
Design and Demonstration of SDN-based Flexible
Flow Converging with Protocol-Oblivious

Forwarding (POF)
Daoyun Hu, Shengru Li, Nana Xue, Cen Chen, Shoujiang Ma, Wenjian Fang, Zuqing Zhu†

School of Information Science and Technology, University of Science and Technology of China, Hefei, China
†Email: {zqzhu}@ieee.org

Abstract—With the development of software-defined network-
ing (SDN), people start to realize that the protocol-dependent
nature of OpenFlow, i.e., the matching fields are defined ac-
cording to existing network protocols (e.g., Ethernet and IP),
will limit the programmability of forwarding plane and caus e
scalability issues. In this work, we focus on Protocol-Oblivious
Forwarding (POF) [1], which can make the forwarding plane
reconfigurable, programmable and future-proof with a protocol-
independent instruction set. We design and implement a POF-
based flexible flow converging (F-FC) scheme to reduce the
number of flow-entries for enhanced scalability. To evaluate the
POF system experimentally, we build a network testbed that
consists of both commercial and software-based POF switches.
Network experiments with real-time video streaming in the
proposed POF system demonstrate that our POF-based F-FC
approach can outperform conventional schemes.

Index Terms—Software-defined networking (SDN), Protocol-
oblivious forwarding (POF), Flexible flow converging (F-FC).

I. I NSTRUCTION

Over the past decade, the fast development of the Internet
has pushed the scales of end users, network devices and
applications to grow exponentially. That made the Internet
architecture become more and more complicated, which im-
pedes the introduction of new protocols and slows down the
support of new services. In response to these issues, software-
defined networking (SDN) was proposed to make a network
more programmable and application-aware, by separating its
control and forwarding planes [2]. As an initial implementation
of SDN, OpenFlow [3] has been developed as an open standard
protocol to specify a forwarding plane abstraction together
with an application programming interface (API) for for-
warding devices. Specifically, OpenFlow leverages flow-based
switching and enables software-defined routing, forwarding
and managing by introducing a centralized controller.

In OpenFlow, a forwarding element is abstracted as a
flow table, which realizes flow processing by applying the
“match-and-act” principle. The flow tables are managed by
the centralized controller with an instruction set specified in
OpenFlow. It is known that OpenFlow provides a power tool
for the control and management of enterprise networks and has
already been applied to wide-area networks (WANs) and large
datacenters [4]. However, OpenFlow still has the protocol-
dependent nature,i.e., the matching fields in its flow tables are
defined according to existing network protocols (e.g., Ethernet

and IP), which limits the programmability of forwarding plane
and causes scalability issues [1, 5, 6]. For instance, the number
of the matching fields has been increased from12 in OpenFlow
1.0 to 44 in OpenFlow 1.5 [7]. In the flow matching, since
OpenFlow switches need to understand the protocol headers to
parse packets, compatibility may become a serious issue when
protocols try to add or remove header fields [4]. Hence, it is
desired that the programmability of networks should be further
improved such that the forwarding plane can be dynamically
reprogrammed to seamlessly support new protocol stacks and
associated packet parsing and processing [4, 8].

Recently, several new SDN approaches have been proposed
to enhance the programmability of forwarding plane, includ-
ing protocol-oblivious forwarding (POF) [1] and protocol-
independent forwarding (PIF) [5]. Both POF and PIF try
to make the forwarding plane reconfigurable, programmable
and future-proof with a protocol-independent instructionset.
Meanwhile, the programming of protocol-independent packet
processors (P4) [6] has been addressed to provide a framework
and a high-level language for programming forwarding devices
based on such an instruction set. People have designed a
generic flow instruction set (FIS) for POF to make forwarding
devices work as white-boxes [9]. Hence, a forwarding device
can parse and process packets with the rules implemented by
the POF controller and does not need any pre-knowledge on
the protocol stack and associated packet handling mechanism.
Consequently, the POF network can transmit packets belong-
ing to various protocols, and the operator can even define
new protocols and/or packet handling mechanisms without
concerning about the compatibility in forwarding plane.

In this work, we focus on POF and demonstrate a novel
SDN-based flexible flow converging scheme with it. Note that
when an OpenFlow network needs to carry huge volume of
traffic with many flows, the number of flow-entries imple-
mented in the switches may increase rapidly and can cause
serious scalability issues. This problem can be mitigated by
compressing the flow-entries with non-prefix aggregation [10,
11]. However, it is known that non-prefix aggregation is aNP-
hard problem [10] and hence the computation time could be an
issue for online operation. Previous work also suggested that
one can reduce flow-entries by leveraging the flow converging
scheme that classifies the flows going through the same path
segment into one forwarding equivalence class (FEC) [12].



(a) Network architecture.

(b) Forwarding procedure.

Fig. 1. Overview of POF

Nevertheless, as we will show later in the paper, this scheme
cannot maximize the reduction on flow-entries due to the
protocol-dependent nature of OpenFlow.

We propose a POF-based flexible flow converging (F-FC)
scheme to reduce the flow-entries further for better scalability,
and also design the POF system to implement it. Then, we
realize the proposed system in a network testbed that consists
of both commercial and software-based POF switches. Net-
working experiments are also conducted to demonstrate F-FC
and compare its performance with the conventional schemes.

The rest of the paper is organized as follows. Section II
describes the working principle of POF. In Section III, we
discuss the F-FC scheme and our design of the POF system
to implement it. The experimental demonstration is presented
in Section IV. Finally, Section V summarizes the paper.

II. PROTOCOL-OBLIVIOUS FORWARDING (POF)

A. Overview of POF

Fig. 1 shows the overview of POF. In Fig. 1(a), we can see
that POF utilizes the similar architecture as that of OpenFlow,
i.e., a centralized controller resides in the control plane to
manage the switches in the forwarding plane. However, POF
uses different forwarding procedure as shown in Fig. 1(b),
which is not based on the header fields defined by specific
protocols. Actually, the POF switches do not need to know the
forwarding protocol in advance, since the packet parsing and
flow matching are directed by the POF controller through a se-
quence of generic key assembly and table lookup instructions
[1]. This is achieved by defining the search key of a matching
field as a tuple<offset, length>, whereoffset indicates the
beginning position of the matching field in the packet and
length provides the field’s length. Moreover, a POF switch
can also use<offset, length> to locate the target data when it
needs to manipulate the packet with certain action(s) (e.g., add,
delete and modify). Hence, for packet forwarding, all a POF
switch needs to do is to extract the matching fields from the
packet header, perform flow table lookups, and then execute
the associated instructions provided by the POF controller.

B. POF Switch and Controller in Our System

Similar to the case of OpenFlow, we can use two types of
POF switches to realize the functionalities described above,
which are the commercial and software-based ones. In this
work, we include both of them in our POF-based network
testbed. For the commercial switch, we use Huawei’s NE40E-
X3, while the software-based switch is home-made by modi-
fying and upgrading an existing software prototype [13].

In order to implement F-FC, we realize the POF controller
by extending the POX platform [14]. Fig. 2 shows the pro-
posed structure of the POF controller to realize F-FC. The
details of the functional modules are as follows.

• POF Manager: It works as the arbiter in the POF
controller and other modules talk with it to realize certain
functions for network control and management (NC&M).
Meanwhile, POF Manager monitors the network status
proactively by checking TED periodically and when a
path switching is needed (e.g., a network failure hap-
pens), it instructs the path computation module (PCM)
to calculate the new forwarding path and invokes FPM
to implement the path switching. Besides, POF Manager
works with a web-based graphic user interface (GUI)
to illustrate the network status, and the operator can
retrieve information from it through an external network
management system (NMS).

• FPM (Flow Provision Module): It interacts with POF
switches to manage the forwarding paths of flows and is
also responsible for encoding/decoding POF messages.
For example, during the flow setup, FPM receives the
Packet-Inmessage1 from the ingress switch and forwards
the information to POF Manager for path computation.
After obtaining feedback from POF Manager, it encodes
the flow-entries inFlow-Mod messages and sends them
to related switches to provision the flow. FPM also lets
POF Manager update the records of flows in the traffic
engineering database (TED).

• PCM (Path Computation Module): It receives path
computation tasks from POF Manager and optimizes
each packet flow’s forwarding path to achieve F-FC.
Upon receiving a task, PCM calculates the path based
on the current network status in TED. When the path-
computation is done, it checks whether the F-FC scheme
needs to be applied. If yes, it generates the F-FC labels
for the flow and saves the label-flow mapping in the label
database (LDB). Otherwise, the flow will be forwarded
independently. The F-FC labels will be explained in detail
in Section III. Finally, PCM returns the path computation
results to POF Manager, which will then instruct FPM to
build and send the corresponding flow-entries.

• TED (Traffic Engineering Database): It stores the net-
work status, including active POF switches, connectivity
among them, bandwidth usage on each link, and the
information of in-service flows. The network abstraction

1Note that thePacket-Inand Flow-Mod messages here refer to the POF
messages that are extended from those with the same names in OpenFlow.



Fig. 2. Proposed structure of POF controller.

module (NAM) and POF Manager update TED in real-
time to make it contain the most-updated information.

• NAM (Network Abstraction Module) : It collects the
topology information, abstracts the POF switches, and
updates the network status in TED proactively.

• LDB (Label Database): It stores the label-flow mapping
for F-FC and assists PCM to generate the F-FC labels.

III. F LEXIBLE FLOW CONVERGING (F-FC) WITH POF

A. Flow Converging with FEC

The flow converging (FC) scheme that classifies the flows
going through the same path segment into one FEC was
originally defined in multi-protocol label switching (MPLS)
[15], which is supported by the latest OpenFlow specification.
Hence, the OpenFlow controller can classify flows into FECs
and assign a MPLS label to each of them [12]. However, as
OpenFlow is protocol-dependent, it can only leverage one M-
PLS label per flow for FC (i.e., no matter how many labels we
assign to a flow, the OpenFlow switches will only match the
first one), which restricts the scheme’s flexibility. Specifically,
we have the dilemma that if we classify too many flows into
one FEC, the granularity of traffic engineering would become
coarse, but if one FEC only contains a few flows, the number
of flow-entries could not be reduced effectively.

B. POF-based Flexible Flow Converging (F-FC)

In the proposed F-FC scheme, we use two labels per flow
to distinguish the flows in a hierarchic manner. Specifically,
we use the first label to identify a converged super-flow, while
the individual flows in the super-flow is distinguished by the
second label. POF switches can determine the forwarding
action(s) of a flow by matching only the first label or both
ones, depending on the flow-entries provided by the POF
controller. Hence, the POF switches on the shared path seg-
ment can forward the super-flow based on the first label and
individual flows can be extracted from the super-flow easily by
conducting forwarding action(s) based on both labels. More
importantly, as the flow-entries can be updated by the POF
controller dynamically, we can adjust the F-FC schemes of
the flows adaptively, according to the network status.

In order to fully explore the flexibility on packet forwarding
provided by POF, we make POF switches perform the packet
format conversion shown in Fig. 3 on the flows that need to
go through F-FC. Specifically, we first replace the Ethernet
header with two F-FC labels, which have variable lengths.
Each F-FC label contains two fields,i.e., the lengthandvalue
fields. Thelengthfield occupies4 bits and indicates the length

Fig. 3. Packet format conversion for F-FC.

Fig. 4. Changing and static fields in IP/TCP/UDP headers.

of the valuefield in bytes. As the total length of the Ethernet
header is14 bytes, we use thepaddingfield to stuff it if the
two F-FC labels cannot fully fill it. The reason why we use
variable-length F-FC labels here is that they bring in more
flexibility. For instance, the label length can be determined
based on the number of flows in the network, or the labels in
different lengths are used to identify different services.

After replacing the Ethernet header with the F-FC labels,
the packet format conversion performs a header compression
to improve the packet flow’s transmission efficiency. Before
performing the header compression, we categorize the fields
in IP/TCP/UDP protocol headers into two classes,i.e., the
changing fields and the static fields. Basically, as shown in
Fig. 4, the static fields will remain unchanged when a packet
being forwarding through the POF network, while the packet
forwarding can vary the value of a changing field. Hence, we
make the ingress POF switch use the header compression to
extract all the static fields, which will be reinserted into the
packets at the egress switch.

C. F-FC Algorithm

For proof-of-concept demonstration, we develop a straight-
forward algorithm to determine the F-FC schemes for flows.
Basically, when a flow initially arrives at an ingress POF
switch, the POF controller calculates the shortest feasible path
for it to go through the POF network. Then, the controller
checks the switches on the path one-by-one to find whether
there is a flow or a super-flow that shares certain path segment
with this flow and we can apply the F-FC scheme. For
instance, as shown in Fig. 5, theFlows 7→94 and 8→94 can
be converged atNode37, while the super-flow of these two
flows can be further converged withFlow 1→94 atNode44.
Here, for the path segment 37→44, the two flows share the
same first F-FC label to indicate the super-flow, while their
second F-FC labels are different to distinguish them. Similarly,



Fig. 5. Network topology of F-FC simulation.

10 20 30 40 50 60 70 80 90 100
0

400

800

1200

1600

Traffic Arrival Rate (flows/second)

N
um

be
r 

of
 F

lo
w

−E
nt

rie
s

 

 

OpenFlow w/o FC
OpenFlow w/ FC
POF w/ F−FC

Fig. 6. Simulation results on number of flow-entries.

for the path segment 44→94 , the three flows share the same
first F-FC label but use different second F-FC labels.

To show the effect of F-FC on flow-entry reduction, we
conduct a simple simulation with the 10×10 grid topology
in Fig. 5. The simulation randomly chooses the ingress and
egress nodes of flows fromNodes {0, · · · , 9} and Nodes
{90, · · · , 99}, respectively. The flows are dynamically gener-
ated according to the Poisson traffic model. Here, we compare
the flow-entries used in three schemes,i.e., OpenFlow without
FC, OpenFlow with FC, and POF with F-FC. Fig. 6 shows the
simulation results and we observe that POF with F-FC uses
the least number of flow-entries among the three scenarios.

D. Operation Procedure of F-FC

Fig. 7 illustrates the procedure of forwarding a TCP/IP
packet flow through the POF network using the F-FC scheme.

• Step 1: The packet flow that comes from an end users
arrives at an ingress switch of the POF network.

• Step 2: The ingress switch checks and finds that there
is no matching flow-entry for the flow. Hence, it sends a
Packet-Inmessage to the POF controller and asks for the
instructions on forwarding the flow.

• Step 3: FPM in the POF controller receives the POF
message and forwards the information to POF Manager
for path computation.

• Step 4: POF Manager invokes the path computation
in PCM, which obtains the forwarding path based on
the current network status in TED and also determines
whether the F-FC scheme needs to be applied. If yes,
it generates the F-FC labels for the flow and stores the
label-flow mapping in LDB.

Fig. 7. Procedure for flow forwarding with F-FC in POF Network.

Fig. 8. Experimental setup.

• Step 5: POF Manager instructs FPM to encode the flow-
entries for all the switches on the forwarding path, and
FPM sends the flow-entries out withFlow-Modmessages
to provision the flow.

• Step 6: At the ingress switch, the flow packets go through
the packet format conversion for F-FC (assuming F-FC
needs to be applied), and each intermediate switch for-
wards the packets according to the flow-entries provided
by the POF controller.

• Step 7: Finally, at the egress switch, the packets are
recovered to their original format by going through the
reversed operation for the packet format conversion.

IV. EXPERIMENTAL DEMONSTRATIONS

We implement the aforementioned POF system in a network
testbed that consists of both commercial and software-based
POF switches. As shown in Fig. 8, there are7 POF switches in
the testbed. Among them,Nodes1-6 are realized with running
software-based POF switch on high-performance Linux server-
s (Lenovo ThinkServer RD540), andNode7 is the hardware
POF switch that is based on Huawei’s NE40E-X3. The POF
controller is also implemented on an independent Linux server,
which is directly connected to all the POF switches.

A. Experiments for Function Verification

We first perform a serial of simple experiments to verify that
the POF system can perform packet forwarding as designed.
Specifically, we use an IXIA traffic generator to send IP/UDP
packets fromNode 1 to Node 7 and the input throughput
before Node 1 is fixed at 5 Mbps. Then, we change the
input IP packet length from128 to 1500 Bytes, and check
the bandwidth utilization in the POF network when the packet



format conversion described in Section III-B is applied at the
ingress POF switch onNode1.

Fig. 9(a) shows the Wireshark capture of the Ethernet
frame of an IPv6 packet beforeNode1. It can be seen that
the frame length is290 Bytes, which include14 Bytes for
the Ethernet header and276 Bytes for the IP packet. The
Wireshark capture for the same packet that is received on
Node 7 is illustrated in Fig. 9(b). First of all, the fact that
we can receive the packet onNode7 confirms that the POF
system can correctly forward the packet. Since the packet uses
a non-standard header format that does not comply with any
existing protocols, the Wireshark capture in Fig. 9(b) verifies
that the POF system can perform protocol-independent packet
forwarding. Moreover, we observe that the frame length gets
reduced to248 Bytes in Fig. 9(b), which indicates that the
header compression also works as expected.

Fig. 9(c) shows the experimental results on bandwidth
utilization in the POF network for different input IP packet
lengths. Here, we test both IPv4 and IPv6 packets. It can
be seen that the packet format conversion can reduce the
bandwidth utilization in the POF network significantly, and
hence the bandwidth efficiency of packet forwarding gets
improved effectively. We also notice that the bandwidth u-
tilization increases with the packet length. This is because
when the packet length is longer, we transmit less number
of packets per unit time and hence the effectiveness of header
compression on bandwidth reduction becomes less. For the
reason that IPv6 header is longer than IPv4 header (i.e., IPv6
header can be compressed more), the bandwidth utilization of
IPv6 packets is less than that of IPv4 ones.

B. Experiments for Video Streaming with F-FC

We then perform experiments on video streaming with F-
FC to demonstrate the advantages of the proposed POF system
further. As illustrated in Fig. 8, we consider six end users who
are using the POF network that has the bandwidth limitation
marked on each link. Here,UsersI and II connect toNode1,
User III connects toNode3, andUsersIV, V and VI connect
to Node7. The experimental scenario is as follows.

• Step 1: At t = 0 second, we start three packet flows in
the POF network.Flow 1 is from User I to User IV for 2

Mbps file transfer,Flow 2 is from User II to User VI for
3.5 Mbps file transfer, andFlow 3 is fromUser III to User
V for 3.5 Mbps video streaming (H.264 video sequence
encoded as 1080P). The end users encapsulate all the flow
packets in the IPv4/UDP format before sending them in.

• Step 2: At t = 15 seconds, we have a newFlow 4 that
joins in and uses up all the4 Mbps capacity onLink
3→5.

We compare three schemes in the experiments,i.e., OpenFlow
without FC, OpenFlow with FC, and POF with F-FC.

1) OpenFlow without FC:In this scheme, we downgrade
the POF system to an OpenFlow one that does not have FC
support. Then, the experimental scenario is as follows. Initial-
ly, Flows1-3 are forwarded with the paths illustrated in Fig. 8.
Then, whenFlow 4 joins, the controller detects the congestion

(a) Wireshark capture for input IPv6 packet beforeNode1.

(b) Wireshark capture for POF packet received onNode7.

128 256 512 726 1024 1500
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Input Packet Length (Bytes)

B
an

dw
id

th
 U

til
iz

at
io

n 
(M

bp
s)

 

 

IPv4/UDP
IPv6/UDP
Initial Bandwidth

(c) Experimental results on bandwidth utilization in POF network.

Fig. 9. Results from the experiments for function verification.

on Link 3→5, switchesFlow 1 to path 1→2→4→6→5→7,
and makesFlow 3 take the path 3→2→4→6→7. Hence, the
three flows can all be transferred successfully. However, in
order to forward each flow correctly, each related switch has
to install an independent flow-entry for it. For instance, after
t = 15 seconds, there will be three flow-entries in each switch
that is on path segment 2→4→6.

2) OpenFlow with FC:In this scheme, we downgrade the
POF system to an OpenFlow one that supports FC with MPLS
labels. Then, att = 0 second,Flows 1 and 2 are converged
as a super-flow and transmitted through path 1→2→4→6→7.
Meanwhile,Flow 3 uses path 3→5→7. WhenFlow 4 joins,
we cannot divergeFlows 1 and 2 at Node 6, because their
super-flow is identified by a single flow-entry2. Then,Flow 3

2Note that we actually can divergeFlows 1 and 2 here, if we make the
switch on Node6 to match the source and destination IP addresses of the
flows. However, this will make the number of flow-entries increase and let
the flow-matching become as complicated as that in OpenFlow without FC.
Hence, we assume that OpenFlow with FC will not perform thoseactions.



TABLE I
NUMBER OF FLOW-ENTRIES IN V IDEO STREAMING EXPERIMENTS.

OpenFlow w/ FC OpenFlow w/o FC POF w/ F-FC
Before TE 10 13 10
After TE 13 16 11

0 10 20 30 40 50
0

2

4

6

Time (seconds)

B
W

 (
M

bp
s)

(a) OpenFlow w/ FC

0 10 20 30 40 50
0

2

4

6

Time (seconds)

B
W

 (
M

bp
s)

(b) POF w/ F−FC

Fig. 10. Results on received bandwidth atUser V for video streaming.

can only be switched to path 3→2→4→6→5→7. However,
since the bandwidth capacity ofLink 6→5 is 2 Mbps, the
quality of video streaming gets degraded significantly.

3) POF with F-FC: Initially, the POF system serves the
flows as the OpenFlow systems, andFlows 1 and 2 are
converged atNode1 with F-FC. WhenLink 3→5 becomes
congested att = 15 seconds, the POF controller assignsFlows
2 and3 to paths 1→2→4→6→5→7 and 3→2→4→6→7, and
the F-FC scheme can still be applied,i.e., Flows 1 and2 are
converged atNode1, Flows1-3 are converged atNode2. For
example, onLink 2→4, we only use one flow-entry to switch
the super-flow ofFlows1-3 with the first label, and atNode6,
we match both labels simultaneously to divergeFlow 1 from
the super-flow and route it to use path segment 6→5→7.

Table I summarizes the numbers of flow-entries used in the
experiments, which still shows that POF with F-FC uses the
least number of flow-entries. Fig. 10 shows the results on the
received bandwidth atUserV for video streaming. We can see
that for OpenFlow with FC, the bandwidth gets reduced to2

Mbps due to the bandwidth limitation onLink 6→5, which will
degrade the quality of video streaming significantly. As shown
in Fig. 11(a), aftert = 15 seconds, the bandwidth limitation
causes a lot of packet losses onFlow 3, which make most
of the received video frames not decodable (here, a red bar
means that a frame is not decodable due to severe packet loss).
On the other hand, due to the F-FC scheme can arrange the
forwarding paths in a better way, the bandwidth ofFlow 3

will not decrease aftert = 15 seconds in the POF network,
and all the received video frames are decodable. The results
on the luminance component’s peak signal-to-noise ratio (Y-
PSNR) of received video in Fig. 11(b) also indicate that the
proposed POF system does not have any adverse effect on the
video streaming. Note that for OpenFlow with FC, the severe
packet losses aftert = 15 seconds make the Y-PSNR results
really low and hence we do not plot them to save space.

V. CONCLUSION

In this work, we designed and implemented a POF-based
flexible flow converging (F-FC) scheme to reduce the flow-
entries for enhanced scalability. The proposed system was

Time

(I) OpenFlow w/ FC

(II) POF w/ F−FC

(a) Results on received video’s decodability.

0 10 20 30 40 50
0

25

50

75

100

Time (seconds)

Y
−P

S
N

R
 (

dB
)

(b) Results on Y-PSNR of the received video in POF with F-FC.

Fig. 11. Results on performance of the received videos.

evaluated experimentally in a network testbed that consisted of
both commercial and software-based POF switches. Network
experiments with real-time video streaming demonstrated that
the proposed POF system outperformed conventional schemes.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Project
61371117, the Fundamental Research Funds for the Cen-
tral Universities (WK2100060010), Natural Science Re-
search Project for Universities in Anhui (KJ2014ZD38), and
the Strategic Priority Research Program of the CAS (X-
DA06011202).

REFERENCES

[1] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” inProc. of ACM HotSDN
2013, pp. 127–132, Aug. 2013.

[2] Software-defined networking (SDN) definition. [Online]. Available:
https://www.opennetworking.org/sdn-resources/sdn-definition

[3] N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” Comput. Commun. Rev., vol. 38, pp. 69–74, Feb. 2008.

[4] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2015.

[5] Protocol Independent Forwarding. [Online]. Available: https://www.
opennetworking.org/protocol-independent-forwarding

[6] P. Bosshartet al., “P4: Programming protocol-independent packet pro-
cessors,”Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[7] OpenFlow Switch Specifications. [Online]. Available: https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[8] H. Farhady, Lee, and A. Nakao, “Software-defined networking: A
survey,” Compt. Netw., vol. 81, pp. 79–95, Feb. 2015.

[9] J. Yu et al., “Forwarding programming in protocol-oblivious instruction
set,” in Proc. of ICNP 2014, pp. 577–582, Oct. 2014.

[10] C. Meiners, A. Liu, and E. Torng, “Bit weaving: a non-prefix approach
to compressing packet classifiers in TCAMs,”IEEE/ACM Trans. Netw.,
vol. 20, pp. 488–500, Apr. 2012.

[11] S. Luo, H. Yu, and L. Li, “Fast incremental flow table aggregation in
SDN,” in Proc. of ICCCN 2014, pp. 1–8, Aug. 2014.

[12] B. Zhang, J. Bi, and J. Wu, “AFEC: A method of aggregatingforwarding
equivalence classes based on overlapped paths,” inProc. of ICNP 2012,
pp. 1–2, Nov. 2012.

[13] POFSwitch Introduction. [Online]. Available: http://www.poforwarding.
org/document/POFSwitchIntroduction.pdf

[14] POX Wiki. [Online]. Available: https://openflow.stanford.edu/display/
ONL/POX+Wiki

[15] F. Le Faucheur, “IETF multiprotocol label switching (MPLS) architec-
ture,” in Proc. of ICATM 1998, pp. 6–15, Jun. 1998.


