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Abstract—In this paper, we propose to use IP-forwarding
interchanging (i.e., exchanging packets between IPv4 and IPv6
according to the network status) enabled by OpenFlow to realize
quality-of-service (QoS) aware flexible traffic engineering (F-TE)
in a hybrid network where IPv4 and IPv6 coexist. Specifically,
we have different IP domains interconnected by OpenFlow
switches managed by a centralized controller, and design the
network system to facilitate online, adaptive and per-flow-based
IP-forwarding interchanging for link utilization optimization
with the considerations on applications’ QoS requirements. We
implement the design in a semi-practical network testbed, and
demonstrate the advantages of F-TE with experiments that
include simultaneous video streaming and file transfer.
Index Terms—OpenFlow, IPv6, Flexible traffic engineering.

I. INTRODUCTION

Over the last few decades, Internet protocol (IP) networking
has made great success for providing people a convenient, ro-
bust and economical way to access the Internet. However, with
the fast development of Internet, the numbers of network de-
vices and emerging applications are growing very fast, which
brings a lot of challenges to the current IP infrastructure. For
instance, the Internet Assigned Numbers Authority (IANA)
assigned its last available IPv4 address-pool in February 2011
[1], which means that in the near future, new network devices
may have difficulties to acquire IPv4 addresses for accessing
the Internet. In order to resolve this addressing issue, IPv6 has
been proposed, developed and deployed [2].
Nevertheless, the transition from IPv4 to IPv6 cannot be

carried out with the green-field approach, given the fact that
it would be technically and economically impossible for the
Internet (a globally-distributed network) to upgrade its IP
addressing scheme in one shot. Hence, the transition has to
be conducted progressively, and this will make IPv4 and IPv6
coexist for a relatively long period of time [3]. For a smooth
transition, one needs the technologies that can support efficient
inter-operation of IPv4- and IPv6-devices when the underlying
network architectures are not all IPv4- or IPv6-capable. In
line of this, the Internet engineering task force (IETF) [4]
has recorded and standardized numbers of mechanisms to
facilitate IPv4-IPv6 inter-operability [5]. Note that during the
IPv4-to-IPv6 transition, numbers of IPv4- or IPv6-capable
“islands” can emerge in the Internet and bring new challenges

to traffic engineering. For instance, IPv4 traffic will be for-
warded through IPv4-islands as long as they are interconnected
seamlessly, even though alternative IPv6-islands could be less
congested and would provide better quality-of-service (QoS)
guarantee and traffic engineering mechanism.
Recently, software-defined networking (SDN) has been

proposed to make a network programmable, dynamic and
application-aware by decoupling its data and control planes
[6]. As a possible implementation of SDN, OpenFlow has been
developed as an open standard protocol [7], which leverages
flow-based switching and enables software-defined routing,
forwarding and managing by using a centralized controller.
Considering the enhanced programmability and flexibility, we
expect SDN/OpenFlow to provide Internet Service Providers
(ISPs) a low-cost solution for the IPv4-to-IPv6 transition. For
instance, Xia et al. have recently demonstrated a software-
defined approach to unify the deployment of IPv6 in a cost-
effective way [8]. More importantly, SDN/OpenFlow can be
utilized to improve the performance of traffic engineering
during the transition, as its centralized control plane and
flexible data plane allow us to optimize link utilization in a
QoS-aware and network-wide manner.

Fig. 1. Overall network architecture for QoS-aware F-TE.

In this paper, we utilize IP-forwarding interchanging en-
abled by OpenFlow to realize QoS-aware flexible traffic engi-
neering (F-TE) in a network that consists of multiple IPv4- and
IPv6-islands. Specifically, we have the “islands” interconnect-
ed by OpenFlow switches managed by a centralized controller,
and design the OpenFlow system to facilitate online, adaptive
and per-flow-based IP-forwarding interchanging (i.e., exchang-
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ing packets between IPv4 and IPv6 dynamically according
to the network status) for link utilization optimization. We
design the overall system architecture for realizing F-TE,
implement the design in a semi-practical network testbed, and
conduct experiments with simultaneous video streaming and
file transfer to demonstrate the advantages of F-TE.
The rest of the paper is organized as follows. Section II

describes the operation principle and overall architecture of
the network system for F-TE. We show the experimental
demonstrations in Section III. Finally, Section IV summarizes
the paper.

II. OPERATION PRINCIPLE AND SYSTEM ARCHITECTURE

A. Overall Network Architecture
Fig. 1 shows the overall network architecture for realizing

QoS-aware F-TE with agile IP-forwarding interchanging. The
network consists of multiple IPv4- and IPv6-islands, and
in each island, we have IPv4- or IPv6-capable routers for
routing and forwarding. Instead of inserting traditional tran-
sition gateways (e.g., those use the simple internet transition
(SIT) protocol [9]) among the islands, we propose to connect
them with OpenFlow (OF) switches that are managed by a
centralized controller. The OF controller obtains the overall
network status, i.e., by setting up simple network management
protocol (SNMP) connections with routers in the islands or
by counting the packet loss rate and/or latency through each
island, and regulates packet transfer accordingly.
The OF switches are designed to facilitate IP-forwarding

interchanging for QoS-aware F-TE. Specifically, based on the
instructions (i.e., flow-entries) from the OF controller, an OF
switch determines whether a packet flow’s next-hop is an
IPv4- or IPv6-island, and then performs the IP-forwarding
interchanging accordingly. The IP-forwarding interchanging is
realized with IPv4/IPv6 tunneling, where the OF switch inserts
an IPv6 header and encapsulates the IPv4 packet in an IPv6
one, or vice versa. Then, F-TE is realized with the cooperation
between the OF controller and switches, which is based on an
extended OF protocol. Basically, based on the overall network
status, the controller instructs the switches to establish/switch
the forwarding path of each packet flow to satisfy different
QoS requirements and improve link utilization.

Fig. 2. Proposed structure of OpenFlow controller.

B. OpenFlow Controller

Fig. 2 illustrates the proposed structure of OF controller that
can support IP-forwarding interchanging for F-TE. The details
of the functional modules are as follows.

Fig. 3. Structure of the OpenFlow switch.

• PPM (Path Provision Module): It interacts with OF
switches and the path computation module (PCM) to
establish/switch the forwarding path of a packet flow.
For example, during the path setup, PPM receives the
Packet-In message from the ingress switch and forwards
the information to PCM for path computation. After
obtaining feedback from PCM, it encodes the flow-
entries in Flow-Mod messages and sends them to related
switches for installing the path. Besides these tasks, PPM
also communicates with the traffic engineering database
(TED) to manage the records of packet flows.

• PCM (Path Computation Module): It receives path-
computation tasks from PPM and optimizes each packet
flow’ forwarding path to achieve QoS-aware F-TE. Upon
receiving the tasks, PCM obtains the current network
status from TED, and when the path-computations are
done, it instructs PPM to build the corresponding flow-
entries. Meanwhile, PCM also monitors the network
proactively by checking TED periodically and when a
path switching is needed, it calculates the new forwarding
path and instructs PPM to implement the path switching.

• TED (Traffic Engineering Database): It stores the cur-
rent network status, including active OF switches, edge
nodes of each IPv4- or IPv6-island, connectivity among
the network devices, bandwidth usage on each inter-island
link, and status of each island. The network abstraction
module (NAM) and PPM update TED in real-time to
ensure that it contains the most-updated information. The
operator can also retrieve information from TED through
an external network management system (NMS).

• NAM (Network Abstraction Module): It collects the
network’s topology information, abstracts the data plane
equipments, and updates the network status in TED
proactively. For instance, NAM monitors the edge nodes
of an island and when the island becomes congested, it
will update the information accordingly in TED.
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TABLE I
OPENFLOW EXTENSIONS ON FLOW-MATCHING ACTIONS

Action Name Detailed Operation
PUSH IPv6 Add an IPv6 header to an IPv4 packet and implement

IPv6 tunneling.
POP IPv6 Remove the IPv6 header for tunneling and recover

an IPv4 packet.
MOD IPv6 Modify the source and destination addresses of an

IPv6 packet.
PUSH IPv4 Add an IPv4 header to an IPv6 packet and implement

IPv4 tunneling.
POP IPv4 Remove the IPv4 header for tunneling and recover

an IPv6 packet.

• AMM (Address Mapping Module): It manages the
IPv4/IPv6 address mapping and assists PCM to imple-
ment IPv4/IPv6 tunneling. Note that for a more scalable
design, one can implement AMM as an independent
module outside the OF controller.

C. OpenFlow Switch
We implement the OF switch with OpenvSwitch [10],

and propose necessary extensions to support IP-forwarding
interchanging for F-TE, i.e., designing five new flow-matching
actions as shown in Table I. The structure of the OF switch
is illustrated in Fig. 3. The OF client communicates with the
OF controller with the extended OF protocol, parses flow-
entries, and configures the switching utility accordingly. Packet
forwarding is done in the switching utility, which handles
packets based on the installed flow-entries and invokes IP-
forwarding interchanging when necessary.

D. OpenFlow-Assisted Agile IP-Forwarding Interchanging

Fig. 4. OpenFlow-assisted agile IP-forwarding interchanging.

Fig. 4 uses an intuitive example to explain the procedure of
OF-assisted IP-forwarding interchanging, where we need to
switch a packet flow from IPv4 to IPv6 for QoS-aware F-TE.

• Step 1: When the flow’s first IPv4 packet arrives at the
ingress OF switch, the switch checks and finds that there

is no flow-entry installed for this flow. Then, the OF client
in it sends a Packet-In message to the OF controller.

• Step 2: PPM in the controller receives the Packet-In
message and instructs PCM to perform path-computation.

• Step 3: PCM obtains the current network status from
TED, and requests the source and destination IPv6 ad-
dresses for IPv6 tunneling from AMM. Since the IPv6
island is less congested, PCM decides to forward the flow
to it and invokes an IP-forwarding interchanging.

• Step 4: PCM instructs PPM to build the corresponding
flow-entries for the two related switches (i.e., the ingress
and egress ones).

• Step 5: PPM encodes the flow-entries in Flow-Mod
messages and distributes them to the related switches.
The OF client in each switch parses the flow-entry and
configures the flow table for switching utility accordingly.

• Step 6: The two related switches return their configu-
ration results to the controller using Barrier-Reply mes-
sages. If the flow’s forwarding path is set up correctly,
PPM updates TED to include the provisioned flow. Oth-
erwise, PPM invokes an error-recovery mechanism.

• Step 7: The ingress switch encapsulates the flow’s IPv4
packets in IPv6 payloads (i.e., IPv6 tunneling), and
forwards them to its output port connecting to the IPv6
island. In the IPv6 island, the packets get forwarded
towards the egress switch, where they are converted back
to IPv4 for subsequent processing.

On the other hand, if PCM decides that the flow’s next-
hop is the IPv4 island, the ingress switch will just forward the
packets to the corresponding output port without IP-forwarding
interchanging. Note that the fundamental difference between
this OF-assisted F-TE system and the traditional IPv4/IPv6
transition gateway is that the proposed one can facilitate online
and adaptive IP-forwarding interchanging on a per-flow basis.
For instance, when PCM observes a network status change
that makes the IPv4 island a better next-hop for the flow,
the controller will instruct the switches to perform a path
switching for it, while the forwarding actions for the rest flows
that go through the same ingress switch are unaffected.

III. EXPERIMENTAL DEMONSTRATIONS

A. Experimental Setup

We implement the proposed OF system with high-
performance Linux servers (Lenovo ThinkServer RD540), and
set up the network testbed as illustrated in Fig. 5(a). Specifical-
ly, we have 14 stand-alone servers connecting with each other
as the data plane. Each server equips with multiple network
interface cards (NICs) and can function as an IP router or
an OpenFlow switch, depending on the networking programs
running on it. For IP routing, we program the Linux system to
make the server operate as an IPv4 router, an IPv6 router or a
dual-stack router. If we need an OpenFlow switch, the server
runs OpenvSwitch. The OpenFlow controller is realized with
the POX platform and it also runs on an independent Linux
server. Fig. 6 shows the web-based graphical user interface
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(a) Network testbed. (b) Network topology.

Fig. 5. Experimental Setup.

(GUI) provided by the OpenFlow controller, with which
we can obtain the information regarding network topology,
network nodes, OpenFlow messages and active packet flows.
We incorporate an IXIA traffic generator in the testbed for
injecting background traffic in the network and generating
congestions. The detailed topology of the testbed is shown
in Fig. 5(b), where each node represents a stand-alone server
that operates as either an IP router or an OF switch. More
specifically, Nodes 1, 2, 9 and 11-14 are IPv4 routers, Nodes
5-7 are IPv6 routers, and the rest nodes can be either dual-
stack IP routers or OpenFlow switches, depending on the
experimental scenario. In the experiments, we consider the
communication between Nodes 2 and 9 such that we run the
application servers on Node 2 and put the clients on Node 9.

Fig. 6. SDN Management System Web GUI.

In order to demonstrate the advantages of QoS-aware F-
TE and evaluate its performance, we consider the coexistence
of video streaming and file transfer services in a network
where there is dynamic and unpredicted background traffics,
and design three experimental scenarios as follows.

• Scenario 1 (Without TE): There is no traffic engineering
(TE), and both the video streaming and file transfer use
the shortest path between Nodes 2 and 9 in Fig. 5(b).

• Scenario 2 (Conventional TE): Conventional dual-stack

IP routers are used on Nodes 3, 4, 8 and 10. Basically, we
can switch the flows’ paths for TE while the end-to-end
IP-forwarding scheme (IPv4 or IPv6) cannot be changed,
i.e., IP-forwarding interchanging is not supported.

• Scenario 3 (F-TE): OF switches that support IP-
forwarding interchanging are implemented on Nodes 3,
4, 8 and 10, and QoS-aware F-TE is fully supported.

For the video streaming, we use a 60-second H.264 video
sequence that is encoded as 1080P. Specifically, on Node 2,
the video is encapsulated with IP/UDP/RTP headers and sent
out to Node 9, while on Node 9, the video client receives
and plays it back for performance evaluation. Meanwhile, the
file transfer is realized by using Iperf [11] to generate TCP
packets and send them from Node 2 to Node 9. Since the
video streaming has stricter QoS requirements on transmission
latency and jitter, we provision it with high priority in the
experiments, i.e., the file transfer should give way to it when
there is congestion.

B. Experimental Results and Discussion

Fig. 7 shows the experimental results on end-to-end delay
of the video streaming from the three experimental scenarios.
Apparently, Scenario 3 (F-TE) achieves the best results on
delay, because it can avoid congested links with agile IP-
forwarding interchanging (i.e., packets can be changed from
IPv4 to IPv6, or vice versa adaptively) unless the IPv4- and
IPv6-islands are all congested, e.g., during [45, 47] second-
s. It can be seen that the delay results from Scenario 1
(Without TE) are the worst, because once the shortest path
(2→1→8→9) is congested, the video packets will suffer from
severe queuing delay increase due to the lack of TE. For
Scenario 2 (Conventional TE), since the priority of video
streaming is higher than that of file transfer, the video packets
can be switched to use path 2→4→11→13→9 with TE, when
the shortest path is congested. However, the prolonged delay
cannot be avoided anymore when the whole IPv4 domain
becomes crowded, e.g., when both Links 1→8 and 4→11 are
congested during [33, 47] seconds. Note that all of the results
on delay also possess some irregular spurs that follows the
similar trend, which we believe are caused by the operating
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systems on Nodes 2 and 9. The results on video streaming
bandwidth are plotted in Fig. 8, which show the similar trend
as those in Fig. 7 and further verify the advantage of F-TE.
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Fig. 7. Results on packet-level end-to-end delay of video streaming.

Fig. 9 illustrates whether the received video frames can be
instantly decoded in the three scenarios. A vertical red bar
means that a frame is not decodable due to severe packet
loss. The results on the luminance component’s peak signal-
to-noise ratio (Y-PSNR) for the received video are shown in
Fig. 10. Note that there is one dip on the Y-PSNR curves from
both F-TE and Conventional TE during [10, 20] seconds. We
believe that is caused by the path switchings in the period.
Also, we notice that the durations of the Y-PSNR dips from
Conventional TE are longer than those from F-TE. This is
because when the forwarding path of video streaming becomes
congested, Conventional TE can only switch it to another one
that is still within the IPv4 domain and this causes that the
video and file packets share the same path and compete for
transmission opportunities, which makes the severe-frame-loss
period last longer. Fortunately, the issue discussed above will
not happen for F-TE, since it can easily switch the video
packets to use a less crowded path that goes through the IPv6
domain. Fig. 11 includes two screen-shots captured for the
received videos, which illustrates the actual video play-back
qualities. Moreover, the statistics of the experimental results
are given in Table II. In all, with all these experimental results,
we can clearly see that F-TE provides the best video streaming
performance among the three scenarios.
Fig. 12 is captured by wireshark for the video packets that

go through IP-forwarding interchanging, which shows that the
operation is performed on a per-flow basis as expected. The
results on bandwidth used for the file transfer are shown in
Fig. 13. We observe that among the three scenarios, F-TE
still provides the largest file transfer bandwidth, which means
that it utilizes the link resources for different applications in
the best way. However, we also notice that when the network
becomes relatively crowded after 34 seconds, the file transfer
bandwidth from F-TE also shrinks. This is because the file
transfer’s priority is lower and has to give way to video
streaming in such situation, to ensure that the strict QoS
requirement from it can be satisfied. Hence, the results in Fig.
13 confirm that the proposed F-TE is QoS-aware.

0 20 40 60
0

2

4

6

Time (sec)

B
W

 (M
bp

s) (a) Without TE

0 20 40 60
0

2

4

6

Time (sec)

B
W

 (M
bp

s) (b) Conventional TE

0 20 40 60
0

2

4

6

Time (sec)

B
W

 (M
bp

s) (c) F−TE

Fig. 8. Results on video streaming bandwidth at the client side.
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Fig. 9. Results on video frames’ decodability.

TABLE II
STATISTICS OF EXPERIMENTAL RESULTS.

Without
TE

Conventional
TE

F-TE

Delay (msec) Average 75.4 40.9 37.1
Variance 21.2 22.7 13.6

Bandwidth (Mbps) Average 1.85 2.60 2.93
Variance 0.77 0.85 0.69

Link Utilization (%) Average 37.1 51.9 58.5
Frame Loss (%) Average 31.0 11.0 1.2
Y-PSNR (dB) Average – 38.75 46.48
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Fig. 10. Results on received videos’ Y-PSNRs.
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Fig. 11. Screen-shots of video play-backs.

IV. CONCLUSION

This paper proposed to use IP-forwarding interchanging
enabled by OpenFlow to realize QoS-aware F-TE in a network
that consists of multiple IPv4- and IPv6-islands. We designed
the overall system architecture, implemented the design in a
semi-practical network testbed, and demonstrated the advan-
tages of F-TE with experiments that included simultaneous
video streaming and file transfer.

Fig. 12. Video packets that go through IP-forwarding interchanging.
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Fig. 13. Results on file transfer bandwidth.
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