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Abstract—We propose to achieve scalable O-OFDM network
planning with a genetic algorithm (GA) that operates in an
adaptive way for high optimization efficiency. When the network
topology and lightpath requests are given, the GA encodes the
routing, spectrum and modulation assignments (RSMA) as genes
and optimizes them iteratively. Both the crossover and mutation
schemes in our proposed GA operate adaptively based on the
fitness of individuals. Specifically, when the individuals are not fit
yet, their genes can be modified significantly with crossover and
mutation. On the other hand, for individuals that are already fit,
we limit the crossover and mutation rate to avoid chromosomal
disruption. The simulation results with the NSFNET topology and
up to 1000 lightpath requests show that the proposed adaptive
GA converges faster with better optimization performance, when
comparing to a non-adaptive one. For the 1000-request case,
the proposed algorithm can converge with a relatively small
population size (e.g. 50) within 80 generations.
Index Terms—Network planning, Optical orthogonal

frequency-division multiplexing (O-OFDM), Routing, spectrum
and modulation assignment (RSMA), Adaptive genetic algorithm

I. INTRODUCTION

Due to the exponential growth of Internet traffic, more and
more research works have been focused on the development
of highly scalable networking technologies. With almost un-
limited bandwidth [1], optical fiber has been considered as
a promising media for ultra-high-capacity data transmission.
While dense wavelength division multiplexing (DWDM) tech-
nology can easily achieve over 10 Tb/s throughput on a single
strand of fiber [2], how to facilitate efficient and flexible
access to such a numerous bandwidth is still an open question.
Nowadays, optical orthogonal frequency division multiplexing
(O-OFDM) [3,4] and its applications in optical networks have
attracted intensive research interests. As illustrated in Fig.
1, O-OFDM systems allocate bandwidth based on contigu-
ous subcarrier channels that are overlapped in the frequency
domain. Due to the orthogonality of these subcarriers, data
modulations on them can still be demodulated at the receiv-
ing end without interference [4]. Therefore, O-OFDM has
a much finer bandwidth allocation granularity, compared to
fixed-grid DWDM scenarios. As a bandwidth-variable (BV)
OFDM transponder [5] can assign just-enough number of
subcarrier frequency slots to serve a lightpath request, the
concept of spectrum-sliced elastic optical network can be

realized. Moreover, the modulation scheme of each subcarrier
channel can be adaptive to the transmission reach or the quality
of transmission (QoT) requirement [6,7]. Recently, a few
practical O-OFDM systems have already been experimentally
demonstrated. [5,8,9]. Shieh et. al. has demonstrated 107 Gb/s
O-OFDM transmission over 1000 km standard single-mode
fiber (SSMF) in [8]. A multi-flow, multi-rate, and multi-reach
O-OFDM system for elastic spectral routing up to 400 Gb/s
has been developed in [5]. The aggregation of 100 and 400
Gb/s O-OFDM lightpaths into a 1 Tb/s super channel has also
been achieved [9].
Together with all these theoretical and practical benefits,

O-OFDM technology also brings challenges to the planning
of future optical networks. Its elastic nature has determined
that more sophisticated network design procedures would be
necessary. Specifically, network operators have to allocate
contiguous subcarrier slots instead of wavelength channels for
resource assignments. Moreover, they need to worry about
choosing proper modulation scheme and make tradeoff be-
tween transmission performance and bandwidth efficiency. To
address all these challenges, we have to develop effective
routing, spectrum, and modulation assignment (RSMA) algo-
rithms for scalable network planning. Given a set of lightpath
requests and the network topology, the network planning with
RSMA is known as non-polynomial (NP)-complete [10]. In
[10], Christodoulopoulos et. al. formulated several integer
linear programming (ILP) models for RSMA and proposed
a simulated annealing (SA) based heuristics for reducing the
computation complexity. Inspired by WDM network planning
with mixed line rates [11], a routing and spectrum assignment
(RSA) algorithm was proposed based on shortest path routing
and first-fit spectrum assignment [12]. A bandwidth-efficient
and distance-adaptive RSMA has been developed in [13],
which examines K shortest paths for each lightpath request and
picks the one with the lowest available contiguous subcarrier
slots. However, most of these approaches can become time-
consuming when the network topologies under consideration
are large-scale mesh networks and/or the number of the
lightpath requests is relatively large (e.g. 1000).
In this paper, we propose to achieve scalable O-OFDM

network planning with a genetic algorithm (GA) that operates
in an adaptive way for high optimization efficiency. Both the
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Fig. 1. Elastic bandwidth allocation in O-OFDM systems.

crossover and mutation schemes in our proposed GA operate
adaptively according to the fitness of individuals. Specifically,
when the individuals are not fit yet, their genes can be modified
significantly with crossover and mutation. But for individuals
that are already fit, we limit the crossover and mutation rate
to avoid chromosomal disruption. The simulation results with
the NSFNET topology and up to 1000 lightpath requests
show that the proposed adaptive GA converges faster with
better optimization performance, when comparing to a non-
adaptive one. The rest of the paper is organized as follows. We
formulate the elastic network planning with GA in Section II.
The design of the GA is discussed in Section III, and Section
IV shows the performance evaluation results of the proposed
algorithm. Finally, Section V summarizes the paper.

II. PROBLEM FORMULATION
A. Design Considerations of O-OFDM Network Planning
For the planning of O-OFDM based elastic optical networks,

we assume that the lightpath requests are known a priori. The
physical network topology is G(V, E), where V is the node
set and E is the set of fiber links. We assume the bandwidths
of spectrum slots are identical as 12.5 GHz in the network,
and define C as the capacity of a slot when the modulation
scheme is BPSK. Therefore, for a lightpath request LRi, if we
assign a modulation level of Mi bits per symbol, the capacity
of a slot isMi ·C. Here,Mi can be 1, 2, 3, 4 for BPSK, QPSK,
8 QAM and 16 QAM modulation schemes, respectively. The
choice of Mi is based on the length of the routing path for
LRi. Based on the results in literatures [6,14], we assume
that the transmission reach for BPSK, QPSK, 8 QAM, and 16
QAM modulated signals are 10000 km, 5000 km, 2500 km,
and 1250 km, respectively. Define the request bandwidth of
LRi as BWi, then the number of contiguous slots we need to
assign is:

Ni = � BWi

Mi · C � + Ng (1)

where Ng is a constant number as the number of frequency
slots for guard-band between two adjacent lightpaths. During
the slot allocation, we have to make sure that both the spectrum
continuity and the spectrum non-overlapping constraints have
to be satisfied.

B. Genetic Encoding
In GA based optimizations, genetic encoding corresponds to

the decomposition of the solution space to several dimensions.
For each LRi from s to d (s, d ∈ V ), we pre-calculate the
feasible routing paths with a K-shortest Link-Disjoint Search
(LDPS) algorithm [15] and put them in the path set RSets,d.
The genetic encoding represents a possible RSMA for LRi as
a gene, and combines the genes for all LRi as an individual
chromosome (i.e. feasible solution). Note that if the network
planning need to accommodate M lightpath requests, each
individual chromosome containsM genes. Each of these genes
in individual k is a combination of routing path R

(k)
s,d,i, number

of assigned spectrum slots N
(k)
i , and the selected modulation

scheme M
(k)
i .

C. Spectrum Assignments and Fitness Function
For each individual k, the spectrum assignment is done with

a gene-by-gene way in a descending order based on |R(k)
s,d,i|

(i.e. routing path length) and then N
(k)
i . The spectrum allo-

cation is done with the First-Fit scheme. When the spectrum
assignment for an individual k is done, we evaluate it with a
fitness function as

Fk = max(f(e)),∀e ∈ E (2)

where f(·) is the function to return the index of the last used
slot on a link e in G(V, E). In the GA based optimization
shown in Algorithm 1, we try to find the RSMA that can
minimize the fitness in Eqn. (2).

III. ADAPTIVE GENETIC ALGORITHM FOR O-OFDM
NETWORK PLANNING

When the path set RSets,d are determined for each lightpath
request LRi, an initial population with a size of PSize is
generated as illustrated in the Phase I of Algorithm 1. The
rest of the GA involves typical genetic operations, such as
selection, crossover, and mutation in iterations (i.e. evolution
generations). In the evolution, we adopt an adaptive mecha-
nism to dynamically change the crossover and mutation rates
according to the fitness of an individual. Basically, the fitter an
individual is, the less possible it will be modified. By doing so,
the individuals that are already fit are preserved with relatively
low crossover and mutation rates.

A. Selection Operation
The selection operator (SO) is designed to select pairs

of individuals from the current generation for crossover. We
perform SO based on the Tournament Selection algorithm
[16]. This algorithm runs several tournaments among a fixed
number of individuals that are randomly chosen from the
current population, based on their fitness. The winner of each
tournament is selected.



Algorithm 1 Adaptive Genetic Algorithm for RSMA
Output: Optimal RSMA solution Sopt

{Phase I: Construct the Initial Population}
1: Sopt ← Ø;
2: P ← Ø;
3: k = 1;
4: while k < PSize do
5: Individual[k] ← Ø;
6: for all lightpath requests LRi do
7: select R

(k)
s,d,i from RSets,d;

8: compute M
(k)
i and N

(k)
i based on R

(k)
s,d,i and LRi;

9: construct Gene
(k)
i = {R(k)

s,d,i,M
(k)
i , N

(k)
i };

10: Individual[k] ← Gene
(k)
i ;

11: end for
12: P ← Individual[k];
13: k = k + 1;
14: end while

{Phase II: Evolution for Optimized Solution}
15: G = 1;
16: while G < Gmax AND (GA hasn’t converged) do
17: evaluate individuals in P with Eqn. (2);
18: Sopt ← the fittest one in P ;
19: evolve P for one generation with adaptive crossover

and mutation schemes;
20: G = G + 1;
21: end while

B. Crossover and Mutation Operations
After the parents are selected out, we take pairs randomly

and apply the crossover operation on them to get children. The
crossover is done as a multi-point operation, where multiple
genes are selected and swapped at random locations. We adopt
an adaptive mechanism to change the crossover rate pc (i.e.
the possibility that a gene is selected for crossover) according
to the parents’ fitness [17]:

pc = { a1
Fk1,k2−min(F )

mean(F )−min(F ) , Fk1,k2 ≤ mean(F ),
a2, Fk1,k2 > mean(F )

(3)

where F is the set of the fitness Fk of selected individuals for
crossover, Fk1,k2 = min(Fk1, Fk2) is the minimum fitness
of the two parents, and a1 and a2 are constant coefficients
within [0,1]. We then select PSize fittest individuals from
the chromosome pool made up by parents and children, as the
next generation, and keep the population size constant. The
selected individuals then go through the mutation phase, in
which the genes of an individual can be changed randomly
based on an adaptive mutation rate [17]:

pm = { a3
Fk−min(F )

mean(F )−min(F ) , Fk ≤ mean(F ),
a4, Fk > mean(F )

(4)

where F is the set of the fitness Fk of selected individuals
for mutation, Fk is the fitness of the individual for mutation,
and a3 and a4 are constant coefficients within [0,1]. Eqn.

(3) and (4) determines that pc and pm are zeros for all of
the fittest individuals in a population. When there are more
than one fittest individuals, all of them will be unmodified
survivors in the next generation. This, however, may cause
premature convergence. To solve this, we only preserve one
of the fittest individuals and introduce a default mutation rate
pm0 for the rest of them to force mutation. For crossover,
the same scenario will be applied to use a default non-zero
crossover rate pc0 for increasing genetic diversity.

IV. PERFORMANCE EVALUATION

We evaluate the proposed adaptive GA with simulations
using a 14-node, 22-link NSFNET topology. Both the s-d
pair and the bandwidth of a lightpath request are randomly
selected. Table I shows the simulation parameters. Fig. 2 shows
the comparisons of evolutions of the adaptive and non-adaptive
GA for 800- and 1000-request cases. It can be seen that in both
cases, the adaptive GA achieves a better optimization results
(i.e. smaller best fitness) and converges faster. For both cases,
the adaptive GA converges within 80 generations, but the non-
adaptive one may need more than 90 generations to converge.
Fig. 3 shows the best fitness we can get from the adaptive GA
for 100, 300, 500, 800 and 1000-request cases. Table II shows
the comparisons of the optimization performance for adaptive
and non-adaptive GA, in terms of maximum, minimum, and
average values of the achievable best fitness. For each of
the request case, 10 simulates are executed. It can be seen
that except for the 100-request case, the adaptive GA always
achieves a smaller minimum and average values of the best
fitness, when comparing to the non-adaptive one.

V. CONCLUSION

We achieved scalable O-OFDM network planning with a
genetic algorithm (GA) that operates in an adaptive way. When
the network topology and requests were given, we encoded
the routing, spectrum and modulation assignments (RSMA) as
genes and optimized them with the GA in iterations. Both the
crossover and mutation schemes in our proposed GA operated
adaptively based on the fitness of individuals. The simulation
results with the NSFNET topology and up to 1000 lightpath
requests showed that the proposed adaptive GA converged
faster with better optimization performance, when comparing
to a non-adaptive one. For the 1000-request case, the proposed
algorithm could converge with a relatively small population
size (e.g. 50) within 80 generations.
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