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Abstract—For an inter-datacenter (inter-DC) network that
carries multiple cloud applications, tasks may arise in the DCs
and need to transfer data to others with different latency
requirements. Therefore, it is desired that a highly efficient
online scheduling algorithm could be developed to consider the
request admission, routing selection and bandwidth allocation
for the data-transfers jointly. In this work, we investigate this
problem, and propose an online scheduling algorithm, namely,
GlobeAny, to maximize the time-average profit from provision-
ing the requests. The proposed algorithm leverages Lyapunov
optimization techniques and can achieve arbitrarily approaching
to the optimal value within O(1/V ) gap. We also show that by
adjusting the application weights, it can provide differentiated
services to requests with different latency requirements.
Index Terms—Inter-DC traffic, Lyapunov optimization, Profit-

maximizing, Online scheduling.

I. INTRODUCTION

Nowadays, in order to satisfy the growing demand for var-
ious cloud applications, more and more enterprises adopt ge-
ographically distributed (geo-distributed) datacenters (DCs) to
efficiently deliver high-quality services to the end-users locat-
ed globally [1–3]. Meanwhile, the large-scale online services,
such as e-business, video-on-demand, online gaming, etc.,
have significantly increased the traffic load in DC networks
(DCNs), with both the user-DC and DC-DC communications.
It is believed that DC-DC (i.e., inter-DC) communications
make the major contribution to the traffic growth in DCNs
[2]. Hence, how to efficiently perform traffic scheduling and
network capacity allocation for them becomes one of the most
challenging problems in geo-distributed DCNs.
Previously, people have studied inter-DC traffic and the

corresponding traffic engineering schemes in DCNs [1, 2, 4,
5]. In [1], the authors analyzed the characteristics of inter-
DC traffic with commercial datasets. Jain et al. proposed to
leverage software defined networking (SDN) to manage the
traffics among geo-distributed DCs [2]. A network architecture
to realize bandwidth-on-demand resource allocation in the
optical layer for inter-DC traffic was discussed in [4]. The
traffic management schemes for the geo-distributed DCNs that
are managed by multiple Internet service providers (ISPs) and
the related cost-performance tradeoff were studied in [5]. On
the other hand, there are also several studies in the literature
[6–9], which are on bulk-data transfer in geo-distributed D-
CNs. Laoutaris et al. proposed a store-and-forward scheme
together with time-expanded techniques to minimize the data-

transfer time [6]. In [7], the authors adopted max-min fairness
in time-expanded networks to ensure service fairness for the
data-transfers of multiple cloud applications. By using the
minimum-cost multi-commodity flows, Feng et al. developed
a data-transfer mechanism to reduce the costs for delivering
video traffic across DCs [8], and in [9], they extended the
mechanism to consider the store-and-forward delivery scheme.
Even though the aforementioned studies on scheduling inter-

DC traffic have proposed a few insight ideas and demonstrated
interesting results, there are still important issues that have
not been given enough attention to. For instance, when trying
to reduce the data-transfer cost (determined by the average
bandwidth usage, transfer time and price of unit bandwidth)
in a DCN, most of the existing approaches usually only
considered the cases for certain time periods or several data-
sets, but did not target for achieving overall time-average
optimality. Basically, for a DCN that carries multiple cloud
applications as shown in Fig. 1, tasks may arise in the DCs
and need to transfer data to others. Then, in order to achieve
efficient online scheduling of the inter-DC traffic generated by
these tasks, we need to address the following problems,

• When to provision a task’s data-transfer request and
where to send the data if multiple DCs can process it?

• Considering the store-and-forward mechanism for data-
transfer, how to set up the routes and allocate bandwidth
capacities cost-effectively?

• How to balance the tradeoff between request acceptance
rate and data-transfer cost and make the scheduling
scheme profit-driven?

In this paper, we investigate profit-driven scheduling of
inter-DC traffic with a profit model that prices the time-
average request acceptance rate and determines data-transfer
cost according to the bandwidth usage. We propose an online
scheduling algorithm, namely, GlobeAny, to schedule the data-
transfer requests generated by the inter-DC tasks, which uti-
lizes Lyapunov optimization techniques [10] to maximize the
time-average profit. The proposed algorithm achieves arbitrari-
ly approaching to the optimal value within O(1/V ) gap, and is
evaluated with extensive simulations to show its effectiveness.
Moreover, we demonstrate that by adjusting the application
weights, the algorithm can provide differentiated services to
requests with different priorities and latency requirements.
The rest of the paper is organized as follows. Section II
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Fig. 1. DCN that carries multiple cloud applications.

describes the system model and formulates the optimization
problem for maximizing profit. In Section III, we use Lya-
punov optimization techniques to design the online scheduling
algorithm, and the performance evaluation is discussed in
Section IV. Finally, Section V summarizes the paper.

II. PROBLEM FORMULATION

A. Network Model

We consider a DCN as the one shown in Fig. 1, and denote
it as G(D, E), which includes |D| DCs (D = {1, . . . , |D|}
representing the DC set) and the link set E whose elements
inter-connect them. The available bandwidth on link (i, j) ∈ E ,
which is between two adjacent DCs i and j, is bi,j . We assume
that the DCN is a discrete-time system that operates on discrete
time-slots (TS’) {Δt, 2Δt, . . . }. Here, the time interval Δt
can range from a few seconds to several minutes [11], and to
adapt to the network dynamics, it should be sufficiently long
for the operator to update the traffic scheduling scheme. Note
that in the following analysis, we normalize the TS’ with Δt
and get TS’ as t ∈ {1, 2, . . . }.
As Fig. 1 shows, there are numbers of cloud applications

(APPs) running in the DCN. We define K = {1, . . . , |K|}
as the set of active APPs, and assume that at TS t, the k-th
APP that runs in DC i generates Ak

i (t) inter-DC data-transfer
requests. For each request from the k-th APP, the amount of
data to be transferred to the destination DC for processing is
sk, and we define Amax

k as the maximum value of Ak
i (t),

Amax
k = max(Ak

i (t)), ∀i ∈ D, t ∈ Z
+.

In each DC, we have an arbiter for each APP, and based
on the network status, it determines whether a data-transfer
request from the APP should be accepted or not. At TS t, the
number of accepted requests from the k-th APP in DC i is
denoted as aki (t). Then, the accepted requests from the k-th
APP are buffered in a queue Qk

i (t), which is initialized as
Qk

i (0) = 0. With all the queues for all the APPs across all the

DCs, we have a matrix of queues for the DCN at TS t

Q(t) =

⎡
⎢⎢⎢⎢⎣

Q1
1(t) Q2

1(t) · · · Q
|K|
1 (t)

Q1
2(t) Q2

2(t) · · · Q
|K|
2 (t)

...
...

. . .
...

Q1
|D|(t) Q2

|D|(t) · · · Q
|K|
|D|(t)

⎤
⎥⎥⎥⎥⎦ . (1)

Apparently, the accepted requests will be no more than the
generated ones, as

0 ≤ aki (t) ≤ Ak
i (t), ∀i ∈ D, ∀k ∈ K. (2)

The time-average expectation of aki (t) can be written as

aki = lim
t→∞

1

t

t−1∑
τ=0

E{aki (τ)}, ∀i ∈ D, ∀k ∈ K.

B. Data-Transfer with Store-and-Forward Scheme

Note that in a DCN, data-transfer can be realized with the
store-and-forward scheme [6], i.e., by leveraging the storage
space in intermediate nodes along the data-transfer path to
relay the data hop-by-hop. It is known that by utilizing the
bandwidth and storage resources jointly in the DCN, this
scheme can achieve better data-transfer performance than the
one that delivers data end-to-end directly. In this work, we
consider a stochastic scheduling strategy that leverages the
store-and-forward scheme to provision inter-DC data-transfer
requests. Here, we define a decision variable cki,j(t) to rep-
resent the number of k-th APP’s requests whose data is sent
from DC i to DC j (i and j are adjacent in the DCN) within
TS t. Hence, the corresponding bandwidth utilization should
not exceed the available bandwidth on link (i, j),∑

k

cki,j(t) · sk ≤ bi,j , ∀i, j ∈ D, ∀(i, j) ∈ E , ∀k ∈ K. (3)

And the time-average expectation of cki,j(t) is

cki,j = lim
t→∞

1

t

t−1∑
τ=0

E{cki,j(τ)}, ∀i, j ∈ D, ∀(i, j) ∈ E , ∀k ∈ K.

Then, the total bandwidth usage on link (i, j) on average is

Ci,j =
∑
k

cki,j · sk, ∀i, j ∈ D, ∀(i, j) ∈ E .

As not all of the DCs can act as the destination DCs to
process the data generated by an APP, we define Dk as the
set of feasible destination DCs for the k-th APP. Then, in the
queue Qk

i (t) on DC i where i /∈ Dk, the in-queue requests
are the newly-accepted ones from local and the just-arrived
ones from remote DCs, while the out-of-queue requests are
those sent to remote DCs. Fig. 2 illustrates the operations on
the queues in a DC. Since a DC’s storage space is usually big
enough, we assume that all the queues have infinite length.
Hence, the queue for the k-th APP on DC i updates from
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Fig. 2. Queueing operations for data-transfer in DC i.

Qk
i (t) to Qk

i (t+ 1) as

Qk
i (t+ 1) = max

⎛
⎝Qk

i (t)−
∑
j

cki,j(t), 0

⎞
⎠

+
∑
j

ckj,i(t) + aki (t), ∀i ∈ D/Dk, (i, j) ∈ E , k ∈ K

(4)

Note that compared to the data-transfer process, the data
processing in the destination DCs are usually relatively quick
since the computing and storage resources in DCs are abun-
dant. Therefore, we assume that when the data of a request
arrives at the destination DCs, it is processed immediately. Or
in other words, for the queue Qk

i (t) where i ∈ Dk, there is
no in-queue requests, and it is kept empty all the time, as

Qk
i (t) = 0, ∀i ∈ Dk, ∀k ∈ K. (5)

C. Revenue and Cost Models
In order to analyze the tradeoff between the time-average

request-acceptance rate aki and the time-average request-
transfer rate cki,j , we formulate the revenue and cost models
to calculate the revenue from serving the requests and the
cost due to the bandwidth usage. For the revenue model, we
consider a logarithmic utility function, similar to [11],

f(aki ) = log(1 + αk · aki ),

where αk is the fixed revenue coefficient for the k-th APP. The
model follows the law of diminishing marginal utility to price
the time-average request-acceptance rate for the k-th APP in
DC i. Meanwhile, the cost of bandwidth usage on link (i, j)
is calculated as

g(Ci,j) = βi,j · Ci,j ,

where βi,j is the fixed cost of unit bandwidth on link (i, j).
Then, the time-average profit from serving the data-transfer

requests is the total revenue minus the total cost, as

P =
∑
i,k

f(aki )−
∑
i,j

g(Ci,j). (6)

If we would like to maximize the profit, the optimization
problem can be formulated as

Maximize P,

s.t. Eqs. (2)− (3).
(7)

Meanwhile, we should ensure that the lengths of all the queues
will not increase towards infinite, i.e.,

Qk
i (t) keeps steady, ∀i ∈ D, ∀k ∈ K. (8)

Note that as the data size per request (i.e., sk) is bounded, the
buffered data in Qk

i (t) will finite when Qk
i (t) keeps steady.

III. ONLINE PROFIT-DRIVEN TRAFFIC SCHEDULING
ALGORITHM

A. Lyapunov Optimization
In order to maximize the profit from serving the data-

transfer requests that generate inter-DC traffic, we design an
online profit-driven traffic scheduling algorithm with the aid
of Lyapunov optimization [10]. First of all, since the function
f(·) is nonlinear, we introduce an auxiliary variable γk

i (t) as

0 ≤ γk
i (t) ≤ Amax

k , ∀i ∈ D, ∀k ∈ K. (9)

Then, the optimization problem described by Eqs. (7)-(8) can
be transformed to a standard stochastic optimization as

Maximize
∑
i,k

f(γk
i (t))−

∑
i,j

g(Ci,j),

s.t. γk
i ≤ aki , ∀i ∈ D, ∀k ∈ K,

Eqs. (2), (3), (8), (9),

(10)

where

γk
i = lim

t→∞

1

t

t−1∑
τ=0

E{γk
i (τ)}, ∀i ∈ D, ∀k ∈ K,

f(γk
i (t)) = lim

t→∞

1

t

t−1∑
τ=0

E{log(1 + αkγ
k
i (τ))}, ∀i, k.

To satisfy the constraint

γk
i ≤ aki , ∀i ∈ D, ∀k ∈ K, (11)

in Eq. (10), we introduce a virtual queue Gk
i (t), which is

initialized as Gk
i (0) = 0, and use it to transform the constraint

to a queue-steady problem according to [10]. The virtual queue
Gk

i (t) updates to Gk
i (t+ 1) as

Gk
i (t+ 1) = max(Gk

i (t)− aki (t) + γk
i (t), 0) ∀i, k. (12)

Similar to the definition in Eq. (1), we define a queue matrix
for {Gk

i (t), ∀i, k} as G(t).
Let Θ(t) = [Q(t),G(t)], and we define the Lyapunov

function L(Θ(t)) as

L(Θ(t)) =
1

2

⎧⎨
⎩
∑
i,k

[Qk
i (t) · wk]

2 +
∑
i,k

[Gk
i (t) · wk]

2

⎫⎬
⎭ ,

(13)
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where wk is the application weight of the k-th APP. The
Lyapunov drift function is the conditional expectation of the
Lyapunov function in Eq. (13) for different TS’,

Δ(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)}. (14)

By combining the Lyapunov functions and Lyapunov drift
functions, we obtain the drift-plus-penalty expression as

Δ(Θ(t))−V ·E{
∑
i,k

f(γk
i (t))−

∑
i,j

g(
∑
k

cki,j(t)·sk) | Θ(t)},

(15)
where V is the parameter to balance the queue steadiness and
the profit. If we define

η(t) =
∑
i,k

f(γk
i (t))−

∑
i,j

g(
∑
k

cki,j(t) · sk),

and consider that [max(q−c, 0)+a]2 ≤ q2+a2+c2+2q(a−c),
the drift-plus-penalty expression in Eq. (15) should satisfy the
inequation below

Δ(Θ(t)) − V · E{η(t) | Θ(t)} ≤ B

+
∑
i,k

E{[Qk
i (t)−Gk

i (t)]w
2
k · aki (t) | Θ(t)}

+
∑
i,k

E{Gk
i (t) · w

2
k · γk

i (t)− V · f(γk
i (t)) | Θ(t)}

+
∑
i,j,k

E{Qk
i (t) · w

2
k · [ckj,i(t)− cki,j(t)]

+ V · βi,j · c
k
i,j(t) · sk | Θ(t)},

(16)

where B is a constant that satisfies

B ≥
1

2

∑
i,k

E

⎧⎪⎨
⎪⎩
⎧⎪⎨
⎪⎩
⎡
⎣∑

j

cki,j(t)

⎤
⎦
2

+ [aki (t)− γk
i (t)]

2

+

⎛
⎝∑

j

ckj,i(t) + aki (t)

⎞
⎠

2
⎫⎪⎬
⎪⎭ · w2

k | Θ(t)

⎫⎪⎬
⎪⎭ .

B. Online Traffic Scheduling Algorithm (GlobeAny)
Basically, in order to maximize the profit while keeping

the queues steady, we should minimize the right side of the
inequation in Eq. (16) according to [10]. Since B is a constant,
we need to minimize the rest three terms, i.e.,∑

i,k

E{[Qk
i (t)−Gk

i (t)]w
2
k · aki (t) | Θ(t)}, (17)

∑
i,k

E{Gk
i (t) · w

2
k · γk

i (t)− V · f(γk
i (t)) | Θ(t)}, (18)

∑
i,j,k

E{Qk
i (t)·w

2
k ·[c

k
j,i(t)−cki,j(t)]+V ·βi,j ·c

k
i,j(t)·sk | Θ(t)}.

(19)
Therefore, we design an online scheduling algorithm to

minimize the terms in Eqs. (17)-(19). Specifically, with the
proposed algorithm, the data for an inter-DC data-transfer
request can be forwarded and stored in an intermediate DC

until it reaches any of its feasible destination DCs, e.g., for
the request from the k-th APP, the feasible destination DCs
are those with i ∈ Dk. Hence, we call the online scheduling
algorithm as ”GlobeAny”, and its details are discussed below.
1) Auxiliary Variables: In each TS, the algorithm first

determines the auxiliary variables by minimizing the term in
Eq. (18). Since the variables γk

i (t) are independent of each
other, we can transform the optimization in this step as

Minimize Gk
i (t) · w

2
k · γk

i (t)− V · log(1 + αk · γ
k
i (t)),

s.t. 0 ≤ γk
i (t) ≤ Amax

k , ∀i ∈ D, ∀k ∈ K.

Then, the optimal auxiliary variables can be obtained by
considering the value of Gk

i (t).
• Gk

i (t) >
V ·αk

w2

k

:

(γk
i (t))

∗ = 0, (20)

• Gk
i (t) ∈

[
V ·αk

w2

k
(1+αk·Amax

k
)
, V ·αk

w2

k

]
:

(γk
i (t))

∗ =
V

Gk
i (t) · w

2
k

−
1

αk

, (21)

• Gk
i (t) ∈

[
0, V ·αk

w2

k
(1+αk·Amax

k
)

)
:

(γk
i (t))

∗ = Amax
k . (22)

2) Requests Acceptance: Similarly, we can get the optimal
value for aki (t) (i.e., the number of requests to be accepted
in TS t), by minimizing the term in Eq. (17). Hence, the
optimization problem is transformed to

Minimize [Qk
i (t)−Gk

i (t)] · a
k
i (t),

s.t. 0 ≤ aki (t) ≤ Ak
i (t), ∀i ∈ D, ∀k ∈ K.

(23)

Then, we can get the optimal value of (aki (t))∗ as

(aki (t))
∗ =

{
Ak

i (t), Qk
i (t) ≤ Gk

i (t),

0, else,
(24)

Eq. (24) means that all the generated requests should be
accepted when the length of queue Qk

i (t) is not longer than
that of Gk

i (t), otherwise, the generated requests should be
dropped to avoid making the queue unsteady.
3) Bandwidth Allocation: In order to minimize the term in

Eq. (19), we formulate an optimization problem as

Maximize
∑
i,j,k

{cki,j(t) · [Q
k
i (t) · w

2
k −Qk

j (t) · w
2
k

− V · βi,j · sk]},

s.t.
∑
k

cki,j(t) · sk ≤ bi,j , ∀i, j ∈ D, (i, j) ∈ E .

(25)

Since we want to make sure that the bandwidth allocated to a
DC gets fully utilized, we add a constraint to the optimization
problem in Eq. (25) as∑

j

cki,j(t) ≤ Qk
i (t), ∀i ∈ D, (i, j) ∈ E , k ∈ K. (26)
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Specifically, Eq. (26) ensures that the bandwidth allocated to
all the output links of DC i for the k-th APP will not be larger
than the actual data buffered in queue Qk

i (t).
Even though the optimization problem defined with Eqs.

(25)-(26) can be solved with integer linear programming
(ILP) tools, the complexity can be relatively high and make
the approach not scalable for large-scale problems, e.g., the
number of APPs in the DCN is large.
Inspired by the classical Back-Pressure routing algorithm

[12], we design a time-efficient heuristic for bandwidth allo-
cation, which is shown in Algorithm 1. Here, we define

ζki,j(t) = Qk
i (t) · w

2
k −Qk

j (t) · w
2
k − V · βi,j · sk, (27)

and then, we can get the bandwidth allocation such that all the
bandwidth on link (i, j) is allocated to the APP whose ζki,j(t)
is the largest. In Algorithm 1, Line 1 defines and initializes a
flag-matrix to index all the queues in the queue-matrix Q(t)
defined in Eq. (1). In Lines 2-5, for each adjacent DC j, we
find the APP that has the maximum ζki,j(t) for the output link
(i, j), record the corresponding indices of DCs and APPs, i.e.,
j and k, and mark the flag F(j, k) as 1. Finally, Lines 6-13
allocate bandwidth in a greedy manner based on F, until all
the data in Qk

i (t) is sent or a link’s bandwidth is used up. As
the algorithm can be implemented in the distributed manner,
the computing complexity is O(|K| + |D|).

Algorithm 1 Bandwidth allocation to obtain cki,j(t) for DC i

Input:
{ζki,j(t)}, Q(t), {bi,j}, {sk}.

1: F = [0]|D|×|K|;
2: for all j ∈ D such that (i, j) ∈ E do
3: k = argmax

k∈K
{ζki,j(t) | ζ

k
i,j(t) > 0};

4: F(j, k) = 1;
5: end for
6: for all k ∈ K do
7: for all j ∈ D do
8: if F(j, k) = 1 then
9: cki,j(t) = min(Qk

i (t), �
bi,j
sk

�);
10: Qk

i (t) = Qk
i (t)− cki,j(t);

11: end if
12: end for
13: end for

4) Queue Update: When the bandwidth allocation is done,
we update Qk

i (t) and Gk
i (t) based on their previous queue-

lengths, the auxiliary variable γk
i (t), the number of accepted

requests aki (t), and the bandwidth allocation cki,j(t), with Eqs.
(4) and (12). This is done for all the queues in Q(t) and G(t).
According to the theoretical analysis in [10], we can easily

prove that the aforementioned algorithm (i.e., GlobeAny) based
on Lyapunov optimization can achieve the time-average profit
that approaches arbitrarily to the optimal value within O(1/V )
gap. Due to the space limitation, we omit the optimality
analysis of the proposed algorithm here.

IV. PERFORMANCE EVALUATION
We perform numerical simulations with the 7-node Amazon

EC2 Cloud inter-DC topology [8] to evaluate the performance
of the proposed algorithm, i.e., GlobeAny. In the topology, we
set the link capacities with the data set in [8] and scale down
the link costs with 10−5 proportionally for normalization. In
the DCN, the number of APPs is assumed to be |K| = 20,
and the amount of data to be transferred for the k-th APP’s
request is set as sk = 2k k-bits. We set the maximum request
arrival-rate per TS, Amax

k , as inversely proportional to sk,
according to [2], and hence Amax

k = 220−k. The set of feasible
destination DCs Dk for the k-th APP is chosen arbitrarily
and |Dk| would not exceed 4. The arrivals of the requests
can follow an arbitrary distribution as long as the average
arrival-rate per TS equals 1

2A
max
k , and here we use the uniform

distribution. The length of a TS is assumed to be 1 minute,
and all the results are obtained by averaging the outputs from
10 independent simulations that each contains 10000 TS’. The
details on the simulation parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS

|K|, number of APPs 20
wk , weight of the k-th APP 0.01× 2

k

sk , data-size for the request of the k-th APP 2
k k-bits

αk , revenue coefficient for the k-th APP 0.01× 2
k

Amax

k
, the maximum request arrival-rate of the k-th APP 2

20−k

Duration of a TS 1 minute
TS’ in each Simulation 10000

A. Impact of the Tradeoff Parameter V
We first conduct simulations to compare the performance

of two scenarios of GlobeAny, i.e., one uses the ILP
(GlobeAny-ILP) and the other uses the heuristic in Algorithm
1 (GlobeAny-HEU) to solve the bandwidth allocation in Sub-
section III-B3. Fig. 3 shows the results on the time-average
profit (i.e., P in Eq. (6)) from the two scenarios, and it can
be seen that GlobeAny-HEU can provide reasonably good
results on P , when compared to GlobeAny-ILP, especially
when V ≥ 2× 107, while the computation time of GlobeAny-
HEU is around 1

100 of that of GlobeAny-ILP, according to
the simulations. The results also indicate that P increases fast
when V is relatively small, while the slope decreases gradu-
ally afterwards and P eventually converges to the maximum
value smoothly. This observation confirms that GlobeAny can
approach arbitrarily to the optimal value within O(1/V ) gap.
Then, we define the average queue-length for the k-th APP

as Qk = (
∑
i

Qk
i (t)), where (·) denotes the operation for

time-averaging over all the TS’ in a simulation. Similarly, the
average total queue-length for all the APPs can be defined
as Qtotal = (

∑
i,k

Qk
i (t)). Fig. 3 also plots the results on Q1

and Qtotal. The queue-lengths increase with V , which means
that according to the Little’s Law, the average delay for data-
transfer also becomes longer for a larger V . Hence, we can
adjust V to balance tradeoff between the profit and delay.

IEEE ICC 2015 - Next Generation Networking Symposium

5587



1 2 3 4 5 6 7 8 9 10
20

25

30

35

40

45

50

55

60

Ti
m

e−
A

ve
ra

ge
 P

ro
fit

 P

*108

*107

Tradeoff Parameter V
1 2 3 4 5 6 7 8 9 10

3

6

9

12

15

18

21

24

A
ve

ra
ge

 Q
ue

ue
−L

en
gt

hs

1 2 3 4 5 6 7 8 9 10

3

6

9

12

15

18

21

24

GlobeAny-ILP

GlobeAny-HEU

Q1

Qtotal

Fig. 3. Impact of the tradeoff parameter V .
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Fig. 4. Impact of the traffic load factor μ.

B. Request Arrival-Rate
In order to evaluate the algorithm’s performance for differ-

ent traffic loads, we multiply the average arrival-rates of each
APP’s requests by a factor μ, and plot the results on P from
GlobeAny-HEU in Fig. 4. We observe that P increases with
the traffic load first and then converges to a maximum value,
which indicates that the algorithm can successfully handle the
traffic increase and keep the revenue higher than the cost. The
maximum value of P becomes larger for a larger V .

C. Application Weights for Service Differentiation
It is known that the APPs deployed in an inter-DC network

may require different levels of quality-of-service (QoS). With
GlobeAny, we actually can achieve service differentiation by
adjusting the application weight of each APP (i.e., {wk}). We
perform simulations with |K| = 40 APPs to demonstrate this
functionality. Basically, we multiply the application weight
of the first APP w1 by a factor θ, while keeping the rest
application weights unchanged. Fig. 5 shows the results from
GlobeAny-HEU algorithm on the time-average queue-lengths
for the first and second APPs, i.e., Q1 and Q2, respectively.
It can be seen that with a larger θ, i.e., a larger application
weight for higher service priority, Q1 decreases dramatically
while Q2 remains unchanged.

V. CONCLUSION
This paper studied profit-driven online scheduling of inter-

DC data-transfer requests. By leveraging Lyapunov optimiza-
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Fig. 5. Service differentiation by adjusting the application weight.

tion techniques, we proposed an online scheduling algorithm,
i.e., GlobeAny. It considered the request admission, routing
selection and bandwidth allocation for data-transfers jointly,
with the objective to maximize the time-average profit. The
proposed algorithm could achieve arbitrarily approaching to
the optimal value within O(1/V ) gap, and we showed that by
adjusting the application weights, it could provide differenti-
ated services to requests with different latency requirements.
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