the VLs in the VNR
with the minimum total consumed resources (calculated with
Eq. (1)), while satisfying the constraints in Eqs. (2)-(6). Even
though finding the maximum clique in an arbitrary graph is
NP-hard [29], our CG-based LC-VNE algorithms would not
have complexity issues, since we have proved that in the CG,
a maximal clique is also the maximum clique as long as there
are sufficient bandwidth resources in the substrate network.

We design a heuristic to find the near-optimal MCMC in
the CG, and Algorithm 4 shows the procedure. The time
complexity of Algorithm 4 is O(K2 · |Er| · |V s|2). In Line 2,
PN is the set of all the substrate paths whose nodes in the CG
are the potential members of the maximum clique M . Here, we
use function fSP (·) to obtain the substrate path that a node
in the CG represents, while f−1

SP (·) is the inverse function.
Line 2 first initializes PN as all the substrate paths. In Line 4,

Algorithm 4 Heuristic MCMC Algorithms
input : CG Gc, substrate network Gs and VNR Gr

output: Maximum clique M , status F

1 M ← ∅;
2 PN ← fSP (V c);
3 for er ∈ Er in non-increasing order of br

er do
4 P̂ s

er ← {ps : ps ∈ P s
er ∩ PN , (min

es∈ps
bs
es) ≥ br

er};
5 if P̂ s

er = ∅ then
6 return(F = FAILURE);
7 end
8 select ps

m from P̂ s
er with the minimum h-parameter

defined by Eq. (8) or Eq. (9);
9 M ←M ∪ {f−1

SP (ps
m)};

10 PN ← PN ∩ {ps : (f−1
SP (ps), f−1

SP (ps
m)) ∈ Ec};

11 update bandwidth resources;
12 end
13 update computing resources;
14 return(F = SUCCESS);

we obtain the substrate paths that have enough bandwidth
capacities to carry VL er, and store them in P̂ s

er . The operation
in Line 8 then selects the desired substrate path ps

m for er from
P̂ s

er based on the paths’ h-parameters.
We develop two ways to calculate the h-parameter of a

substrate path and will discuss the details later. Line 9 includes
the node for ps

m in M , and Line 10 updates PN by finding the
intersection of the current PN and the set of substrate paths
whose nodes in the CG are connected with node f−1

SP (ps
m).

The operations in Lines 3-12 are repeated until M covers all
the VLs in VNR or we cannot add any other node into M .

With the two different ways to calculate the h-parameter in
Algorithm 4, we obtain two LC-VNE heuristics, i.e., the greedy
algorithm based on CG (G-CG) and load-balance enhanced
algorithm based on CG (LBE-CG).7

1) Greedy LC-VNE Based on CG (G-CG): In G-CG, we
greedily select the shortest substrate path from P̂ s

er , i.e., the
one that has the smallest number of hops. Then, we have

h(g) = |ps|, ∀ps ∈ P̂ s
er . (8)

The motivation for defining h-parameter as the path’s hop-
count is straightforward, since the shortest substrate path
consumes the least bandwidth resources in link mapping.

2) Load-Balance Enhanced LC-VNE Based on
CG (LBE-CG): LBE-CG takes load-balancing into
consideration, and h-parameter is defined as the hop-
count of a substrate path divided by its available bandwidth
capacity,

h(lb) =
|ps|

δ + min
es∈ps

bs
es

, ∀ps ∈ P̂ s
er . (9)

where δ is a small positive number to avoid zero denominator.

7Here, G-CG or LBE-CG includes all the algorithms in the LC-VNE
framework, i.e., operating as Algorithm 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II

SIMULATION PARAMETERS

D. Time Complexity of CG Based LC-VNE

Considering all the sub-procedures (i.e., Algorithms 2-4), we
get the time complexity of the CG based LC-VNE algorithms
(i.e., G-CG and LBE-CG) as O

(
K2 · |V s|3 · (|V r|2 + |V s|)).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
LC-VNE framework. Similar to our previous work in [21], the
substrate network and all the VNRs are randomly generated
with the GT-ITM tool [41]. The substrate network Gs has
50 SNs and 172 SLs, and all the SNs are located within a
100×100 grid. The number of VNs in each VNR is randomly
selected from 2 to 10, and the probability that any two VNs
are connected (i.e., the VNs’ connectivity rate) is set as 0.5.
For each VN vr, its preferred location lrvr is randomly located
in the 100 × 100 grid, and the candidate SNs are those who
are located within the circle that is centered at lrvr and has a
radius of ρ, whose default value is 20. For each SN-pair in the
substrate network, we pre-calculate K shortest paths with the
Yen’s algorithm [42]. The VNRs are generated according to a
Poisson process, which has an average arrival rate of λ VNRs
per time-unit and the average holding time of each VNR is
1
μ time-units. The traffic load of VNRs is quantified as λ

μ in
Erlangs. Table II summarizes the simulation parameters.

A. Performance Metrics

The objective of LC-VNE is to accommodate as many
VNRs as possible and to maximize the revenue of InP. Hence,
we use VNR blocking probability and time-average revenue
as the performance metrics.

• VNR Blocking Probability: It is defined as the ratio of
blocked to total arrived VNRs, i.e.,

pb = lim
T→∞

|Ωb(T)|
|Ωb(T)|+ |Ωa(T)| , (10)

where Ωb(T) and Ωa(T) denote the sets of blocked and
accepted VNRs during [0, T], respectively.

• Time-Average Revenue: It is defined as the total revenue
of accepted VNRs averaged over time, i.e.,

R̄ = lim
T→∞

∑

Gr∈Ωa(T)

RGr

T
, (11)

where RGr is the revenue generated by VNR Gr, as

RGr = (
∑

vr∈V r

cr
vr +

∑

er∈Er

br
er) · τr. (12)

Here, τr is the holding time of Gr.

B. Benchmark Algorithms

We use the algorithms proposed in [14] and their modified
versions as the benchmarks. They are denoted as DViNE,
DViNE-LB, DViNE-KSP, and DViNE-LB-KSP, respectively.
Among them, those ending with “KSP” stand for the modified
versions with K-shortest path routing, while the others are
the original ones proposed in [14]. The modified versions
are used for the reason that the original ones did not apply
any limitation on the number of candidate substrate paths
for each VL, which can be impractical for large substrate
networks. All the benchmark algorithms use LP relaxation to
solve the MCF-based MILP, with/without considering load-
balance. After that, they perform deterministic rounding on
the solution to get a feasible node mapping, and then con-
duct link mapping by solving the MCF or by using the
K-shortest-path routing to select the shortest substrate path
with enough bandwidth capacity for a VL. Actually, we have
also implemented four counterparts with random rounding.
But as they provide similar results, we omit their results due
to the page limit of the paper. Table III summarizes all the
benchmarks.

C. Simulation Results

1) Impact of Preprocessing: We first investigate the impact
of the preprocessing on our algorithms. Initially, we make
the substrate network have certain resource utilizations
on the SNs and SLs, with the distributions in Fig. 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 11

TABLE III

BENCHMARK ALGORITHMS

Fig. 4. Computing and bandwidth capacity distributions used in the
simulations for evaluating preprocessing.

Fig. 5. Optimization gaps for preprocessing.

Then, we generate VNRs randomly. Specifically, the number
of VNs ranges from 2 to 10, VN’s connectivity rate is fixed
as 0.5, and the radius ρ ∈ [20, 30]. For each VNR, we first
use the MILP proposed in [14] to get its optimal solution and
the associated total resource consumption R∗ (calculated with
Eq. (1)), and then solve the MILP again with the preprocessing
in Algorithm 2 for another LC-VNE solution with the total
resource consumption R∗

pre. The optimization gap can be
obtained as

Δ =
R∗

pre −R∗

R∗ . (13)

Fig. 5 shows the results on optimization gap. Each data
point in the figure is averaged over 50 VNRs. We can see that
since for two different VNs in a VNR, the probability that
their candidate SN sets overlap with each other will increase
with the size of VNR and the radius, the gap also becomes
larger in the simulations. However, even when the size of VNR
is 10 and the radius is 30, the optimization gap is still less
than 14%, which is relatively small compared to the results
from the heuristics, which will be shown in Subsection VI-C2.

2) Solution Quality Analysis: We then investigate the solu-
tion quality of our proposed algorithms. Fig. 6 shows the
distributions of the computing and bandwidth capacities in

Fig. 6. Computing and bandwidth capacity distributions used in the
simulations for evaluating solution quality.

Fig. 7. Optimization gaps from different algorithms.

TABLE IV

NUMBER OF VNRs FOUND SOLUTIONS

the substrate network. In the simulations, we fix the radius
as ρ = 20. For each VNR, we first use the MILP to get
the optimal LC-VNE solution, and then try to use each
heuristic algorithm to get another solution. Similar to that
in Subsection VI-C1, we calculate the optimization gap and
average the results from 50 VNRs for each data point. Fig. 7
shows the gaps from different heuristics, and Table IV provides
the number of VNRs for which the heuristics can get a
solution. The results in Fig. 7 indicate that our CG-based
heuristics always provide the smallest optimization gaps.
When the VNR size is 10, their gaps are still less than 19%.
We also notice that when other conditions are the same, the
gaps from the algorithms without considering load-balance
are smaller than those with, except for DViNE-KSP and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Simulation results. (a) Blocking probability. (b) Time-average revenue. (c) Blocking probability vs. traffic loads.

DViNE-LB-KSP. This is because in general, load-balance can
let the algorithm select an LC-VNE solution with higher
resource consumption for making the residual resources more
balanced. But since DViNE-LB-KSP only considers load-
balance in node mapping with the MCF-based load-balance
model [14], it might not consume more resources in the link
mapping stage.

It is interesting to notice that the numbers of VNRs for
which DViNE and DViNE-LB can get a solution are more
than those from our CG-based algorithms. This observation is
reasonable since they use MCF in link mapping (i.e., allowing
multi-path mapping), while our heuristics are both based on
single-path link mapping.

3) Baseline Performance Comparisons: We then perform
dynamic LC-VNE simulations with the scenario that VNRs
can come and leave on-the-fly. The performance of the heuris-
tics are first evaluated under a fixed traffic load as 20 Erlangs.
We simulate each algorithm for 500, 000 time-units and mon-
itor its performance in a long run. Fig. 8(a) compares the
results on blocking probability. We obverse that each algorithm
that considers load-balance achieves lower blocking probabil-
ity than its counterpart that does not. Since our CG-based
LC-VNE algorithms can achieve integrated node and link
mapping, they provide lower blocking probabilities than the
four benchmarks. It is worth noting that, our CG-based algo-
rithms (with single-path mapping) not only provide lower
blocking probabilities than the benchmarks that use single-path
mapping (i.e., DViNE-KSP and DViNE-LB-KSP), but also
outperform DViNE and DViNE-LB, which allow multi-path
mapping. Specifically, when simulations enter the stationary
stage, G-CG and LBE-CG reduce the blocking probability
by 39.68%, 10.74%, 58.86%, 38.64%, and 52.10%, 29.12%,
67.33%, 51.27%, respectively, when compared with DViNE,
DViNE-LB, DViNE-KSP and DViNE-LB-KSP.

Under the Poisson traffic model, the relation between time-
average revenue and blocking probability in stationary stage
can be approximated by,

R̄ � λ(1 − pb)R̄0, (14)

where R̄0 denotes the average revenue generated by
the accepted VNRs from an LC-VNE algorithm. Eq. (14)
indicates that as different algorithms can provide different R̄0,
a lower blocking probability may not necessarily lead
to a larger time-average revenue. We compare the results
on time-average revenue in Fig. 8(b), which show that

Fig. 9. Percentages of blocked VNRs with different sizes.

our CG-based algorithms also provide larger time-average
revenue. The revenue gains from G-CG and LBE-CG over
DViNE, DViNE-LB, DViNE-KSP and DViNE-LB-KSP are
8.77%, 2.19%, 21.65%, 10.69%, and 12.25%, 5.46%, 25.54%,
14.24%, respectively. However, according to Eq. (14) and
the results in Fig. 8(a), if we assume that all the algorithms
provide the same R̄0, the revenue gains should be 5.62%,
0.98%, 13.08%, 5.36%, and 7.37%, 2.66%, 14.96%, 7.12%,
respectively. The differences here suggest that our proposed
algorithms also achieve larger R̄0 than the benchmarks,
which can also be verified by analyzing the percentages of
blocked VNRs versus their sizes (i.e., numbers of VNs).

The results on percentages of blocked VNRs with different
sizes are plotted in Fig. 9. With Fig. 9, we can easily figure
out that our proposed algorithms provide larger R̄0, since they
block smaller percentages of VNRs that have relatively large
sizes. The standard deviations of the percentages obtained
by DViNE, DViNE-LB, DViNE-KSP, DViNE-LB-KSP,
G-CG, and LBE-CG for VNRs with different sizes are
0.0715, 0.0863, 0.0767, 0.0934, 0.0680, and 0.0493,
respectively, which indicates that LBE-CG achieves the best
fairness among VNRs with different sizes. This observation
can be explained as follows. Since they consider the node
and link mappings separately, the benchmarks may result in
improper node mapping that may make the subsequent link
mapping consume unnecessarily large bandwidth resources
and eventually lead to link mapping failures. When the VNR’s
size becomes larger, this negative effect becomes more severe.
Consequently, it is more difficult for these algorithms to
embed VNRs with larger sizes. Although G-CG achieves
integrated node and link mapping, it may cause congestion on

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: NOVEL LC-VNE ALGORITHMS TOWARDS INTEGRATED NODE AND LINK MAPPING 13

Fig. 10. Simulation results. (a) Time-average revenue vs. traffic loads. (b) Blocking probability vs. radius. (c) Time-average revenue vs. radius.

some critical SLs due to its greedy nature, which will block
future embedding. LBE-CG not only achieves integrated node
and link mapping, but also considers load-balance. Hence, it
leaves more resources for future embedding and relieves SLs’
congestions.

4) Sensitivity Analysis: To evaluate the sensitivity of the
algorithms, we compare the results on blocking probability
and time-average revenue under different traffic loads and with
different radius, i.e., different sizes of candidate SN sets.

The results on blocking probability and time-average
revenue under different traffic loads are plotted in
Figs. 8(c) and 10(a), respectively. It can be seen that our pro-
posed algorithms always achieve lower blocking probability
and larger time-average revenue than the four benchmarks.
The advantage of our CG-based algorithms can be traced back
to the integrated node and link mapping. Hence, even though
the preprocessing in Algorithm 2 reduces the solution space of
LC-VNE, they still provide better blocking performance and
larger revenue. In Fig. 8(c), we observe that the differences on
blocking probabilities from those that consider load-balance
or not (e.g., DViNE and DViNE-LB) are very small, when the
traffic load is relatively low. This is because the congestion
due to the greedy nature of the algorithms that do not consider
load-balance is not severe when the traffic load is low.

The preprocessing can make our CG-based algorithms
perform worse, when the candidate SN sets get larger and
the overlaps among them become more obvious. Hence,
we plot the results on the blocking probability and time-
average revenue for radius ρ changing from 20 to 30 in
Figs. 10(b) and 10(c). In these simulations, the traffic load is
fixed as 25 Erlangs. The sizes of the candidate SN sets, i.e., the
number of candidates for each VN, for radius ρ changing from
20 to 30 are plotted in Fig. 11. We observe that our proposed
algorithms still always achieve lower blocking probability and
larger time-average revenue than the four benchmarks. For
our proposed algorithms, the blocking probability decreases
and the time-average revenue increases with the increase
of the radius, while for the benchmarks, their performance
gets slightly worse when the radius increases. Note that
when the radius increases, the number of candidate SNs
increases, the solution space gets larger. This might make the
solutions obtained by the proposed algorithms perform better.
However, as the node mapping of the benchmarks suffers
from the disadvantages of LP relaxation and rounding, there
is no performance guarantee, it is also possible to end up
with worse solutions or even infeasible ones. This explains

Fig. 11. Number of candidate SNs for each VN vs. radius.

Fig. 12. Normalized computation time per VNR.

why their performance can even get slightly worse when the
radius increases.

5) Time Complexity: In order to compare the time complex-
ity of the algorithms, we use the computation time of G-CG
as the basis, and summarize the results on the normalized
computation time per VNR in Fig. 12. Note that, for our
CG-based algorithms, we include the computation time of
the pre-calculation of the K-shortest paths, the preprocessing
(i.e., Algorithm 2), the CG construction (i.e., Algorithm 3),
and the MCMC heuristics (i.e., Algorithm 4). The simulation
environment is Matlab 2012b running on a computer with
3.10 GHz Intel Core i3-2100 CPU and 4.00 GB RAM. The
LPs in the benchmarks are solved with the GNU Linear
Programming Kit (GLPK) package [43]. It can be seen that
our proposed algorithms require much less computation time
than the benchmarks, especially when the radius is relatively
small. This is because the benchmarks are based on MCF and
need to solve LPs, which can cause high time complexity.
Moreover, as DViNE and DViNE-LB need to solve LPs twice
for each VNR, they take the longest computation time.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

VII. CONCLUSION

In this work, we focused on solving LC-VNE efficiently.
Firstly, by leveraging graph bisection, we proved the
NP-completeness of LC-VNE and provided the
in-approximability result of it. Then, we proposed two novel
heuristics based on CG to achieve integrated node and
link mapping for LC-VNE. Specifically, with CG, we
reduced LC-VNE to the minimum-cost maximum clique
problem. Extensive numerical simulations were conducted
and the results showed that our proposed algorithms could
provide smaller gaps to the optimal solutions, better blocking
performance and larger time-average revenue than the existing
ones, with much lower time complexity.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming
the Internet impasse through virtualization,” Computer, vol. 38, no. 4,
pp. 34–41, Apr. 2005.

[2] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly efficient
data migration and backup for big data applications in elastic optical
inter-data-center networks,” IEEE Netw., vol. 29, no. 5, pp. 36–42,
Sep./Oct. 2015.

[3] R. Mao et al., “Overcoming the challenge of variety: Big data abstrac-
tion, the next evolution of data management for AAL communication
systems,” IEEE Commun. Mag., vol. 53, no. 1, pp. 42–47, Jan. 2015.

[4] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, pp. 862–876, Apr. 2010.

[5] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network virtual-
ization: A hypervisor for the Internet?” IEEE Commun. Mag., vol. 50,
no. 1, pp. 136–143, Jan. 2012.

[6] Cisco Network Virtualization Solutions. [Online]. Available: http://
www.cisco.com/en/US/netsol/ns658/.

[7] Hyper-V Network Virtualization Overview. [Online]. Available:
http://technet.microsoft.com/en-us/library/jj134230.aspx.

[8] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quarter, 2013.

[9] D. Andersen, “Theoretical approaches to node assignment,” Unpublished
Manuscript, pp. 1–13, Dec. 2002.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and migration,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29,
Apr. 2008.

[11] X. Cheng et al., “Virtual network embedding through topology-aware
node ranking,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 2,
pp. 38–47, Apr. 2011.

[12] Z. Wang, Y. Han, T. Lin, H. Tang, and S. Ci, “Virtual network embedding
by exploiting topological information,” in Proc. IEEE GLOBECOM,
Dec. 2012, pp. 2603–2608.

[13] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 816–827, Mar. 2014.

[14] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[15] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding
problem: A column generation approach,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 410–414.

[16] L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual
network embedding over elastic optical infrastructures,” in Proc. IEEE
ICC, Jun. 2013, pp. 3466–3470.

[17] C. Papagianni et al., “On the optimal allocation of virtual resources
in cloud computing networks,” IEEE Trans. Comput., vol. 62, no. 6,
pp. 1060–1071, Jun. 2013.

[18] A. Leivadeas, C. Papagianni, and S. Papavassiliou, “Efficient resource
mapping framework over networked clouds via iterated local search-
based request partitioning,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 6, pp. 1077–1086, Jun. 2013.

[19] Y. Jin, Y. Wen, Q. Chen, and Z. Zhu, “An empirical investigation of
the impact of server virtualization on energy efficiency for green data
center,” Comput. J., vol. 56, pp. 977–990, Aug. 2013.

[20] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” J. Lightw. Technol., vol. 32, no. 3, pp. 450–460,
Feb. 1, 2014.

[21] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc.
IEEE INFOCOM, Apr./May 2014, pp. 1–9.

[22] H. Jiang, L. Gong, and Z. W. Zuqing, “Efficient joint approaches for
location-constrained survivable virtual network embedding,” in Proc.
IEEE GLOBECOM, Dec. 2014, pp. 1810–1815.

[23] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, “Availability-aware survivable
virtual network embedding in optical datacenter networks,” J. Opt.
Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[24] Z. Zhu, P. Lu, J. J. P. C. Rodrigues, and Y. Wen, “Energy-efficient
wideband cable access networks in future smart cities,” IEEE Commun.
Mag., vol. 51, no. 6, pp. 94–100, Jun. 2013.

[25] D. Zhang et al., “Fine-grained localization for multiple transceiver-free
objects by using RF-based technologies,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 6, pp. 1464–1475, Jun. 2014.

[26] J. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinated data
backup in geo-distributed optical inter-datacenter networks,” J. Lightw.
Technol., vol. 33, no. 14, pp. 3005–3015, Jul. 15, 2015.

[27] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud man-
agement for profit-driven multimedia cloud computing,” IEEE Trans.
Multimedia, vol. 17, no. 8, pp. 1297–1308, Aug. 2015.

[28] J. Zhao, S. Subramaniam, and M. Brandt-Pearce, “Virtual topol-
ogy mapping in elastic optical networks,” in Proc. ICC, Jun. 2013,
pp. 3904–3908.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1990.

[30] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discovery
and allocation in network virtualization,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 4, pp. 1114–1128, 4th Quarter, 2012.

[31] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” in Proc. WWW, Apr. 1998, pp. 107–117.

[32] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Netw., vol. 1, no. 3, pp. 215–239, Jul. 1979.

[33] A. Schrijver, Theory of Linear and Integer Programming. New York,
NY, USA: Wiley, 1986.

[34] S. Ma et al., “Demonstration of online spectrum defragmentation
enabled by OpenFlow in software-defined elastic optical networks,” in
Proc. OFC, Mar. 2014, pp. 1–3.

[35] D. B. West, Introduction to Graph Theory, 2nd ed. New York, NY,
USA: Pearson Education Inc., 2001.

[36] D.-Z. Du, K.-I. Ko, and X. Hu, Design and Analysis of Approximation
Algorithms. New York, NY, USA: Springer, Nov. 2011.

[37] S. Arora and C. Lund, “Approximation algorithms for NP-hard prob-
lems,” in Hardness of Approximations. Boston, MA, USA: PWS-Kent,
1997, pp. 399–446.

[38] M. Brown and R. Tarjan, “A fast merging algorithm,” J. ACM, vol. 26,
pp. 211–226, Apr. 1979.

[39] J. Hastad, “Clique is hard to approximate within n1−ε,” in Proc.
37th FOCS, Oct. 1996, pp. 627–636.

[40] R. A. Brualdi, Introductory Combinatorics, 5th ed. New York, NY, USA:
Pearson Education Inc., 2009.

[41] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proc. INFOCOM, Mar. 1996, pp. 594–602.

[42] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage.
Sci., vol. 17, pp. 712–716, Jul. 1971.

[43] GNU Linear Programming Kit (GLPK) Package. [Online]. Available:
http://www.gnu.org/software/glpk/.

Long Gong, photograph and biography not available at the time of
publication.

Huihui Jiang, photograph and biography not available at the time of
publication.

Yixiang Wang, photograph and biography not available at the time of
publication.

Zuqing Zhu, photograph and biography not available at the time of
publication.

