
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015 1617

Demonstration of OpenFlow-Controlled Network
Orchestration for Adaptive SVC Video Manycast
Nana Xue, Xiaoliang Chen, Long Gong, Suoheng Li, Daoyun Hu, and Zuqing Zhu, Senior Member, IEEE

Abstract—Software defined networking (SDN) makes
networks programmable and application-aware by
decoupling network control and management (NC&M) from
data forwarding and leveraging centralized NC&M to facilitate
user-customized routing and switching. Inspired by these, this
paper investigates how to realize the OpenFlow-controlled
(OF-controlled) network orchestration that can facilitate
efficient scalable video coding (SVC) streaming to heterogeneous
clients. Specifically, we consider real-time SVC streaming
and address the situation in which video sources reside in
geographically-distributed servers and clients can join and
leave the streaming services dynamically. We formulate this
as a multi-source multi-destination manycast problem and
realize the networking system with an OF-controlled SDN
architecture. We first design the OF controller to enable efficient
network operations. Then, we focus on solving the multi-source
multi-destination SVC video manycast problem and design
several algorithms. Initially, an integer linear programming
(ILP) model is formulated to obtain the optimal solutions
for small-scale problems. Next, we try to make the manycast
algorithm suitable for practical implementation, and design two
time-efficient heuristics. Simulation results indicate that the
heuristics can provide close-to-optimal solutions. Finally, we build
an OF network testbed that consists of OF switches, SVC video
servers and clients, and perform SVC streaming experiments
to demonstrate our design. Experimental results verify that the
proposed scheme can allocate bandwidth intelligently and ensure
high-quality video streaming. To the best of our knowledge, this
is the first work that accomplishes experimental demonstration
of OF-controlled network orchestration for adaptive SVC video
manycast.
Index Terms—Manycast, openflow, scalable video coding (SVC),

software-defined networking (SDN), video streaming.

I. INTRODUCTION

O VER the past decades, multimedia streaming applica-
tions, such as video conferencing, online video games

and high-definition IP television, have become increasingly

Manuscript received December 05, 2014; revised March 19, 2015 and June
18, 2015; accepted June 23, 2015. Date of publication June 25, 2015; date
of current version August 10, 2015. This work was supported in part by the
NCET program under Project NCET-11-0884, by the NSFC Project 61371117,
by the Fundamental Research Funds for the Central Universities under Grant
WK2100060010, by the Natural Science Research Project for Universities in
Anhui under Grant KJ2014ZD38, and by the Strategic Priority Research Pro-
gram of the CAS under Grant XDA06011202. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Tom-
maso Melodia.
The authors are with the School of Information Science and Tech-

nology, University of Science and Technology of China, Hefei 230027,
China (e-mail: xuenana@mail.ustc.edu.cn; arabus@mail.ustc.edu.cn;
lzzitc@mail.ustc.edu.cn; gonglong@mail.ustc.edu.cn; 517266593@qq.com;
zqzhu@ieee.org).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2450014

popular on the Internet and pushed the network traffic to
grow exponentially. It is known that by 2012, video traffic
has already occupied more than 50% of the Internet band-
width [1]. Therefore, multimedia streaming, especially the live
video streaming, has definitely become a killer-application
for the current Internet. Moreover, due to the rise of mobile
networks, the clients of video streaming are more and more
heterogeneous, i.e., different clients can have various system
capacity, access bandwidth, as well as quality-of-service (QoS)
requirements. Hence, customized and differentiated service
provisioning for video streaming is imperative. Currently,
in order to realize customized service provisioning, a video
server may have to stream the same video to multiple clients
through multiple unicast connections. This scheme, however,
can generate redundant traffic and waste a fair amount of net-
work bandwidth. Hence, to achieve a better tradeoff between
the QoS provisioning and bandwidth utilization, an intelligent
network orchestration mechanism that can realize efficient
video streaming to heterogeneous clients with low latency,
small delay jitter and low packet loss rate is necessary.
The aforementioned network orchestration needs technical

innovations in both the video and network areas. Firstly, from
the video side, the scalability of video coding plays an important
role. Thanks to the advances on scalable video coding (SVC)
[2], one can encode a video into several layers (i.e., sub-streams)
such that different levels of playback qualities can be achieved
by receiving different subsets of them [3]. Specifically, SVC
encodes a video into a base layer (BL) and several enhance-
ment layers (ELs). A streaming client can decode the video
with only the BL, but the more consecutive ELs it receives, the
higher playback quality it would enjoy. This property, together
with an intelligent bandwidth provisioning scheme, provide a
promising solution to the problem of how to realize efficient
video streaming to heterogeneous clients.
Secondly and more importantly, from the network side,

we need the architecture and protocols that can accomplish
highly-efficient video streaming to heterogeneous clients. Pre-
viously, people have demonstrated that video streaming with IP
multicast could improve bandwidth utilization [4]. However, it
is also known that IP multicast still faces several challenges.
First of all, since the state of each multicast group has to be
maintained on the routers, IP multicast makes the operations
in routers more complicated. Secondly, because IP networks
use distributed network control and management (NC&M), the
routers have difficulties getting the global network status and
can hardly figure out the optimal multicast trees for ensuring
the end-to-end QoS requirements [5]. Finally, the multicast

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1618 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

scheme for video streaming is usually dynamic in the Internet,
i.e., clients can join and leave on-the-fly. Nevertheless, the
current IP networks do not have the capability of reconfiguring
the routing paths dynamically and adaptively.
Recently, software defined networking (SDN) has been

proposed to make the network programmable and appli-
cation-aware [6]. It decouples network control from data
forwarding and leverages centralized NC&M to facilitate
software-/user-customized routing, switching and network
management. Due to its flexibility and programmability, SDN
provides us a new paradigm to realize the network orchestration
that can facilitate efficient video streaming to heterogeneous
clients. The launch of OpenFlow (OF)1 [7] makes this target
more practical. Developed as an open standard protocol, OF
implements flow-based switching in the OF switches to make
them forward packets based on the flow-tables, which are
calculated and provided by a centralized OF controller. Since
the OF controller has the global view of the network, it can
adjust bandwidth provisioning schemes adaptively and utilize
the network resources more efficiently.
Previous studies have investigated SDN-based multicast

from different perspectives. In [8], the authors proposed an
OF-controlled multicast system in which the OF controller
could adjust the multicast provisioning scheme with fast tree
switching. However, as all the candidate multicast trees are
pre-calculated, the proposed system may have difficulty han-
dling the situation in which the clients can join and leave the
multicast groups dynamically. Yang et al. leveraged OF to
facilitate the join-and-leave operations for multicast in [9].
They only described the operation principle of the OF system
but did not address the algorithm design for realizing efficient
multicast group adjustments. Aiming at improving the security
and controllability of multicast, a secure multicast system was
designed based on SDN in [10]. In [11], Iyer et al. discussed
the SDN-based multicast in datacenter networks and proposed
to make multicast available in the commodity switches.
On the other hand, the authors of [12]–[15] are pioneering

in the field of QoS routing for the SVC video streaming over
OF/SDN networks. In [12], [13], they presented an analyt-
ical framework to optimize the QoS-aware routing for SVC
video streaming over OF networks. In the framework, the
BL of an SVC video is treated as the QoS flow that has the
highest priority, while its ELs are considered as the best-effort
flows. Then, they transformed the QoS-aware routing into a
constrained shortest-path routing problem and solved it. More
recently, they extended the work to consider the end-to-end
QoS provisioning for SVC video streaming over multi-domain
SDN networks in [14], [15]. Even though the ideas and results
in [12]–[15] were very interesting, the authors only addressed
the QoS routing for unicast-based video streaming and did not
consider the full network orchestration.
Note that with the idea of network orchestration, we can ex-

pect the OF controller to take care of more NC&M tasks than
routing calculation. For instance, it can also be in charge of
the video server selection for clients. More specifically, if we

1[Online]. Available: https://www.opennetworking.org/

consider real-time SVC video streaming and try to address the
generic situation in which the same video source can reside
in multiple servers and several clients can join and leave the
streaming dynamically, the OF controller has a multi-source
multi-destination manycast problem [16] to solve. Basically, the
controller needs to properly select the source video server for
each client and adjust the manycast forest (i.e., a group of mul-
ticast trees) adaptively when the network status changes.
In this paper, we propose an OF-controlled network system to

realize the aforementioned network orchestration for adaptive
SVC video manycast. We first design the functional modules
for the OF controller. Then, we focus on how to solve the
multi-source multi-destination SVC video manycast problem
efficiently and perform theoretical analysis for algorithm de-
sign. An integer linear programming (ILP) model is formulated
to obtain the optimal solutions for small-scale problems. Next,
we try to reduce the computational complexity and make the
manycast algorithm suitable for practical implementation in
the OF controller, and design two time-efficient heuristics.
The ILP and heuristics are evaluated with numerical simula-
tions and the results indicate that the heuristics can provide
close-to-optimal solutions for the manycast problem. Finally,
we build an OF network testbed that consists of OF switches,
SVC video servers and clients, design necessary OF protocol
extensions, implement the heuristics in the OF controller, and
perform SVC video streaming experiments to demonstrate our
design. In the experiments, we collect the results on streaming
bandwidth, packet-loss-rate (PLR), luminance components
peak signal-to-noise-ratio (Y-PSNR) of video playback, and
delay jitter, and they verify that the proposed scheme can
allocate the bandwidth intelligently and ensure high-quality
video streaming. To the best of our knowledge, this is the
first work that accomplishes the network-wide experimental
demonstrations of OF-controlled network orchestration for
adaptive SVC video manycast.
The rest of the paper is organized as follows. In Section II,

we describe the network architecture and our system design.
Section III discusses the problem of multi-source multi-destina-
tion SVC video manycast and formulates an ILP model to solve
it. The time-efficient heuristics are proposed in Section IV, and
Section V shows the simulation results. Section VI presents the
system implementation and experimental demonstrations. Fi-
nally, Section VII summarizes the paper.

II. OPENFLOW NETWORK SYSTEM FOR ADAPTIVE SVC
VIDEO MANYCAST

This section discusses the architecture of the OF network and
our design of the functional modules in the OF controller.

A. Network Architecture
Fig. 1 shows the overall architecture of the OF-based SVC

video manycast system. In the control plane, we have a cen-
tralized OF controller that communicates with the OF switches
using the OF protocol. The OF controller is in charge of
the NC&M tasks, e.g., managing video streaming paths and
selecting video servers for clients. The data plane consists
of OF switches, video servers and clients. Each OF switch

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1619

Fig. 1. Network architecture of OF-based video manycast system.

Fig. 2. Design of functional modules in OF controller.

receives the flow-tables from the OF controller, configures its
forwarding actions accordingly, and uses them to forward the
video traffics correctly. The geographically-distributed video
servers attach to the OF switches, and they carry overlapped
video sources, i.e., the same video content can be duplicated
on multiple servers. The clients access to the real-time video
streaming service through the OF switches. They can either
directly connect to an OF switch with a wired connection (e.g.,
Ethernet) or join the network through a wireless access-point
(AP) that attaches to an OF switch.

B. Functional Modules in OF Controller
Our design of the OF controller is illustrated in Fig. 2, where

we plot the functional modules and the relation among them.
When a client tries to require a video streaming service, it sends
a connection request to the nearest OF switch. The OF switch
checks its flow-tables and finds out that this is a new service
request as no flow-table has been configured for it. Then, the OF
switch encodes the request’s information in a PacketInmessage
and sends it to the OF controller. The OF controller parses the
message, checks the current network status, and calculates the
video streaming scheme, which includes the video server and
streaming path, for the client. Next, the OF controller encodes
the information of the streaming path in FlowMod messages,
distributes them to the related OF switches to install the path,
and informs the video server about the new client.When the path
is set up, the client starts to enjoy the video streaming service.
Note that with the manycast scenario, the OF controller does

not have to set up a new server-to-client path for the client. If
the client is close to one of the intermediate OF switches in the
manycast forest and the bandwidth resource is sufficient, the OF
controller can inform the OF switch to work as a splitting node

and relay the video to it. By doing so, we can utilize the band-
width resources more efficiently. Also, during the network op-
eration, the OF controller can adjust the manycast forest adap-
tively, when the network status changes.
The details of the functional modules in the OF controller are

explained as follows.
• Path Provision Module (PPM): It interacts with the OF
switches to handle the OF messages and manages the ser-
vice provisioning schemes for SVC video streaming. There
are two sub-components in PPM, i.e., the path computa-
tion module (PCM) and the path switching module (PSM).
They work collaboratively to determine the service provi-
sioning scheme for each client. When it receives a Pack-
etIn message, PPM parses the message, extracts the re-
quest’s information, and forwards the information to PCM
for server selection and path computation.

• Path ComputationModule (PCM): It is responsible for cal-
culating the service provisioning scheme for each client.
When it receives a task from PPM, PCM gets the current
network status by combining the information stored in the
topology management module (TMM) and the traffic engi-
neering database (TED), and performs server selection and
path computation accordingly. Then, it returns the result to
PMM, which will build the FlowMod messages for all the
related OF switches.

• Path Switching Module (PSM): It handles the dynamic
path reconfiguration in the manycast forest. For instance,
when PCM cannot find a valid service provisioning scheme
for a client to satisfy its QoS requirements, PSM can be in-
voked to reconfigure certain paths in the manycast forest
so as to serve the client with best effort.

• Topology Management Module (TMM): It gathers the in-
formation on network topology and updates the topology in
real time when there are OF switches joining or leaving the
network and/or the connectivity among the OF switches
changes. Specifically, it uses the link layer discovery pro-
tocol (LLDP) to realize the topology discovery with OF
messages. In our implementation, the OF controller re-
quests for the network status by sending FlowStatus_Re-
quest messages to the OF switches repeatedly, and the
OF switches reply with FlowStatus_Reply messages. Ac-
cording the information included in the FlowStatus_Reply
messages, TMM can obtain the information on network
topology.

• Traffic Engineering Database (TED): It stores the status of
in-service manycast traffic, e.g., the bandwidth utilization
on each link, the load on each video server, the manycast
forests for each contents, etc.

III. PROBLEM FORMULATION

In this section, we describe the theoretical model for the
multi-source multi-destination SVC video manycast problem
and formulate an ILP model to solve it.

A. Network Model and Problem Description
The topology of the OF network is denoted as a directed

graph , where and are the sets of nodes and
links, respectively. Here, includes three types of nodes, i.e.,
the video servers that each attaches to an OF switch locally, the

1620 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

clients and the OF switches. We denote the sets of video servers
and clients as and , and hence the set of OF switches is

. If link is from to (), we have
and denote its bandwidth capacity and delay as
and , respectively. To get each , we consider
both the transmission delay and propagation delay of link .
Similar to the work in [17], we assume that for each link ,

and are not directly related.
On the servers in , we have the video sources/contents, the

set of which can be denoted as . For all the contents in , we
assume that each of them can be encoded into at most SVC
layers, which are BL and ELs.
We consider the situation that in the network, there can be

multiple pending requests trying to get the SVC streaming
service. Hence, we denote the set of all the pending requests
as . Each request is represented as

, where is its index, is the client,
is the requested content, is the number of requested

SVC layers, and is the holding time (i.e., the time duration
that the request wants to enjoy the video streaming service).
Note that in our network model, it is possible that the same
client asks for different contents in , or different clients ask
for the same content. In both cases, the requests are treated as
different ones. Basically, we distinguish the requests in with
their indices regardless of the clients and requested contents.
We introduce the following definitions to describe the service

provisioning in the network.
Definition 1: We define the actual number of SVC layers that

request is provisioned with as .
Definition 2: We define as the actual service time for the

-th SVC layer of , when serving request .
Here, we have and . Basically,

in the service provisioning, we may have due to band-
width insufficiency. Moreover, even when the -th SVC layer
is provisioned to , we may have . This is because
our service provisioning algorithm may switch off certain ELs
to some in-service clients dynamically. The details on this will
be presented in SubSection IV-B.
Definition 3: To evaluate a service provisioning scheme, we

define as the revenue gain from serving request .
Basically, the satisfaction of client decides that the rev-

enue gain should be related to the number of continuous
SVC layers delivered to and the service duration of each
layer. Hence, we assume that the revenue from each layer has
a linear relation with its service duration [18]. Specifically, for
request , if has received the -th SVC layer for a duration
of , the revenue gain is , where is the revenue
weight (i.e., price per time-unit for the -th SVC layer). For an
SVC streaming service, the BL () is the most important
because we cannot decode the video without it, and then, the re-
ceived video’s quality would become better if more subsequent
ELs () are delivered. Hence, we choose the weights as

, which is similar to the setting
in [19]. Finally, after normalization, we can obtain the revenue
gain from serving request (i.e.,) as

(1)

Then, the total revenue gain will be

(2)

The objective of the service provisioning is to maximize the
total revenue gain in (2), and we refer to this problem as maxi-
mizing revenue with layered manycast (MRLM).

B. ILP Model

We first present an ILP model to solve the MRLM problem
exactly. With the network model described above, we can for-
mulate the manycast problem as an optimization to maximize
the total revenue defined in (2). The problem can be solved with
the ILP model discussed below. Here, for simplicity, the ILP
model only tries to serve the new clients that are still pending,
but it does not consider the reconfiguration of the in-service re-
quests. Hence, when using (1) to calculate the revenue gain, we
need to replace with .
Parameters:
• : the bandwidth capacity on link ;
• : the delay on link ;
• : the set of pending requests;
• : the set of video contents;
• : the bandwidth requirement for delivering the -th SVC
layer of content ;

• : the set of video servers that store the -th SVC layer
of content , ;

• : the maximum delay that the system can tolerate for
each SVC layer;

• : the maximum delay jitter between any pair of SVC
layers to the same client. For example, if time-
units and the delay of BL is 50 time-units, then the delay
of the first EL should be within [30,70] time-units;

• : the weight of the -th SVC layer of any content;
• : the bandwidth scaling factor.
Variables:
• : Boolean variable that equals 1 if client in request

receives the -th layer of the requested video content
from the server , otherwise ;

• : Boolean variable that equals 1 if link is used
to deliver the -th layer of the requested video content
for request , otherwise ;

• : Boolean variable that equals 1 if link is used
to deliver the -th layer of content , otherwise ;

Objective:
The total revenue gain per time-unit from serving all the re-

quest in can be calculated as

(3)

With (3), we define the optimization objective as

(4)

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1621

Constraints
1) Flow Conservation Constraints:

otherwise,
(5)

Equation (5) ensures that if the manycast forest covers
client and carries the traffic of the -th layer of to it,
the video streaming for that layer uses a single path from
server to .

(6)

Equation (6) ensures that we can use at most one video
server to send the -th layer of to client .

2) Traffic Aggregation Constraints:

(7)
(8)

Equations (7)–(8) ensure that on each link , the traf-
fics to different clients are aggregated if they are for the
same SVC layer of the same video content, since we use a
multi-source multi-destination manycast forest to serve all
the clients that require for the same video content.

3) Delay Constraints:

(9)

Equation (9) ensures that all the service provisioning
schemes in the manycast forest can satisfy the delay
requirement from the real-time video streaming service.

4) Jitter Constraints:

(10)

Equation (10) ensures that all the service provisioning
schemes in the manycast forest satisfy the delay jitter
requirement from the real-time video streaming service
[20], [21].

5) Video Decodable Constraints:

(11)

Equation (11) ensures that the SVC layers received by each
client are decodable. Note that according to the principle of

SVC, the client has to receive consecutive layers to decode
a video, which means that the -th () layer is decod-
able only if all the layers from the first to -th have
been received successfully. For instance, if we want to de-
code the video data in the first EL successfully, the BL has
also to be received.

6) Bandwidth Constraints:

(12)

Equation (12) ensures that the service provisioning
schemes cannot use bandwidth that is more than the link
capacity. Note that for practical SVC video streaming,
the bandwidth requirement can change with time.
Therefore, we introduce a bandwidth scaling factor to
assign certain redundant bandwidth to the streaming flows
and make them more reliable [22].

C. Complexity Analysis
One way to look into the complexity of solving an ILP is to

analyze the numbers of variables and constraints that it uses
[23]. For the ILP discussed above, the number of variables is

. And the upper-bound
of the number of equality constraints is , and the
number of inequality constraints is bounded below

.
The analysis above indicates that MRLM is a relatively com-

plex problem. Actually, we can verify this observation from an-
other perspective. Let us consider an over-simplified version of
the MRLM, i.e., we only have one request to
serve, is encoded into SVC layers, and there is only
one server in the network. The network is still the
directed graph in which the bandwidth capacity
of each link is bounded. Then, in order to serve
and minimize the possibility of network congestion in the future
(i.e., maximizing the revenue gain from subsequent requests),
we need to solve the maximum 2-splittable flow problem, which
is known to be -hard [24]. Due to the complexity, we will
propose several time-efficient heuristics for MRLM in the next
section.

IV. HEURISTIC ALGORITHMS

In this section, we design two time-efficient heuristics to
solve the MRLM problem in real-time such that they can be
practically implemented in the OF controller.

A. Layer-Based Serving Algorithm (LBS)
At each provision time, the OF controller needs to serve a

set of requests . Therefore, in order
to avoid the service unfairness that some requests do not even
get the BLs of their requested contents while others receive
not only the BLs but also the ELs, we propose a layer-based
serving algorithm (LBS). LBS determines the provisioning
schemes for the requests layer-by-layer, i.e., trying to serve the
BLs first and then moving to the ELs in sequence. Specifically,
we decompose a request into sub-requests

1622 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

as , each of which requires
one SVC layer of . For instance, is the
sub-request for the -th SVC layer of . Then, we merge the
sub-requests into groups based on their SVC layers, as

(13)

and we have

(14)

Basically, represents the set of sub-requests that are for the
-th SVC layer of their contents. Note that in the same group,
the requested contents of the sub-requests can be different.
For each sub-request , the OF controller provisions the

SVC streaming by preprocessing the topology
first to address the bandwidth constraints, i.e., ensuring that
will use a path that has sufficient bandwidth capacity. Specifi-
cally, since is for the -th layer of content , the OF con-
troller finds the set of links whose bandwidths are less than
and denote it as , i.e.

(15)

We introduce a delay set , make , and
then assign the delays of the links in as in , i.e.

(16)

The streaming path for the -th layer of is obtained with the
topology . Here, we denote the path for the -th
layer of as , and the available bandwidth on is

(17)

which should satisfy the following condition automatically

(18)

Algorithm 1 shows the detailed procedure of LBS. Note that
in the dynamic network operation where requests come and
leave on-the-fly, Algorithm 1 will be invoked repeatedly. The
outer for-loop that covers Lines 1-22 handles an SVC layer of
the requested contents, while the inner for-loop from Line 2 to
Line 21 tries to find the provisioning scheme for each sub-re-
quest in group . Lines 3-5 are for initializa-
tion, and then we run Lines 6-12 to find the feasible paths from
each node in to client . To adapt to the real-time video
streaming service, Line 7 calculates the shortest path. To make
the video decodable, we use Lines 13-17 to remove all the subse-
quent sub-requests for (i.e.,) imme-
diately, if no feasible path can be found for . Otherwise, in
Line 18, we stream the -th SVC layer of to with a feasible
path . Specifically, we first try to select the streaming
path in ascending order of their delays, and if there are multiple

paths that have the same minimum delay, we select the one that
can provides the maximum available bandwidth.

Algorithm 1: Layer-Based Serving Algorithm (LBS)

1. for to do
2. for each sub-request do
3. obtain the information of ;
4. ;
5. obtain and with Eqs. (15)–(16);
6. for each node do
7. calculate the shortest path with a finite length

for in ;
8. store the delay of in ;
9. if satisfies the delay and jitter constraints

in (9) and (10) then
10. ;
11. end
12. end
13. if then
14. ;
15. remove from ;
16. break;
17. end
18. stream the -th layer of to with the path

such that it has the minimum delay and
maximum available bandwidth

19. update ;
20. ;
21. end
22. end

At this moment, the -th SVC layer of is successfully pro-
visioned for request andwe update the network status accord-
ingly with Lines 19-20. Note that initially, when the manycast
forest of is empty, only includes the set of video servers
that store the -th SVC layer of . After more and more clients
joining in, grows with the manycast forest to include all
of its nodes (as shown in Line 20). Therefore, we can leverage
the split-and-relay feature enabled by OF to improve bandwidth
utilization efficiency.

B. Layer-Based Serving With Layer Switching (LBS-LS)
Even though LBS considers the service fairness of video

manycast, it still has a drawback for dynamic network opera-
tion. Basically, when Algorithm 1 is invoked at each provision
time, it only treats the unused bandwidth as available resources.
Nevertheless, this may still cause the situation in which some
clients may not even get the BLs of their requested contents
while others that were served earlier receive not only the
BLs but also the ELs. One way to overcome this drawback
is to introduce layer switching, i.e., we purposely switch off
certain in-service streaming for ELs to make room for BLs.
Meanwhile, in order to avoid the “ping-pong” effect, i.e., SVC
layers are switched on and off frequently, we assume that if
an EL is switched off, its service is terminated permanently
and it would not be switched on again even when there is
enough bandwidth. This is because the quality of the video will
fluctuate significantly due to switching the EL(s) constantly
[25], which can damage the quality of experience (QoE).

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1623

Specifically, for each request , if we cannot
find a feasible path for the BL of , we will try to apply the layer
switching. Then, if we select requests that have been served
before and switch off certain ELs of their video streaming for
accommodating the BL of , the switching revenue is defined
as follows.
Definition 4: Assuming that the selected requests are

, the switching rev-
enue is the revenuegainper time-unit from the layer switching, as

(19)

where represent the ELs of request ,
which we decide to switch off.
Apparently, the layer switching is meaningful only when we

have , i.e., obtaining a positive revenue gain. Algorithm
2 shows the detailed procedure for the layer switching to accom-
modate the BL of . Lines 2-3 are for initialization. We then
use the for-loop that covers Lines 4-10 to calculate a path set
. Here, different from the corresponding operations in LBS,

we find the paths with the maximum available bandwidth in the
original topology . The for-loop from Line 11 to
Line 19 tries to use the layer switching to accommodate the BL
of with best-effort. Specifically, for each , we select
the in-service requests such that the layer switching on them can
make available for the BL of and then check whether the
switching revenue is positive. We perform the layer switching
only if the switching revenue is positive. By combining the layer
switching strategy with LBS, we obtain the LBS-LS algorithm.

Algorithm 2: Layer Switching Strategy

1. if there is no feasible path for the BL of then
2. obtain the information of ;
3. ;
4. for each node do
5. find the path in from to with

the maximum available bandwidth;
6. mark the delay of as ;
7. if satisfies the delay and jitter constraints in

(9) and (10) then
8. ;
9. end
10. end
11. for each do
12. find in-service requests such that the layer switching

on them makes available for ;
13. calculate switching revenue with (19);
14. if then
15. perform the layer switchingp;
16. serve with ;
17. break;
18. end
19. end
20. end

Fig. 3. grid topology for one-time operation simulations.

C. Complexity Analysis
The computational complexity of LBS is

. Since LBS-LS is based on LBS and considers the
layer switching as a supplement, its complexity is

, which is higher than
LBS. Even though the complexity of LBS-LS is higher, it also
contributes more revenue gains as shown in Section V.

V. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to evaluate the
performance of the ILP model and proposed heuristics. Here,
we perform simulations in two categories: 1) one-time opera-
tion, and 2) dynamic operation. Considering the complexity of
the ILP, we first conduct simulations in the former category to
compare the results from the heuristics to the optimal ones pro-
vided by the ILP. Basically, the simulations only try to provision
a set of requests and emulate the one-time operation at a provi-
sion time. While the simulations in the latter category are used
to evaluate the performance of the heuristics further by consid-
ering the dynamic network operation where the requests come
and leave on-the-fly and service provisioning need to be invoked
repeatedly.

A. One-Time Operation
Fig. 3 shows the grid topology used for small-scale

simulations. Here, for simplicity, we only show the OF switches
but omit the video servers and clients. If the OF switch is di-
rectly connected to a video server, we mark it as a source node
in Fig. 3. On the other hand, if the client(s) can access the
video streaming service through an OF switch, we mark it as
a destination node. We randomly select Nodes 3, 12 and 13 as
the source nodes, while the destination nodes are also selected
randomly as Nodes 1, 5, 6, 9, 10 and 15. The simulation param-
eters are listed in Table I. We use Lingo v11.02 to solve the ILP
and simulate the heuristics with MATLAB R2013a, and all the
simulations run on a Windows server with 2.2-GHz CPU and
32-GB RAM.
Fig. 4 shows the results on the total revenue from serving

different numbers of requests. For each request number, we ran-
domly generate 50 sets of requests, perform simulation on them,
and obtain the average results to plot in Fig. 4. Meanwhile, we
also plot the maximum and minimum values to illustrate the
statistical accuracy of the simulations. Note that here, since we
only consider the one-time operation, there is no need to simu-
late LBS-LS, which is designed for dynamic network operation.
As expected, the ILP provides the largest total revenues, but we

2[Online]. Available: http://www.lindo.com/

1624 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

TABLE I
SIMULATION PARAMETERS

Fig. 4. Simulation results on total revenue for one-time operation.

TABLE II
SIMULATION RESULTS ON AVERAGE RUNNING TIME (SECONDS)

can also see that the total revenues from LBS are close to those
from the ILP.
In order to checkwhether the algorithms are suitable for being

practically implemented in the OF controller, we record their
average running time and Table II shows the results.
It can be seen that due to its complexity, the ILP needs very

long time to finish the computation, which makes it not suit-
able for managing real-time network operations. LBS is three
magnitudes faster than the ILP. Hence, the results suggest that
LBS provides a reasonably good tradeoff between the time com-
plexity and the performance of service provisioning.

B. Dynamic Operation
We then perform simulations for dynamic operation in a
grid topology (i.e., including 196 nodes) to evaluate the per-

formance of the heuristics further. The locations of the source
and destination nodes are still randomly selected and the details
on the simulation parameters are also listed in Table I. Here, the
requests are randomly generated according to the Poisson traffic
model, i.e., the average arrival rate is and the holding time of
each request follows the negative exponential distribution with
an average of . Hence, we can quantify the traffic load as
in Erlangs. In each simulation, we fix the traffic load, generate
the requests that come and leave on-the-fly, and use the heuris-
tics to serve them dynamically. For each traffic load, we simu-
late around 16,000 requests and compare LBS and LBS-LS. To

Fig. 5. Simulation results on total revenue for dynamic operation.

emulate the practical scenario, we also add random background
traffic in the network.
Fig. 5 shows the results on total revenue, each of which is

obtained by averaging the results from 50 simulations. We still
plot the maximum and minimum values to show the statistical
accuracy. We observe that LBS-LS performs better than LBS.
This is because LBS-LS manages the bandwidth allocation in-
telligently with the layer switching and serves the most clients
with BL streaming. According to (1), the revenue gain from
streaming the BL is higher than that from streaming the sub-
sequent ELs. Hence, by making the service provisioning fairer,
LBS-LS provides the larger total revenues. It is interesting to
notice that when the traffic load is relatively low (e.g., 2400 Er-
langs), there is no significant difference among the results from
the two heuristics. This is because when the traffic load is low,
the network capacity is sufficient enough to accommodate al-
most all the requests.

VI. EXPERIMENTAL DEMONSTRATIONS

In this section, we discuss the system implementation of the
OF-controlled network orchestration for adaptive SVC video
manycast and show the experimental setup and results.

A. System Implementation
We implement the proposed heuristics in the OF controller,

design necessary OF protocol extensions, and realize a practical
OF network system for adaptive SVC video manycast. Specifi-
cally, we implement the OF controller with the POX platform3

and run it on a Linux server (Lenovo ThinkServer RD540). It
is known that POX platform is relatively fast and efficient and
can handle over 30,000 flows per second . Meanwhile, with the
message bundling scheme developed for the latest OF standard,

3[Online]. Available: http://www.noxrepo.org/pox/about-pox/

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1625

Fig. 6. Network topology of experimental testbed.

the OF controller can bundle a set of OF messages to a switch
in a single message to reduce the signaling time. Therefore, we
can see that the proposed system has relatively good scalability.
The OF switches are programmed based on OpenvSwitch,4 and
each of them is also realized with a high-performance Linux
server (Lenovo ThinkServer RD530 or RD540) equipped with
multiple Ethernet linecards.
We realize the video servers and clients with common

personal computers (PCs) running open-source softwares that
are modified to support adaptive SVC video streaming. For
instance, the client should decode the received video cor-
rectly when we reconfiguring the EL streaming dynamically.
The video server uses the joint scalable video mode (JSVM)
module for SVC transcoding. When a streaming session starts,
the server encapsulates the video data in packets with corre-
sponding RTP/UDP/IP headers and sends them out. The OF
switches forward the packets by checking the IP addresses and
UDP ports and applying the forwarding actions provided by the
OF controller. Hence, for the streaming of the same content, the
packets for difference SVC layers are distinguished with the
combination of IP addresses and UDP port. Hence, they can be
forwarded over the OF network independently, even though the
source and destination IP addresses are the same. In each client,
the packets for difference SVC layers are redirected to the same
UDP port and aggregated. The clients buffer received packets
for reordering and decoding, and play back the video. In the
experiments, we record all the reconstructed video frames and
relevant event-logs for performance analysis.

B. Experimental Testbed

We build an experimental testbed for the OF network, which
consists of 16 OF switches connected according to the
grid topology as shown in Fig. 6, where the numbers around the
OF switches are the port numbers. The OF controller connects
to all the OF switches directly. We insert two video servers in
the testbed and make them connect to Nodes 1 and 5, and the
video clients are connected to Nodes 8, 15 and 16. Two video
contents are placed on the video servers to emulate the real-time

4[Online]. Available: http://www.openvswitch.org/

TABLE III
MINIMUM BIT-RATES OF VIDEO STREAMING (MBPS)

Fig. 7. OF messages for adaptive SVC video manycast.

video sources, and we mark them as Content 1 and 2, which are
generated by using the MPEG standard test-sequence “Bridge”
and “Paris”,5 respectively. Both of the videos are encoded in the
common-intermediate-format (CIF) resolution (), and
last for 35 seconds (i.e., 1,064 frames). We play the videos mul-
tiple times to get longer video sessions. For each of the video
contents, JSVM on the servers performs SVC transcoding and
generates two SVC layers (i.e., BL and EL) for different play-
back signal-to-noise-ratios (SNRs). The bit-rates of the SVC
layers (minimum values) are shown in Table III. In the exper-
iments, we have Content 1 on the server connected to Node 1
and Content 2 on the server connected to Node 5.
We set up a bandwidth-limited network by limiting the ca-

pacity of each link that connects two OF switches as 1.7 Mbps.
We implement LBS and LBS-LS in the OF controller and per-
form packet-level experiments to compare them. Specifically,
we collect experimental results on streaming bandwidth, packet-
loss-rate (PLR), luminance component’s peak signal-to-noise-
ratio (Y-PSNR) of video playback, and delay jitter.

C. Experimental Procedure
In order to verify that the OF network can realize the network

orchestration for adaptive SVC videomanycast, we compare the
performance of LBS and LBS-LS. Meanwhile, we also realize
the conventional IP multicast scenario and use it as the bench-
mark. The experimental procedure are as follows.
• Step 1: At second, a background traffic with the ca-
pacity of 0.2 Mbps is generated to use link , which
will last for 34 seconds. Then, the available bandwidth on
link becomes 1.5 Mbps. Client 1 on Node 8 sends
a request for Content 1 and asks for both the BL and EL.
Node 8 forwards the request to the OF controller, which
selects the server connected to Node 1 as the streaming
source and obtains the streaming paths for the BL and EL
as and ,
respectively. However, in the Conventional scenario, the
paths for the BL and EL are both ,
which is the shortest path. Then, the streaming service for
Client 1 is set up for both of the requested SVC layers. Note
that since the total capacity of the BL and EL of Content 1
is about 1.6 Mbps, the provisioning scheme from the Con-
ventional scenario will cause congestion on link .

5[Online]. Available: http://trace.eas.asu.edu/yuv/index.html

1626 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

Fig. 8. Details on FlowMod messages.

• Step 2: At seconds, another background traffic is
generated to use link , which will last for 30 sec-
onds, and the available bandwidth on link be-
comes 1.5 Mbps.Client 2 onNode 15 tries to join the video
streaming for Content 1 and also sends a request for the
BL and EL. This time, the OF controller finds that Client
2 can directly get the BL streaming from Node 3 based on
manycast scenario, and instructs the OF switch on Node 3
to perform split-and-relay. Meanwhile, the OF controller
set up the path for the
EL streaming. Then, the manycast forest of Content 1 be-
comes {{BL: , },
{EL: , }}.
The Conventional scenario selects

as the path for both the BL and EL and creates
congestion on link .

• Step 3: At seconds, 1.2 Mbps background traffic is
injected to links and , lasting for 10 sec-
onds. Then, the available bandwidth on links
and becomes 0.5 Mbps. Client 3 on Node 16
tries to join the video streaming for Content 2 and sends
a request for the BL. With LBS, the OF controller selects
the server connected to Node 5 as the streaming source
and obtains the streaming path as

.6 However, as the available bandwidth
on path is 1.7 Mbps at
that time, the service provisioning scheme will make it
become congested. On the other hand, with LBS-LS, the
OF controller switches off the EL streaming to Client 2
on path to make room for
the BL streaming of Client 3. Then, there will be no con-
gestion on path . The Con-
ventional scenario selects the path for the BL streaming as

.

6Here, strictly speaking, LBS should just block the request from Client 3 as
no feasible path can be found due to the bandwidth limitation. The reason why
we still make LBS to provision the video streaming is that we want to see how
the quality of video streaming would be affected by network congestions.

Fig. 9. Procedure of service provisioning for Client 3.

• Step 4: At seconds, the real-time video streaming
of Content 1 ends.

• Step 5: At seconds, the real-time video streaming
of Content 2 ends.

D. OF Messages
Fig. 7 shows the Wireshark capture of the OF messages used

for provisioning the request from Client 3 with LBS-LS. When
the request from Client 3 arrives, the OF controller switches off
the EL streaming ofClient 2 to make room for the BL streaming
of Client 3. Therefore, we can see that the flow-table on Node
5 is updated and those on Nodes 9, 13, 14 and 15 are modified.
We also capture and parse the FlowMod messages to verify the
operations in the OF network. Fig. 8(a) shows the FlowMod
message received on Node 3 to provision the BL streaming to
Clients 1 and 2. We can see that the OF controller instructs the
OF switch to identify the packets of the BL streaming with the
combination of source and destination IP addresses and UDP
port number. The FlowMod message also shows that at Node 3,
the split-and-relay is realized by using three forwarding actions.
Basically, Node 3 switches the packets to Outputs 1 and 3, and
by checking the topology in Fig. 6, we can find that Outputs 1
and 3 of Node 3 connect to Nodes 4 and 7, respectively. Also,
when the streaming packets are duplicated, the OF switch on
Node 3 will modify its destination IP address to that of Node

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1627

Fig. 10. Results on streaming bandwidth.

Fig. 11. Results on Y-PSNR of the received videos. (a) Client 1. (b) Client 2.
(c) Client 3.

15 (i.e., 172.16.0.15), which is the OF switch that connects to
Client 2. The FlowMod message that is used to switch off the
EL streaming to Client 2 on Node 5 is presented in Fig. 8(b), in
which the OF controller sets the IdleTime field as 0 and lets the
flow-table for the EL streaming packets become invalid.
Finally, we use Fig. 9 to explain the operation details in the

OF controller. Here, we take the service provisioning for Client
3 as an example, and make the explanation as follows.
• Step 1: Node 16 sends a PacketIn message to the OF con-
troller for Client 3.

• Step 2: The OF controller receives the PacketIn message.
PPM parses the request information and instructs PCM to
calculate the service provisioning scheme. With the net-
work status in TED and TMM, PCM tries to obtain the
service provisioning scheme for the BL.

• Step 3: Due to bandwidth insufficiency, PCM cannot find
a feasible path for the BL streaming, and hence it contacts
PSM to invoke the layer switching. PSM figures out that
by switching off the EL streaming to Client 2 and recon-
figuring the existing manycast forest, the BL streaming to
Client 3 can be accommodated.

• Step 4: PPM encodes the new forwarding actions in
FlowMod messages and sends them to the related OF

Fig. 12. Results on packet-level delay jitter on Client 3. (a) LBS. (b) LBS-LS.

Fig. 13. Screen-shots of the received video on Client 3. (a) LBS-LS. (b) LBS.

switches. The OF switches update their flow-tables to
provision the streaming service to Client 3.

• Step 5: The OF controller updates TED and TMM to in-
clude the most-updated network status.

E. Experimental Results

Fig. 10 shows the experimental results on streaming band-
width. The streaming bandwidths for the BL and EL of Client
1 are plotted in Figs. 10(a) and 10(b). In Fig. 10(a), we observe
that for both LBS and LBS-LS, the streaming bandwidth for the
BL stays almost unchanged after seconds, when Client
2 joins and starts to receive the BL from Node 3 with the many-
cast scenario. This verifies that the OF-controller can adjust
the manycast forest without affecting the in-service streaming.
While in the Conventional scenario, the streaming bandwidths
for both the BL and EL are less than those in LBS and LBS-LS

1628 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 9, SEPTEMBER 2015

TABLE IV
STATISTICS OF EXPERIMENTAL RESULTS

during the whole experimental, due to the insufficient band-
widths on links and . That is because the Conven-
tional scenario does not have the global information regarding
the network status and hence cannot facilitate dynamic path
setup for video streaming.
Fig. 10(b) also indicates the difference between LBS and

LBS-LS. Basically, whenClient 3 tries to join at seconds,
LBS-LS switches off the EL streaming toClient 2 to make room
on path , while LBS does nothing to
Client 2. We can also see that with LBS, the streaming band-
width for EL decreases for about 0.2 Mbps due to the network
congestion. Figs. 10(c) and 10(d) show the streaming band-
widths for the BL and EL to Client 2, which stay almost un-
changed during the whole provisioning period, i.e.,
seconds. Even though Clients 1 and 2 receive the same video,
the streaming bandwidth for the EL to Client 1 is not affected
when LBS-LS switches off the EL to Client 2 at . In
Fig. 10(e), we observe that with LBS, the streaming bandwidth
for the BL to Client 3 decreases for about 0.2 Mbps during

seconds. This is still due to the network conges-
tion on path . Basically, the network
congestion causes packet loss and makes the effective streaming
bandwidth decline.
Fig. 11 illustrates the results on Y-PSNRs of the received

videos. In Fig. 11(a), we can see that with LBS-LS, the Y-PSNR
ofContent 1 during seconds is around 4 dB less than
that before seconds. This is because LBS-LS switches
off the EL streaming to accommodate the request from Client
3. While for the case with LBS, even though the results on
Y-PSNR is slightly better during the same period, the network
congestion makes the Y-PSNR unstable. Fig. 11(c) shows that
for Client 3, the results on Y-PSNR from LBS is significantly
worse than those from LBS-LS. We also notice that even after

seconds, when the video streaming of Content 1 has al-
ready ended, the results on Y-PSNR from LBS are still worse
than those from LBS-LS. This is caused by the chain effect from
the congestion-induced packet loss.
Fig. 12 shows the results on the packet-level delay jitter of

Client 3. With LBS-LS, the delay jitter in Fig. 12(b) stays at
around 3 msec stably, while the results from LBS are much
larger [as shown in Fig. 12(a)]. Due to the congestion on path

during seconds,
the jitter results from LBS are the largest. In Fig. 12(a), after

seconds, when the video streaming of Content 1 ends,
the bandwidth on these links is sufficient to serve Client 3, the
jitter results decrease. We capture two screen-shots of the video
playback on Client 3 in Fig. 13 to compare the actual streaming
quality illustratively. The statistics of the experimental results
are listed in Table IV, which indicate that LBS-LS also outper-
forms LBS and the Conventional scenario in long-run.

VII. CONCLUSION

In this paper, we investigated how to realize network orches-
tration for adaptive SVC video manycast and proposed to re-
alize it with an OF-controlled SDN architecture. The functional
modules for the OF controller were first designed to facilitate
efficient network operations. Then, we focused on solving the
multi-source multi-destination SVC video manycast problem
efficiently and designed several algorithms. Initially, an ILP
model was formulated to obtain the optimal solutions for small-
scale problems. Next, we tried to reduce the computational com-
plexity and make the manycast algorithm suitable for practical
implementation in the OF controller, and designed two time-
efficient heuristics, namely, LBS and LBS-LS. The ILP and
heuristics were evaluated with numerical simulations and the
results indicated that the heuristics could provide close-to-op-
timal solutions for the manycast problem and the one that in-
corporates the layer switching (i.e., LBS-LS) provided the best
performance on total revenue gain in the simulations for dy-
namic operations.
Finally, we built an OF network testbed that consisted of

OF switches, SVC video servers and clients. With the testbed,
we designed necessary OF protocol extensions, implemented
the heuristics in the OF controller, and performed SVC video
streaming experiments to demonstrate our design. In the experi-
ments, we collected the results on streaming bandwidth, packet-
loss-rate (PLR), luminance component’s peak signal-to-noise-
ratio (Y-PSNR) of video playback, and delay jitter, and they ver-
ified that the proposed scheme could allocate bandwidth intel-
ligently and ensure high-quality video streaming. Basically, the
centralized OF controller could manage the SVC video many-
cast efficiently by adjusting the manycast forest dynamically ac-
cording to the network status. Hence, the proposed networking
system could effectively improve the quality of real-time SVC
video streaming.

XUE et al.: DEMONSTRATION OF OF-CONTROLLED NETWORK ORCHESTRATION 1629

ACKNOWLEDGMENT

The authors would like to thank Mr. H. Huang from the Uni-
versity of Science and Technology of China for his help on the
experiments.

REFERENCES
[1] “Cisco visual networking index: Forecast and methodology,

2012–2017,” Cisco. San Jose, CA, USA, May 2013.
[2] W. Li, “Overview of fine granularity scalability in MPEG-4 video stan-

dard,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp.
301–317, Mar. 2001.

[3] J. Apostolopoulos, T.Wong,W. Tan, and S.Wee, “Onmultiple descrip-
tion streaming with content delivery networks,” in Proc. INFOCOM,
Apr. 2002, pp. 1736–1745.

[4] K. Phan, J. Moulierac, C. Tran, and N. Thoai, “Xcast6 treemap islands:
Revisiting multicast model,” in Proc. ACM CoNEXT Workshop, Dec.
2012, pp. 33–34.

[5] A. Striegel and G. Manimaran, “A survey of QoS multicasting issues,”
IEEE Commun. Mag., vol. 40, no. 6, pp. 82–87, Jun. 2002.

[6] G. Goth, “Software-defined networking could shake up more than
packets,” IEEE Internet Comput., vol. 15, no. 4, pp. 6–9, Jul./Aug.
2011.

[7] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74, Mar.
2008.

[8] D. Kotani, K. Suzuki, and H. Shimonishi, “A design and implemen-
tation of openflow controller handling IP multicast with fast tree
switching,” in Proc. IEEE IPSJ, Jul. 2012, pp. 60–67.

[9] Y. Yang, Z. Qin, X. Li, and S. Chen, “OFM: A novel multicast
mechanism based on Openflow,” Adv. Inform. Sci. Service, vol. 4, pp.
278–286, Sep. 2012.

[10] J. Zou, G. Shou, Z. Guo, and Y. Hu, “Design and implementation of
secure multicast based on SDN,” in Proc. IC-BNMT, Nov. 2013, pp.
124–128.

[11] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data center multicast
using software defined networking,” in Proc. COMSNETS, Jan. 2014,
pp. 1–8.

[12] H. Egilmez, B. Gorkemli, A. Tekalp, and S. Civanlar, “Scalable video
streaming over OpenFlow networks: An optimization framework for
QoS routing,” in Proc. ICIP, Sep. 2011, pp. 2241–2244.

[13] H. Egilmez, S. Civanlar, and A. Tekalp, “An optimization framework
for QoS-enabled adaptive video streaming over OpenFlow networks,”
IEEE Trans. Multimedia, vol. 15, no. 3, pp. 710–715, Apr. 2013.

[14] H. Egilmez, S. Civanlar, and A. Tekalp, “A distributed QoS routing
architecture for scalable video streaming over multi-domain OpenFlow
networks,” in Proc. ICIP, Sep. 2012, pp. 2237–2240.

[15] H. Egilmez and A. Tekalp, “Distributed QoS architectures for multi-
media streaming over software defined networks,” IEEE Trans. Multi-
media, vol. 16, no. 6, pp. 1597–1609, Oct. 2014.

[16] Q. She and J. Jue, “Min-cost tree for multi-resource manycast in mesh
networks,” in Proc. ANTS, Dec. 2007, pp. 1–2.

[17] J. Chen, S. Chan, and V. Li, “Multipath routing for video delivery over
bandwidth-limited networks,” IEEE J. Sel. Areas Commun., vol. 22,
no. 10, pp. 1920–1932, Dec. 2004.

[18] A. Krishnamurthy, T. Little, and D. Castanon, “A pricing mechanism
for scalable video delivery,” Multimedia Syst., vol. 4, pp. 328–337,
1996.

[19] C. Wang, Y. Chen, H. Wei, and K. Liu, “Optimal pricing in stochastic
scalable video coding multicasting system,” in Proc. INFOCOM, Apr.
2013, pp. 540–544.

[20] W. Zhang et al., “Reliable adaptive multipath provisioning with band-
width and differential delay constraints,” in Proc. INFOCOM, Apr.
2010, pp. 1–9.

[21] Z. Zhu, S. Li, and X. Chen, “Design QoS-aware multi-path provi-
sioning strategies for efficient cloud-assisted SVC video streaming to
heterogeneous clients,” IEEE Trans. Multimedia, vol. 15, no. 4, pp.
758–768, Jun. 2013.

[22] S. Li, Z. Zhu, W. Li, and H. Li, “Efficient and scalable cloud-assisted
SVC video streaming through mesh networks,” in Proc. ICNC, Jan.
2012, pp. 944–948.

[23] P. Ho, J. Tapolcai, and T. Cinkler, “Segment shared protection in
mesh communications networks with bandwidth guaranteed tunnels,”
IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 1105–1118, Dec. 2004.

[24] G. Baier, E. Kohler, and M. Skutella, “The k-splittable flow problem,”
Algorithmica, vol. 42, pp. 231–248, Jul. 2005.

[25] D. Song and C. W. Chen, “Scalable H.264/AVC video transmission
over MIMO wireless systems with adaptive channel selection based
on partial channel information,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 9, pp. 1218–1226, Sep. 2007.

Nana Xue, photograph and biography not available at the time of publication.

Xiaoliang Chen, photograph and biography not available at the time of
publication.

Long Gong, photograph and biography not available at the time of publication.

Suoheng Li, photograph and biography not available at the time of publication.

Daoyun Hu, photograph and biography not available at the time of publication.

Zuqing Zhu (S’02–M’06–SM’12), photograph and biography not available at
the time of publication.

