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Abstract—We develop an adaptive and efficient genetic al-
gorithm (GA) to solve the dynamic routing, modulation and
spectrum assignments (RMSA) for elastic O-OFDM networks.
The algorithm offers an efficient way of serving the dynamic
lightpath requests based on the current network status at each
service provision time. The GA is designed for multi-objective op-
timization. For low traffic cases when there is no blocking, the GA
minimizes the maximum number of slots required on any fiber
in the network; otherwise, it minimizes the blocking probability.
The performance of the proposed GA is evaluated in dynamic
RMSA simulations with the 14-node NSFNET and the 28-node
US Backbone topologies, and the results show that it converges
within 25 generations. The simulation results also verify that the
GA-RMSA outperforms several existing algorithms by providing
more load-balanced network provisioning solutions with lower
blocking probabilities. Specifically, when the traffic load is same,
the GA can achieve more than one order-of-magnitude reduction
on blocking probability. To the best of our knowledge, this is
the first attempt to solve dynamic RMSA in elastic O-OFDM
networks with a GA.

Index Terms—Network provisioning, Optical orthogonal
frequency-division multiplexing (O-OFDM), Dynamic routing,
modulation and spectrum assignments (RMSA), Elastic optical
networks, Adaptive genetic algorithm

I. INTRODUCTION

The booming of bandwidth-hungry applications has been
driving the Internet traffic to grow at an annual rate of more
than 30%, and this situation will not change for the short-
to-mid-term future [1]. The network operators and service
providers have been relying on fiber-optic technologies to scale
their networks with this rising trend of bandwidth requirement.
It is well-known that optical fiber has numerous bandwidth,
and recent research advances have demonstrated transmission
of 20 Tb/s signals on one optical fiber [2]. In order to
facilitate efficient and flexible access to this almost unlimited
bandwidth, researchers are still looking for methods that can
expedite elastic bandwidth provisioning in the optical layer.

A. Spectrum-Sliced Elastic Optical Transport Networks

Recently, optical orthogonal frequency-division multiplex-
ing (O-OFDM) [3,4] technology has attracted intensive re-
search interests, due to the reason that it can achieve high
bandwidth efficiency and sub-wavelength granularity [5]. Fig.
1 shows the elastic bandwidth allocation in O-OFDM net-
works. The resource is allocated based on contiguous subcar-
rier slots with bandwidths at a few GHz, and the modulation
levels of the slots can be adaptive to accommodate various

Fig. 1. Elastic frequency resource allocation in O-OFDM networks.

transmission reaches [6,7]. With this mechanism, a bandwidth-
variable (BV) O-OFDM transponder [8] can assign just-
enough numbers of slots to serve the lightpath requests.

O-OFDM technology brings challenges to future optical
transport networks. Its elastic nature has determined that more
sophisticated network planning and provisioning procedures
would be necessary for efficient and robust operations. Specif-
ically, operators have to manipulate contiguous subcarrier slots
instead of independent wavelength channels for Routing, Mod-
ulation, and Spectrum Assignments (RMSA). Additionally, as
the spectrum converters may not be practically available in the
near future [9], bandwidth fragmentation will be a concern,
especially when the network operations are dynamic [10].

B. Related Works and Our Contributions

To address above challenges, researchers have been develop-
ing RMSA algorithms for network planning and provisioning
[10-18]. The RMSA-based network planning that serves a
given set of lightpath requests by assigning routing paths,
modulation levels, and frequency slots is known as non-
polynomial (NP)-complete [11]. It is also considered as a static
RMSA since all the lightpath requests are known a priori. In
[12], Jinno et al. proposed a bandwidth-efficient and distance-
adaptive RSMA that examined K shortest routing paths for
each request and chose the one with the lowest available
contiguous slots. Several integer linear programming (ILP)
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models were formulated and solved in [11], and a simulated-
annealing-based optimization was proposed to reduce the
computation complexity. An ILP model of static RSA was
independently formulated in [13], and two heuristic algo-
rithms, K Shortest Path Routing and Balanced-Load Spectrum
Assignments (KSP-BLSA) and Shortest Path Routing and
Maximum Spectrum Reuse Assignments (SPR-MSRA), were
proposed to improve the computation efficiency.

The RSMA-based network provisioning considers how to
serve time-variant lightpath requests in a dynamic network
environment. With a dynamic Routing and Spectrum Assign-
ment (RSA) algorithm that employed Shortest Path Routing
and First-Fit Spectrum Assignment (SPR-FFSA), Shen et al.
investigated the relationship between blocking probability and
spectrum assignment granularity in [15]. In [16], Wan et al.
proposed several dynamic RSAs based on routing algorithms
such as K shortest path routing, modified Dijkstra shortest path
routing, and etc. However, the authors of [15,16] have not
considered the adaptiveness of modulation-level assignments.
By making extensions to the GMPLS signaling, Sambo et al.
proposed a distributed dynamic RMSA that chose the least
congested routing path based on the modulation level, and per-
formed First-Fit-based spectrum assignments [17]. A dynamic
RMSA that employed a metric to quantify the consecutiveness
of available slots among relevant fibers was proposed in
[18]. A RMSA-based spectrum defragmentation technique was
proposed in [10]. The authors of [10] proposed a slot-search
algorithm based on auxiliary graphs and counted on four-
wave-mixing based spectrum conversion for defragmentation.

In this paper, we develop an adaptive and efficient genetic
algorithm (GA) to solve the dynamic RMSA for elastic O-
OFDM networks. The algorithm can be applied to network
provisioning, where a network operator needs to find an
efficient way of serving dynamic lightpath requests based on
current network status at each service provision time. When
traffic load is low and there is no blocking, the GA tries to
minimize the maximum number of slots required on any fiber
in the network. Otherwise, the GA’s objective is to minimize
request blocking. The simulation results show that the GA
converges within 25 generations even for a high traffic case
(1000 Erlangs). The network topologies under consideration
are mesh networks with certain complexity, such as the 14-
node NSFNET (NSF) and the 28-node US Backbone (USB).
Hence, it will be feasible to implement the GA for dynamic
network provisioning. The simulation results also verify that
the proposed GA-RMSA outperforms several existing algo-
rithms by providing more load-balanced network provisioning
solutions with lower blocking probabilities. To the best of our
knowledge, this is the first attempt to solve dynamic RMSA
in elastic O-OFDM networks with a GA.

The rest of the paper is organized as follows. Section II
formulates the dynamic RMSA problem and explains the
constraints and the fitness function. The design of the adaptive
GA for dynamic RMSA is discussed in Section III. Section
IV shows the simulation results for performance evaluations.
Finally, Section V summarizes the paper.

II. PROBLEM FORMULATION

A. Design Considerations

Consider a physical network topology as G(V,E), where
V is the node set and E is the fiber link set. We assume that
the bandwidth of each O-OFDM frequency slot is unique as
BWslot GHz, and each fiber link can accommodate B slots
at most. Then, the capacity of a slot is M · Cslot, where M
is the modulation level in terms of bits per symbol, and Cslot

denotes the capacity of a slot when the modulation is BPSK
(M = 1) and is a function of BWslot. In this work, we assume
that M can be 1, 2, 3 and 4 for BPSK, QPSK, 8-QAM and
16-QAM, respectively. For a lightpath request LRi from node
s to d, s, d ∈ V , we define the requested capacity as Ci.
The RMSA starts with determining the routing path as Rs,d,i.
When the transmission distance of Rs,d,i is known, we derive
the modulation level Mi from it [6]. Then, the number of
contiguous slots Ni we need to assign is:

Ni = � Ci

Mi · Cslot
�+NGB (1)

where NGB is the number of slots for the guard-band.
The last step of RMSA is to finalize the allocation of

slots along the fiber links on Rs,d,i. We assume that there
is no spectrum conversion in the network. For each fiber link
e ∈ E, we define a bit-mask be that contains B bits. When
be[j] = 1, the j-th slot on e is taken, otherwise be[j] = 0. For
the lightpath request LRi, we define a bit-mask ai that also
contains B bits, and the bits in ai follow a similar definition as
those in be. Then, the spectrum assignment of LRi becomes
the problem of finding Ni contiguous bits in ai to turn on
based on all current be, e ∈ Rs,d,i. Finally, the RMSA of LRi

is {Rs,d,i,Mi, ai}. We say LRi is blocked, if we cannot find
a feasible {Rs,d,i,Mi, ai} for it.

B. Constraints and Fitness Function

Typically, a dynamic RMSA has to satisfy the constraints
from traffic demand, spectrum continuity, single-path routing,
spectrum non-overlapping, and spectrum contiguousness. As
the first three constraints have already been taken care of in
the procedures described above, we will elaborate on the last
two in this section.

Spectrum Non-Overlapping Constraint:

sum(ai ∩ be) = 0, ∀e ∈ Rs,d,i (2)

where be reflects the network resource usage before serving
LRi, sum(·) adds all bits in a bit-mask together, and ∩ is the
bit AND operator.

Spectrum Contiguousness Constraint:

sum(ai ∩ROR(ai, 1)) = { Ni − 1, Ni < B
B, Ni = B

(3)

where ROR(·) is the circular bit-right-shift operator.
If we define f(·) as the function to return the index of the

last used slot on a link e, we can evaluate a dynamic RMSA
with:

Fs = max(f(e)), ∀e ∈ E (4)
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when the traffic load is low and there is no blocking. Basically,
a smaller Fs means that the slot usage is more evenly distribut-
ed in the network. Apparently, we also want to minimize the
number of blocked requests Fb when the traffic load is high.
Therefore, we define

Fitness Function:

F = Fs +H · u(Fb) + Fb (5)

where H is a large positive constant to punish RMSA solutions
that involve request blocking, u(·) is the unit step function that
u(x) = 1 for x > 0, otherwise u(x) = 0. At any service
provision time, the objective of the dynamic RMSA is to
minimize F .

Bandwidth fragmentation is another un-wanted factor in
dynamic RMSA. To quantify it, we define the fragmentation
ratio of a link e as:

ηe = { 1− MaxBlock(be)
B−sum(be)

, sum(be) < B

0, sum(be) = B
(6)

where MaxBlock(·) returns the maximum size of available
contiguous slots in be. At any service provision time, if we
obtain more than one RMSA scenarios that the fitness function
in Eqn. (5) returns the same smallest F , we choose the one
that has the smallest Fη to implement, and Fη is defined as:

Fη = max(ηe), ∀e ∈ E (7)

III. ADAPTIVE GENETIC ALGORITHM FOR DYNAMIC
RMSA

Genetic Algorithm (GA) is a search heuristic that mimics
the natural evolution in the real world [19]. GA represents
each feasible solution as a group of genes, which is known
as an individual chromosome. For the dynamic RMSA, we
assume that the lightpath requests from customers are served
at discrete Service Provision Time in a periodic way (as shown
in Fig. 2(a)). This assumption simplifies the design of dynamic
RMSA with GA, and it actually is the common case in the
network control and management [20]. If the lightpath setup
delay becomes an issue, we can make the service provision
period adaptive.

Algorithm 1 describes the logic flow of our proposed GA
for dynamic RMSA. Here, the variable X(k) shares the same
definition of X , but it is for the k-th individual in the popu-
lation particularly. For example, R(k)

s,d,i is the k-th individual’s
routing path for the i-th lightpath request LRi that is from
s to d. P is the population, or the set of individuals in the
GA, PSize is the size of the population, RSets,d is the set of
feasible routing paths from s to d, and Gene

(k)
i is the RMSA

solution of LRi in the k-th individual. We will elaborate on
the details of the GA in this section.

A. Genetic Encoding for RMSA

Fig. 2(b)-(e) illustrate the genetic encoding scheme. For
each s-d pair in G(V,E), the feasible routing paths are pre-
determined with a Link-Disjoint Path Search (LDPS) algo-
rithm [21]. We then use a routing path table to map each

Fig. 2. Genetic encoding scheme for dynamic RMSA in an elastic
O-OFDM network.

path to a unique R-Index (as in Fig. 2(b)). For each pending
LRi that needs to be served at this service provision time,
the RMSA starts from randomly selecting a feasible routing
path R

(k)
s,d,i, and then determines M

(k)
i and N

(k)
i based on

the transmission distance of R
(k)
s,d,i and the capacity of LRi

(as in Fig. 2(c)). The genetic encoding then construct a gene
Gene

(k)
i = {R(k)

s,d,i,M
(k)
i , N

(k)
i }.

After encoding all the genes, we perform spectrum as-
signment in a gene-by-gene way with a descending order
based on |R(k)

s,d,i| and N
(k)
i . Specifically, the gene with longer

routing path is taken care of earlier; and when the path lengths
are equal, we handle the one that requests larger number
of slots earlier. The assignments are done with the First-Fit
scheme that is based on R

(k)
s,d,i, M

(k)
i , N (k)

i , and the current
network status b

(k)
e . If an a

(k)
i that satisfies Eqn. (2) and

(3) can be found, the LRi is set up successfully; otherwise,
LRi is blocked. We then encode Gene

(k)
i accordingly, and

as shown in Fig. 2(d), a gray gene represents a lightpath
request that is blocked. After repeating the above procedures
for all L pending lightpath requests, we form an individual
chromosome that contains L genes. Fig. 2(e) shows that if
we select different routing paths for some/all of the genes, a
different individual can be formed. And finally, we obtain the
population by grouping different individuals together.

B. Adaptive Genetic Operations

When the RMSA of each individual k is done, we evaluate
its fitness with the function in Eqn. (5). The GA involves
typical genetic operations, such as selection, crossover, and
mutation in iterations (i.e. evolution generations), to optimize
the dynamic RMSA solution. We design the selection opera-
tion based on the Tournament Selection [22], to select pairs
of individuals (e.g. parents) from the current generation for
crossover. With the selected parents, we take pairs randomly
and apply the crossover operation on them to get their children.
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The crossover is a multi-point operation on the gene-level,
where certain number of genes are picked out and swapped
at random locations of parents based on a crossover rate pc.
We then select PSize fittest individuals from the chromosome
pool of parents and children as the next generation, and keep
the population size constant. These individuals then go through
the mutation phase, in which certain number of genes are
randomly changed based on a mutation rate pm. Specifically,
we mutate a gene Gene

(k)
i by randomly changing its routing

path R
(k)
s,d,i to another feasible one. To update its fitness,

we redo spectrum assignment for each individual in the next
generation when the crossover and mutation are done.

We adopt an adaptive mechanism to dynamically adjust
the crossover and mutation rates based on the individuals’
fitness. We define Fmin = min({F (k), k = 1, ..., PSize}),
Fmean = mean({F (k), k = 1, ..., PSize}), and F (k1,k2) =
mean(F (k1), F (k2)). pc and pm are obtained by [23]:

pc = { αc
F (k1,k2)−Fmin

Fmean−Fmin
+ pc0 , F (k1,k2) ≤ Fmean,

βc, Otherwise
(8)

pm = { αm
F (k)−Fmin

Fmean−Fmin
+ pm0 , F (k) ≤ Fmean,

βm, Otherwise
(9)

where αc, βc, αm, and βm are constant coefficients ∈ [0, 1],
and pc0 and pm0 are the default rates for the fittest individuals.

C. Algorithm Convergence Condition

To quantify the GA’s convergence performance, we define
its degree of diversity as:

DP =
2

PSize(PSize− 1)

PSize−1∑

k1=1

PSize∑

k2=k1+1

d(k1, k2)

L
(10)

where d(k1, k2) returns the number of different genes between
individuals k1 and k2, and each individual has L genes. We can
claim that the GA has converged if DP has been lower than
a pre-set threshold for certain number of generations Gc [19].
Note that the thresholds of DP and Gc are usually determined
by running a large number (e.g. 100) of simulations that each
has evolved the GA for hundreds of generations.

D. Lower-Bound of the Blocking Probability in Dynamic
RMSA

The lower-bound of the blocking probability Pb in dynamic
RMSA can be obtained by formulating Integer Linear Pro-
gramming (ILP) equations based on the bit-mask definitions
of ai and be, and solving them at each service provision time.
However, the computation time will be extremely long for a
large-scale network topology and heavy traffic load. To save
the computation efforts, we provide a loose lower-bound of the
Pb by implementing a relaxation on the serving order of the
requests. At each service provision time, we sort pending LRi

in a descending order based on their capacities, compute all
feasible routing paths with a Breadth-First Path Search (BFPS)
algorithm for each request, and serve it with an Exhaustive
Search RMSA (ES-RMSA) approach to minimize the blocking

probability. Specifically, for each request, all feasible routing
paths will be tried until it can be accommodated.

Algorithm 1 Genetic Algorithm for Dynamic RMSA
1: get current network status be, ∀e ∈ E;
2: P ← ∅, k = 1;

{Phase I: Construct Initial Populations}
3: while k ≤ PSize do
4: b

(k)
e = be, ∀e ∈ E;
{Construct an Individual Chromosome k}

5: for all pending lightpath requests LRi do
6: select R(k)

s,d,i from RSets,d;
7: compute M

(k)
i and N

(k)
i with {R(k)

s,d,i, LRi};
8: construct Gene

(k)
i = {R(k)

s,d,i,M
(k)
i , N

(k)
i };

9: Individual[k] ← Gene
(k)
i ;

10: end for
11: sort genes in Individual[k] in a descending order based

on |R(k)
s,d,i| firstly and N

(k)
i secondly;

12: for all genes in Individual[k] do
13: compute a

(k)
i with {R(k)

s,d,i,M
(k)
i , N

(k)
i , b

(k)
e };

14: if a feasible a
(k)
i exists then

15: update b
(k)
e with a

(k)
i ;

16: else
17: record a blocking for Individual[k];
18: end if
19: end for
20: P ← Individual[k];
21: k = k + 1;
22: end while

{Phase II: Evolution}
23: Sbest ← ∅;
24: while GA has not converged do
25: evaluate individuals in P with F in Eqn. (5);
26: evaluate individuals in P with Fη in Eqn. (7);
27: Sbest ← the fittest one in P ;
28: evolve P for one generation with adaptive crossover

and mutation schemes;
29: evaluate the degree of diversity DP for P ;
30: end while

{Phase III: Service Provisioning}
31: implement service provisioning for all pending LRi based

on Sbest;
32: update be based on Sbest;
33: start to collect new pending lightpath requests;
34: wait for the next service provision time;

IV. PERFORMANCE EVALUATIONS

We utilize the proposed GA to perform dynamic RMSA
in two mesh topologies, the 14-node NSFNET and the 28-
node US Backbone (USB). We assume that a frequency slot is
12.5 GHz, and set the transmission reach for BPSK, QPSK, 8-
QAM, and 16-QAM signals in it as 10000 km, 5000 km, 2500
km, and 1250 km, respectively, based on the experimental
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Fig. 3. Convergence performance of the GA-RMSA for two network
topologies.

results in [6]. We also assume that the O-OFDM system is
deployed in the C-band on each fiber link, and hence the total
bandwidth for spectrum allocation is ∼ 4.75 THz per fiber that
can accommodate 358 frequency slots. The lightpath requests’
bandwidth is randomly distributed within 10 - 100 Gb/s, and
their s-d pairs are randomly chosen. The requests are generated
according to a Poisson process with a rate of λ requests per
service provision period, and the duration of a request follows
an exponential distribution with an average value of μ service
provision periods. Hence, the traffic load can be quantified
with λ · μ in Erlangs. The GA uses a population size of 50.

We first evaluate the convergence performance of the GA
with the DP defined in Eqn. (10). We simulate both the low
(100 Erlangs) and high (1000 Erlangs) traffic cases. Fig. 3
shows the evolutions of DP at a service provision time. If
we set the threshold of the DP at 0.05 (5 %) and Gc = 5,
we can see the GA has converged for all cases after ∼ 25
generations. The computation time is within 2 seconds on a
personal computer with 2.4 GHz Intel Core 2 CPU and 2 GB
RAM. Fig. 4 and 5 illustrate the performance comparisons of
the GA-RMSA to two existing algorithms, the Shortest Path
and First Fit Spectrum Assignment (SP-FFSA) [11], and the
K-Shortest Paths and Balanced Load Spectrum Assignment
(KSP-BLSA) [13]. Note that the KSP-BLSA in [13] did not
consider the modulation-level assignment, we modify it to a
real RMSA algorithm with K = 4. The network topology
for simulation is the NSFNET. Fig. 4 plots Fs in Eqn. (4)
at each service provision time from different dynamic RMSA
algorithms. For the low traffic case (100 Erlangs) in Fig. 4(a),
the Fs from the GA-RMSA is the smallest throughout the
simulations, and compared to SP-FFSA and KSP-BLSA, GA-
RMSA can reduce Fs by ∼ 20 % on average. For the high
traffic case (800 Erlangs) in Fig. 4(b), the network with the
GA-RMSA goes to the saturation state with the slowest speed.
Similar trend can be observed in Fig. 5 for the comparisons of
Fη in Eqn. (7), the maximum bandwidth fragmentation ratio
in the network. Therefore, the proposed GA-RMSA reduces
bandwidth fragmentation when allocating frequency resources.

Fig. 6 shows the comparisons of the blocking probabili-

Fig. 4. Evolutions of Fs from three different RMSA algorithms, (a)
Low traffic case (100 Erlangs) and (b) High traffic case (800 Erlangs).

ties from different dynamic RMSA algorithms. Compared to
SP-FFSA and KSP-BLSA, GA-RMSA provides the smallest
blocking probabilities for both topologies. For the NSFNET
topology, the blocking probabilities from the GA is almost
match with the relaxed lower-bound from the Exhaustive
Search RMSA (ES-RMSA). For the US Backbone topology,
there is noticeable difference between the results from GA-
RMSA and ES-RMSA when the traffic load is smaller than
400 Erlangs. This is due to the reason that the US Backbone
topology is much more connected than the NSFNET. Specifi-
cally, for a s-d pair in the US Backbone topology, the LDPS
routing algorithm returns much less feasible routing paths than
the BFPS one, and therefore the GA’s search space is limited.
This can be improved by designing the genetic encoding with
a routing algorithm that can return more feasible routing paths
for s-d pairs.

V. CONCLUSION

We developed an adaptive and efficient genetic algorithm
(GA) to solve the dynamic RMSA for elastic O-OFDM
networks. The algorithm offered an efficient way of serving
the dynamic lightpath requests based on the current network
status at each service provision time. When the traffic load
was low and there was no blocking, the GA minimized
the maximum number of slots required on any fiber in the
network; otherwise, it minimized the blocking probability. The
results from the simulations of dynamic RMSA in the 14-node
NSFNET and the 28-node US Backbone topologies showed
that the GA could converge within 25 generations even for a
high traffic case (1000 Erlangs). Hence, it would be feasible
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Fig. 5. Evolutions of Fη from three different RMSA algorithms, (a)
Low traffic case (100 Erlangs) and (b) High traffic case (800 Erlangs).

to implement the GA for dynamic network provisioning. The
simulation results also verified that the proposed GA-RMSA
had outperformed several existing algorithms by providing
more load-balanced network provisioning solutions with lower
blocking probabilities. Specifically, for the same traffic load,
the GA decreased the maximum number of slots required
on any fiber in the network by ∼ 20 % on average, and
could achieve more than one order-of-magnitude reduction on
blocking probability.
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